Llnear 8egresslon wlLh
muluple varlables 
Muluple feaLures 
Machlne Learnlng 
Andrew ng 
!"#$ &'$$(
)
* 
 
 
+,"-$ &./000* 
 
 
2104  460 
1416  232 
1334  313 
832  178 
.  . 
123453$ '$6(2,$7 &86,"693$7*: 
Andrew ng 
!"#$ &'$$(
)
* 
 
 
;2<9$, =' 
9$>,==<7 
 
;2<9$, =' 
?==,7 
 
@A$ =' B=<$ 
&C$6,7* 
 
+,"-$ &./000* 
 
 
2104  3  1  43  460 
1416  3  2  40  232 
1334  3  2  30  313 
832  2  1  36  178 
.  .  .  .  . 
123453$ '$6(2,$7 &86,"693$7*: 
noLauon: 
= number of feaLures 
= lnpuL (feaLures) of        Lralnlng example. 
= value of feaLure    ln        Lralnlng example. 
Andrew ng 
PypoLhesls: 
 revlously: 
Andrew ng 
lor convenlence of noLauon, dene                . 
MuluvarlaLe llnear regresslon. 
Llnear 8egresslon wlLh 
muluple varlables 
CradlenL descenL for 
muluple varlables 
Machlne Learnlng 
Andrew ng 
PypoLhesls: 
CosL funcuon: 
arameLers: 
(slmulLaneously updaLe for every                        ) 
8epeaL 
CradlenL descenL: 
Andrew ng 
(slmulLaneously updaLe             ) 
D,6>"$E( F$7-$E( 
8epeaL 
revlously (n=1): 
new algorlLhm               : 
8epeaL 
(slmulLaneously updaLe        for       
                        ) 
Llnear 8egresslon wlLh 
muluple varlables 
CradlenL descenL ln 
pracuce l: leaLure Scallng 
Machlne Learnlng 
Andrew ng 
L.g.       = slze (0-2000 feeL
2
) 
              = number of bedrooms (1-3) 
G$6(2,$ !-63"EA 
ldea: Make sure feaLures are on a slmllar scale. 
slze (feeL
2
) 
number of bedrooms 
Andrew ng 
G$6(2,$ !-63"EA 
CeL every feaLure lnLo approxlmaLely a                           range. 
Andrew ng 
8eplace      wlLh                Lo make feaLures have approxlmaLely zero mean 
(uo noL apply Lo              ). 
1$6E E=,<63"#64=E 
L.g.  
Llnear 8egresslon wlLh 
muluple varlables 
CradlenL descenL ln 
pracuce ll: Learnlng raLe 
Machlne Learnlng 
Andrew ng 
D,6>"$E( >$7-$E( 
-  uebugglng": Pow Lo make sure gradlenL 
descenL ls worklng correcLly. 
-  Pow Lo choose learnlng raLe     . 
Andrew ng 
Lxample auLomauc 
convergence LesL: 
ueclare convergence lf       
decreases by less Lhan       
ln one lLerauon. 
0  100  200  300  400 
no. of lLerauons 
16H"EA 72,$ A,6>"$E( >$7-$E( "7 I=,H"EA -=,,$-(3C: 
Andrew ng 
16H"EA 72,$ A,6>"$E( >$7-$E( "7 I=,H"EA -=,,$-(3C: 
CradlenL descenL noL worklng.  
use smaller    .  
no. of lLerauons 
no. of lLerauons  no. of lLerauons 
-  lor sumclenLly small     ,             should decrease on every lLerauon. 
-  8uL lf      ls Loo small, gradlenL descenL can be slow Lo converge. 
Andrew ng 
!2<<6,CJ 
-  lf     ls Loo small: slow convergence. 
-  lf     ls Loo large:         may noL decrease on 
every lLerauon, may noL converge. 
1o choose    , Lry 
Llnear 8egresslon wlLh 
muluple varlables 
leaLures and 
polynomlal regresslon 
Machlne Learnlng 
Andrew ng 
K=27"EA 5,"-$7 5,$>"-4=E 
Andrew ng 
+=3CE=<"63 ,$A,$77"=E 
rlce 
(y) 
Slze (x) 
Andrew ng 
LB="-$ =' '$6(2,$7 
rlce 
(y) 
Slze (x) 
Llnear 8egresslon wlLh 
muluple varlables 
normal equauon 
Machlne Learnlng 
Andrew ng 
CradlenL uescenL 
normal equauon: MeLhod Lo solve for  
analyucally. 
Andrew ng 
lnLuluon: lf 1u 
Solve for  
(for every   ) 
Andrew ng 
!"#$ &'$$(
)
* 
 
 
;2<9$, =' 
9$>,==<7 
 
;2<9$, =' 
?==,7 
 
@A$ =' B=<$ 
&C$6,7* 
 
+,"-$ &./000* 
 
 
1  2104  3  1  43  460 
1  1416  3  2  40  232 
1  1334  3  2  30  313 
1  832  2  1  36  178 
!"#$ &'$$(
)
* 
 
 
;2<9$, =' 
9$>,==<7 
 
;2<9$, =' 
?==,7 
 
@A$ =' B=<$ 
&C$6,7* 
 
+,"-$ &./000* 
 
 
2104  3  1  43  460 
1416  3  2  40  232 
1334  3  2  30  313 
832  2  1  36  178 
Lxamples:  
Andrew ng 
      $M6<53$7                                                      N      '$6(2,$7: 
L.g.    lf 
Andrew ng 
ls lnverse of maLrlx             . 
CcLave:   pinv(X*X)*X*y 
Andrew ng 
      (,6"E"EA $M6<53$7O     '$6(2,$7: 
CradlenL uescenL  normal Lquauon 
  no need Lo choose    . 
  uon'L need Lo lLeraLe. 
  need Lo choose    .  
  needs many lLerauons. 
    Works well even 
when     ls large. 
  need Lo compuLe 
  Slow lf     ls very large. 
Llnear 8egresslon wlLh 
muluple varlables 
normal equauon 
and non-lnverublllLy 
(opuonal) 
Machlne Learnlng 
Andrew ng 
normal equauon 
-  WhaL lf             ls non-lnveruble? (slngular/ 
degeneraLe) 
-  CcLave:  pinv(X*X)*X*y 
Andrew ng 
WhaL lf           ls non-lnveruble? 
  8edundanL feaLures (llnearly dependenL). 
L.g.            slze ln feeL
2
 
                   slze ln m
2
 
  1oo many feaLures (e.g.             ). 
-  ueleLe some feaLures, or use regularlzauon.