0% found this document useful (0 votes)
66 views11 pages

Discreteproject

Uploaded by

api-249961689
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
66 views11 pages

Discreteproject

Uploaded by

api-249961689
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

Project Two: Group 12.

Section 4.6: #7
Section 9.1: #32
Section 9.4: #34
Section 10.1: #12, 13

Gabrielle Krikke, Austin Brown, Pia Peredia



Background:

Eachofthesefourchaptershavedifferentkindsofmaterial.ForChapter4is
thebeginningofdifferentmethodsofproofs.Proofsneededtosolveanargument
bycontraction,contrapositive,directproofs,indirectproofs,etcetera.The
introductionofcountingisChapter9,withtheoremslikethePigeonholePrinciple
andtheBagelTheorem.Chapter10dealswithGraphTheoryandthebasicsof
graphingcircuits,paths,simplegraphs,andmuchmore.

Mathematician - Blaise Pascal

EarlyHistory:BlaisePascalwasbornin1623inFrance.Hisfather,atax
collector,wastheonewhoeducatedhimandtaughthimeverythingheoriginally
knewregardingmath.Becauseofthishehasbecomeachildprodigyandagenius
fromayoungage.Hisfatheroriginallydidnotteachhimmath.Hefocusedon
languagesandotherphilosophicalidealsinsteadofputtingimportanceonthe
sciencesandmath.
Becauseofthis,Pascalwassoeagertolearnmath.Hequicklybeganlearning
allaboutthemathworld.Hisfirstlargecontributiontothescientificcommunitywas
anearlydesign/modelforacalculator.Hecreatedittohelphisfathercounttax
information.Thiswasarevolutionaryidea,andhecameupwithitallonhisownat
theageofeighteen.
Afterhecreatedthecalculator,Pascaldecidedtobranchout.Hespentalot
oftimeponderinglifeandotherphilosophicalissues.Healsospentsometime
studyingtheEarthandhowitworks.Helearnedalotabouttheatmosphereandthe
pressuresthatcreatethelayersthatallowustolivehereonEarth.Becausehe
discoveredsomuchaboutthemakeupoftheatmosphere,hehasaunitof
measurementnamedafterhim.
Hethenreturnedtothemathworldandhelpedcreatesomeoftheearliest
ideasregardingprobability.Thisisthemostimportantpartofhislifeforthisclass.
WithoutPascal,thepigeonholetheorywouldnotexistorbeasthoroughlythought
outasitistoday.HeworkedalongwithPierredeFermat,anothermathematician,
andobservedprobabilityforthefirsttime.Theyrealizedthatthingsdidnotjust
happenatrandom,andthattherewasasetlikelihoodofeventstooccur.Their
experimentswerealldonewithdice,buttheyquicklyrealizedthattheirdiscoveries
couldbetransferredtoanysituationthatinvolvedchance.
Pascaldiedin1662athissistershouse.Hehadseveralhealthproblemsand
workingasmuchashediddefinitelydidnothelphisbodyheal.Heendedupdying
becauseoftumorthatstartedinhisstomachandthenmovedtohisbrain.Pascal
onlylivedtobe39,butinthatshortamountoftimehecreatedandrevolutionized
manypiecesofmodernmathematicsandscience.
Problems:

Section4.6:#7

1.Statetheproblem:

Thereisnoleastpositiverationalnumber.

2.Setuptheproofbycontradiction:

Supposetheabovestatementisfalse.
Then,thereexistsaleastpositiverationalnumber,calledR.
ThismeansthatRrforallrationalnumbersr.
LetR=a/b,forintegersa,b,b0.
Multiplybby2togetR=a/2b.
Risstillapositiverationalnumber.
R<R,becausetheyhavethesamenumerator,andRhasalarger
denominator.
ThismeansthatRissmallerthantheleastpositiverationalnumber.

3.Statetheconclusion:

Therefore,itisacontradiction.Theoriginalstatementistrue.

Section9.1:#32Part(a)

1.Statetheproblem:

Acertainnonleapyearhas365days,andJanuaryoccursonaMonday.

a.)HowmanySundaysareintheyear?

2.Createavisualizationtoestablishapattern:

M Tu W Th F Sa Su M Tu W Th F Sa Su
1 2 3 4 5 6 7 8 9 10 11 12 13 14

ThefirstSundayoftheyearisonJanuary7th.ThenextSundayisonJanuary
14th.Therefore,thepatternisthatSundasfallonmultiplesofseven.

TodeterminehowmanySundaysareinayear,identifythehighestmultiple
ofseventhatisequaltoorlessthan365(daysinanonleapyear).

3647=52

3.Statetheconclusion:

Therefore,thereare52Sundaysintheyear.

Section9.1:#32Part(b)

1.Statetheproblem:

Acertainnonleapyearhas365days,andJanuaryoccursonaMonday.

b.)HowmanyMondaysareintheyear?

2.Createavisualizationtoestablishapattern:

M Tu W Th F Sa Su M Tu W Th F Sa Su
1 2 3 4 5 6 7 8 9 10 11 12 13 14

UsetheinformationcalculatedfrompartAtofinishthelasttwodaysofthe
year.

Su M
364 365

IfthelastSundayoftheyearwasthe52ndSunday,thenthelastMondayof
theyearwouldbethe53rdMonday.

3.Statetheconclusion:

Therefore,thereare53Mondaysintheyear.

Section9.4:#34:

1.Statethequestion:

LetSbeasetoftenintegerschosenfrom1through50.Showthattheset
containsatleasttwodifferent(butnotnecessarilydisjoint)subsetsoffourintegers
thatadduptothesamenumber.

2.Solution

Firstyoumustfindthepossiblenumberofsubsetsfromtheoriginalten
numbers.Use
10
C
4

10!/(104)!*4!=10*9*8*7/4*3*2*1=210possiblesubsets.

Nowwemustdecidehowmanypossiblesumsthereare.Inordertodothis
wetakethehighestpossiblesumandsubtractthelowestsum.Thiswillgiveusthe
rangeofsumsthatarepossiblebetween1and50.

(50+49+48+47)(1+2+3+4)=(194)(10)=184

Andnowbasedonthepigeonholetheory,weknowthatthereareatleast
twosubsetsthatexistwithintheoriginalsetthatadduptothesamenumber.

3.Conclusion

210(possiblesubsets)>184(totalsumspossible)

Becausetheyarenotequal,thepigeonholetheoryapplies.Andatleasttwo
pigeons(subsets)havetoflyintothesamehole(sum).

Section10.1:#12:

1.Statethequestion:

Fromaninitialpositionontheleftbankofariver,theferrymanisto
transportawolf,agoat,andabagofcabbagetotherightbank.Unfortunately,the
ferrymansboatcanonlytransportoneobjectatatime,otherthanhimself.
Nonetheless,forobviousreasons,thewolfcannotbeleftalonewiththegoat,and
thegoatcannotbeleftalonewiththecabbage.Howcantheferrymanproceed?

2.Process:(twopossiblesolutions)

Letwolf=w,goat=g,cabbage=c,andtheferryman=f

Solution1:

LeftBank: RightBank:

Start: 1) wgcf 0
2) wgcf gf 0
3) wc gf
4) wc f gf
5) wcf g
6) c wf g
7) c wgf
8) c gf wc
9) gcf w
10) g cf w
11) g wcf
12) g f wc
13) gf wc
14) 0 gf wc
End: 15) 0 wgcf

Solution2:(Itsthesameprocess,howeverthewolfandthecabbage
switchsteps.)

LeftBank: RightBank:

Start: 1) wgcf 0
2) wgcf gf 0
3) wc gf
4) wc f gf
5) wcf g
6) w cf g
7) w gcf
8) w gf c
9) wgf c
10) g wf c
11) g wcf
12) g f wc
13) gf wc
14) 0 gf wc
End: 15) 0 wgcf

3.Conclusion:

Aspreviouslystated,thedifferencesbetweenthetwosolutionsis
whichispickedfirst:thewolforthecabbageasshowninboth
solutionsatStep6(whichishighlighted).Eitherwayworksaslongas
thewolfisnotalonewiththegoatandthegoatisnotalonewiththe
cabbage.

Section10.1:#13:

1.Statetheproblem:

Onanislandtherearetwokindsofpeople:vegetariansandcannibals.
Therearethreevegetariansandthreecannibalsontheleftbankofariver.Withthem
thereisaboatthatcanholdamaximumoftwopeople,yetthecannibalscannot
outnumberthevegetariansatanytimeoneitherbank.Howcantheyallgetonthe
rightbankoftheriver?

2.Process:

Letthevegetarians=vandthecannibals=c

LeftBank: RightBank:

Start: 1) cccvvv 0
2) ccvv cv 0
3) ccvv cv
4) ccvv v c
5) ccvvv c
6) vvv cc c
7) vvv ccc
8) vvv c cc
9) cvvv cc
10) cv vv cc
11) cv ccvv
12) cv cv cv
13) ccvv cv
14) cc vv cv
15) cc cvvv
16) cc c cvvv
17) ccc vvv
18) c cc vvv
19) c ccvvv
20) c c cvvv
21) cc cvvv
22) 0 cc cvvv
End: 23) 0 cccvvv


3.Conclusion:

Comparedtotheferrymanproblem,thisproblemhastheexact
processbutinsteadof15stepsthereare23.Asyoucansee,themore
variablesorobjects,themorestepsitwilltaketogettotheendsolution.Ifit
wastobedrawnout,thischartitwilltakeashapeofagraph.

Summary:
Insummary,theseproblemscoveredmanyaspectsofDiscreteMathematics.

ThePigeonHoletheoremiscoveredinchapter9section4.Itisbasicallythe
ideathatcertainscenariosareguaranteedtooccurifthefunctionthatthescenario
takesplaceinisnotaonetoonefunction.Aslongastherearemorepigeons
thanpigeonholesthereisacertainprobabilitythatadesiredscenariowilloccur.
Theseideascouldnothavebeenpossiblewithoutthemathematicianwe
chosetoobserve.BlaisePascal,aFrenchmathematician,scientist,and
philosopher,studiedandperfectedmanythingsthroughouthisshortlifetime.He
createdacalculator,maderevolutionaryobservationsabouttheatmosphere,and
evenpavedthewayforSirIsaacNewton.But,withthissectioninmind,his
greatestaccomplishmentwasthefirstunderstandingofprobability.Hediscovered
thateverythinginlifeisnotrandom,andthattheprobabilityofeventscanactually
befiguredout.HealsohelpedcreatethePigeonHoletheorem.
Now,agraphconsistsoftwofinitesets:anonemptysetofverticesanda
setofedges,whereeachedgeisassociatedwithasetconsistingofeitheroneor
twoverticescalledendpoints.Thecorrespondencefromedgestoendpointsis
calledtheedgeendpointfunction.Graphsareapowerfulproblemsolvingbecause
theyenableustorepresentacomplexsituationwithasingleimagethatcanbe
analyzed.

References:

Epp,SusannaS.DiscreteMathematicswithApplications.Belmont,CA:
ThomsonBrooks/Cole,2004.Print.

"BlaisePascal."Bio.A&ETelevisionNetworks,2014.Web.14May2014.

"BlaisePascal."Wikipedia.WikimediaFoundation,05Nov.2014.Web.14May2014.

You might also like