G1
G2
g1
g2
Gs
L2
L1
Ls
Li
y1
y2
x1
x2
X1, X2, Y1, Y2
molar flow rate of incoming gas
molar flow rate of outgoing gas
molar low rate of solubles in incoming gas
molar flow rate of solubles in outgoing gas
molar flow rate of insolubles in gas
molar flow rate of incoming liquid
molar lowrate of outgoing gas
molar flow rate of solubles in liquid
molar flow rate of inolubles in liquid
mole fraction of solute in incoming gas
mole farction of solute in outgoing gas
mole fraction of solute in outgoing liq
mole fraction of solute in incoming liquid
respective mole ratio
Data:
g1
G1
Gs
y1
Y1
y2
Y2
G2
g2
packing
0.001373913
12.72413793
12.72276402
0.000107977
0.000107989
1.07989E-06
1.07989E-06
12.72277776
1.37391E-05
pall rings
kmol/hr
kmol/hr
kmol/hr
kmol/hr
kmol/hr
l1
L1
Ls
x1
X1
x2
X2
L2
l2
Diameter of the column
Fp
92 /m
packing factor
a
130 m2/m3
surface area
FLG
0.116801854
take 4.2 mm/m water column pressure drop
from graph
KF
0.0042
K
0.00182952
Gw
0.501653707 kg/m2/s
G1
0.004559483 kg/s
A
0.009088905 m2
D
0.107574871 m
107.5748713 mm
m
no
1.234
y
Y
x
X
1 0.000107977 0.000108 8.75015E-05 8.75092E-05
L2, Ls, x2, X2
L1, Ls, x1, X1
1.2
66.66803
0
0.018
0.01833
0.01798
0.018309
66.66667
1.19864
kmol/hr
kmol/hr
kmol/hr
kmol/hr
kmol/hr
2
3
4
5
6
7
8
9
10
0.000215954
0.000323931
0.000431908
0.000539885
0.000647861
0.000755838
0.000863815
0.000971792
0.001079769
0.000216
0.000324
0.000432
0.00054
0.000648
0.000756
0.000865
0.000973
0.001081
0.000175003
0.000262505
0.000350006
0.000437508
0.000525009
0.000612511
0.000700012
0.000787514
0.000875015
0.000175034
0.000262574
0.000350129
0.000437699
0.000525285
0.000612886
0.000700503
0.000788135
0.000875782
0.0012
0.001
0.0008
Y 0.0006
0.0004
0.0002
0
0
0.0002
L2, Ls, x2, X2
G2, Gs, y2, Y2
L1, Ls, x1, X1
G1, Gs, y1, Y1
Equlibrium curve
0.0002
0.0004
0.0006
X
0.0008
0.001
G1
G2
g1
g2
Gs
L2
L1
Ls
y1
y2
x1
x2
X1, X2, Y1, Y2
Gw
Lw
A
D
P
ae
L
CaL
ReG
Z
Dl
Dg
aw
Data:
G1
g1
Gs
y1
Y1
y2
Y2
G2
g2
molar flow rate of incoming gas
molar flow rate of outgoing gas
molar low rate of solubles in incoming gas
molar flow rate of solubles in outgoing gas
molar flow rate of insolubles in gas
molar flow rate of incoming liquid
molar lowrate of outgoing gas
molar flow rate of insolubles in liquid
mole fraction of solute in incoming gas
mole farction of solute in outgoing gas
mole fraction of solute in outgoing liq
mole fraction of solute in incoming liquid
respective mole ratio
mass velocity of gas
mass velocity of liquid
area of column
diameter of column
operating pressure
efffective area for mass transfer
suraface tension liquid side
liquid capillary no.
(l*Lw/L/L)
gas reynolds no.
(6*Gw/a/g)
height of packing
m
liquid phase diffusion coefficient
gas phase diffusion coefficient
wetted surface of packing
12.26662074
0.001373913
12.26524682
0.000112004
0.000112017
3.3605E-05
3.36062E-05
12.26565901
0.000412188
kmol/hr
kmol/hr
kmol/hr
Flow rate of incoming gas
Flow rate of incoming liquids
HNO3 final concentration
NO2 absorbed
kmol/hr
kmol/hr
L2
l2
x2
X2
l1
L1
x1
X1
11.11111
0.4
0.036
0.037344
0.400962
11.11207
0.036083
0.037434
kmol/hr
kmol/hr
kmol/hr
kmol/hr
Gm
Lm
packing
12.26613987 m
11.11159197
pall rings
1.234
polypropylene
nominal size
no of elements
mass
surface area (a)
percent void space ()
packing factor (Fp)
MWR
liquid rate
38
13600
76
130
91
105
0.1
13
mm
/m3
kg/m3
m2/m3
/m
m3/m2/hr
Tower diameter
FLG
KF
K
P
Gw
G1 (mass)
A
D'
D
A
0.031210124
0.105
0.045738
6
2.252183636
0.098916667
0.043920338
0.23647645
0.5
0.196349541
ratio
liquid rate
13.15789474 if >10 than accept
4.553699012 same so accept
from figure 9.3
mmWC/m of packing
kg/m2/s
kg/s
m2
m
m
take
0.105 for 1150
from fig. 9.3
for pall rings
scrubbing of NO2 from air by water is liquid phase controlling problem
NTU
absorption with reaction
NOG
1.203860794
HTU
Lw
P
L
caL
ReG
Dl
Dg
T
1.264916392
101325
70
1.80702E-05
5618.753355
2.00E-09
1.53E-05
298
NTU
absorption with reaction
NOL
NOL
kg/m2/s
Pa
mN/m
m2/s
m2/s
K
pure water
C1
R
c
5.23 for d>12 mm
8314 J/Kmol/K
33 mN/m
trial
Takeuchi method
HOG
Z
l^0.5
Z^0.4
(caL*ReG)^0.392
ae
(R*T/a/Dg)
(Gw/a/g)^0.7
(g/g/Dg)^1/3
(a*d)^-2
KG
HG
HOG
method 2
HOG
z
Scg
f1
f2
f3
HG
HOG
z
trail
0.6
0.722316476
8.366600265
0.877992909
0.407932841
156.6576932
1.25E+09
120.2380994
1.006181959
0.040977561
2.08E-08
0.234808333
0.234808333
m
m
HOL
Z
ae
Re
Fr
We
XXX
aw
(l/l/g)^1/3
(Lw/aw/l)^2/3
(l/l/Dl)^-0.5
(a*d)^0.4
KL
HL
HOL
m2/m3
kmol/m2/s/Pa
cornell
0.08
0.096308864
1.018660764
1
1
1
0.291446798
0.291446798
0.350861374
HOL
z
phi
C
(l/l/Dl)^0.5
(Z/3.05)^0.15
HL
HOL
final
300
200
1
2
kmol/hr
lit/hr
M
M
L2, Ls, x2, X2
G2, Gs, y2, Y2
L1, Ls, x1, X1
G1, Gs, y1, Y1
g
l
MW air
MW water
MW NO2
l
g
1.187
1000
29.03
18
46
1
9.81
1
0.0185
kg.m3
kg/m3
cP
m/s
cP
tion with reaction
0.002314876
0.5
packing
pall rings
metal
nominal size
no of elements
mass
surface area (a)
percent void space ()
packing factor (Fp)
MWR
liquid rate
25
50100
88
205
90
170
0.1
20.5
mm
/m3
kg/m3
m2/m3
/m
m3/m2/hr
Tower diameter
FLG
KF
K
P
Gw
G1 (mass)
A
D'
D
0.031210124
0.105
0.045738
50
1.770002939
0.098916667
0.05588503
0.266749001
0.3
ratio
liquid rate
12 if >10 than accept
3.578775951 same so accept
from figure 9.3
mmWC/m of packing
kg/m2/s
kg/s
m2
m
m
take
from fig. 9.3
for pall rings
scrubbing of NO2 from air by water is liquid phase controlling problem
NTU
absorption with reaction
NOG
1.203860794
HTU
Lw
P
L
caL
ReG
Dl
Dg
T
0.012200094
101325
70
1.74287E-07
2800.268328
2.00E-09
1.53E-05
298
kg/m2/s
Pa
mN/m
m2/s
m2/s
K
pure water
C1
R
c
5.23 for d>12 mm
8314 J/Kmol/K
33 mN/m
trial
Takeuchi method
HOG
Z
l^0.5
Z^0.4
(caL*ReG)^0.392
ae
(R*T/a/Dg)
(Gw/a/g)^0.7
(g/g/Dg)^1/3
(a*d)^-2
KG
HG
HOG
0.6
0.722316476
8.366600265
0.877992909
0.050335941
30.48258271
7.90E+08
73.84717372
1.006181959
0.038072576
1.87E-08
1.05E+00
1.053938372
0.21
0.252810767
0.06
0.75
22.36067977
0.688294595
0.211153377
0.211153377
method 2
HOG
z
Scg
f1
f2
f3
HG
HOG
0.37
0.445428494
1.02E+00
1
1
1
4.153104901
4.268452666
0.254199272
0.6
0.3
222.635407 m2/m3
9.730126094
2.1203E-05
0.000175826
-0.31473013
35.10183986
46.71363513
10.90991315
0.04472136
1.894483292
0.000100915 kmol/m2/s/Pa
0.056300727
0.056300727
cornell
5.138622815
m
m
m2/m3
kmol/m2/s/Pa
from fig. 9.3
for pall rings
ng problem
NTU
absorption with reaction
NOL
0.002315
NOL
0.002315
trail
final
HOL
Z
ae
Re
Fr
We
XXX
aw
(l/l/g)^1/3
(Lw/aw/l)^2/3
(l/l/Dl)^-0.5
(a*d)^0.4
KL
HL
HOL
0.26046
0.000603
519.3203 m2/m3
0.059513
3.11E-09
1.04E-08
-0.04192
8.416043
46.71364
1.280865
0.044721
1.92255
1.2E-05
0.001954
0.001954
HOL
z
phi
C
(l/l/Dl)^0.5
(Z/3.05)^0.15
HL
HOL
0.247
0.000572
0.06
0.75
22.36068
0.276019
0.084676
0.084676
0.101939
G1
G2
g1
g2
Gs
L2
L1
Ls
y1
y2
x1
x2
X1, X2, Y1, Y2
Gw
Lw
A
D
P
ae
L
CaL
ReG
Z
Dl
Dg
aw
Gm
Lm
m
G
L
molar flow rate of incoming gas
molar flow rate of outgoing gas
molar low rate of solubles in incoming gas
molar flow rate of solubles in outgoing gas
molar flow rate of insolubles in gas
L2, Ls, x2, X2
molar flow rate of incoming liquid
molar lowrate of outgoing gas
molar flow rate of insolubles in liquid
mole fraction of solute in incoming gas
mole farction of solute in outgoing gas
mole fraction of solute in outgoing liq
mole fraction of solute in incoming liquid
respective mole ratio
mass velocity of gas
mass velocity of liquid
area of column
L1, Ls, x1, X1
diameter of column
operating pressure
efffective area for mass transfer
suraface tension liquid side
liquid capillary no.
(l*Lw/L/L)
gas reynolds no.
(6*Gw/a/g)
height of packing
m
liquid phase diffusion coefficient
gas phase diffusion coefficient
wetted surface of packing
average molar fow rate of gas
avergae molar flowrate of liquid
slope of quilibrium line
mass flow rate of gas
mass flow rate of liquid
Data:
Flow rate of incoming gas
Flow rate of incoming liquids
HNO3 final concentration
NO2 absorbed
300
1200
1
2
G1
g1
Gs
y1
Y1
y2
Y2
G2
g2
300
0.001373913
299.9986261
4.57971E-06
4.57973E-06
1.37392E-06
1.37392E-06
299.9990383
0.000412174
kmol/hr
kmol/hr
kmol/hr
L2
l2
x2
X2
l1
L1
x1
X1
66.66666667
2.4
0.036
0.037344398
2.400961739
66.66762841
0.036013907
0.037359363
kmol/hr
kmol/hr
kmol/hr
kmol/hr
kmol/hr
kmol/hr
kmol/hr
lit/hr
M
M
300 kmol/hr gas
removal nox is 70%
G2, Gs, y2, Y2
G1, Gs, y1, Y1
Gm
Lm
m
299.9995191 kmol/hr
66.66714754 kmol/hr
1.234 pv/pt
G
L
252.7379949 kg/hr
1200 kg/hr
Properties
g
l
MW air
MW water
MW NO2
l
g
g
packing
1.187
1000
29.03
18
46
1
9.81
1
0.0185
pall rings
kg/m3
kg/m3
gas density
liquid density
cP
m/s
liquid viscosity
cP
gas viscosity
metal
nominal size
no of elements
mass
surface area (a)
percent void space ()
packing factor (Fp)
MWR
liquid rate
16
214000
116
340
87
310
0.1
34
mm
/m3
kg/m3
m2/m3
/m
m3/m2/hr
Tower diameter
FLG
KF
K
P
Gw
G1 (mass)
A'
D'
D
A
0.163582209
0.12
0.052272
45
2.088316895
0.070204999
0.033617981
0.206890656
0.21
0.034636059
ratio
liquid rate
12.93066598 if >10 than accept
for pall rings
35.69518302 >
34 accept
34.64597401
from figure 9.3
mmWC/m of packing from fig. 9.3
kg/m2/s
kg/s
m2
m
m
take
m2
scrubbing of NO2 from air by water is liquid phase controlling problem
NTU
absorption with reaction
NOG
1.203968225
HTU
Gw
Lw
P
L
caL
ReG
Dl
Dg
T
C1
R
c
2.026933797
9.623881668
101325
70
0.000137484
1933.482159
2.00E-09
1.53E-05
298
5.23
8314
33
kg/m2/s
kg/m2/s
Pa
mN/m
pure water
m2/s
m2/s
K
for d>12 mm
J/Kmol/K
mN/m
Trial and Error
method 2
HOG
cornell
1.8
Calulation of HG
z'
Calculation for HL
2.167142804
Scg
f1
f2
f3
kappa
HG
1.018660764
1
1
1
60 for metal pall ring
0.049317
HOG
z'
1.802583198 m
2.170252893
z
take
3.617088155 m
3.75 m
phi
0.065 fig. 9.5
C
0.75 fig. 9.6
(l/l/Dl)^0.522.3607
(Z/3.05)^0.150.95003
HL
0.31574
Takeuchi method
HOG
Z
0.518 m
0.62365554 m
l^0.5
Z^0.4
(caL*ReG)^0.392
ae
(R*T/a/Dg)
(Gw/a/g)^0.7
(g/g/Dg)^1/3
(a*d)^-2
KG
HG
8.366600265
0.82790006
0.594894868
633.6536475 m2/m3
4.76E+08
834.1909441
0.044780555
0.03379109
1.38613E-08 kmol/m2/s/Pa
0.007821782
HOG
z
0.518220941 m
0.623921546
ReL
28.30553432
FrL
0.00321004
WeL
0.003891559
XXX
-0.50619314
aw
135.0527818
(l/l/g)^1/3
46.71363513
(Lw/aw/l)^2/3
17.18823015
(l/l/Dl)^-0.5
0.04472136
(a*d)^0.4 1.968972089
KL
0.000165239
HL
0.091914939
0.034636059 m2
A
nh
Lm
v
a
dp
distributor ias required for each 194 cm2 are
nh
Lm
v
a
dp
1.785363866
4
0.000333333
3
0.000111111
5.947080387
6
take
m3/s
m/s
m2
mm
mm
c/s area of column
no if ditributor
volumetric flowrate of liquid
solvent velocity in holes
c/s of liquid pipe
dia of pipe
void space
perforated pipe type distributor
dia of ring would be
0.105 m with 4 no of holes with 6 mm dia. seperated 90 deg apart
paking support design
hs
x
height of the riser
width of slot in riser
dc
210 mm
87 %
use cap type packing support
dr
n
dc
diameter fo riser
no of risers
inside diameter of the coulmn
ns
as
vw
nw
dw
no of slots per riser
total area of slots of riser
velocity of liquid thropugh weep hole
no of weeping holes
dia of weeping hole
nr
no of redistributor required
riser design
dr
35 mm
let, x
10
ns
5.497787144
6 take
minimum area required
minimum height of slot in riser (hs)
take
let, dw
vw
aw
nw
5
1
1.9635E-05
16.97652726
20
so, n
30133.37 mm2
71.74612 mm
80 mm
mm
m/s
m2
take
redistributor design
nr
1.5
take 1 at 1.75 m
use same as packing support.
use hold down plate above packings
use 12 mm sqaure aperture wire grid.
flowrate of liquid
ocity in holes
meter of the coulmn
of slots of riser
ns*n*h*x
liquid thropugh weep hole
tributor required
Data:
Flow rate of incoming gas
Flow rate of incoming liquids
HNO3 final concentration
NO2 absorbed
G1
g1
Gs
y1
Y1
y2
Y2
G2
g2
300
0.001373913
299.9986261
4.57971E-06
4.57973E-06
4.57973E-08
4.57973E-08
299.9986398
1.37391E-05
kmol/hr
kmol/hr
kmol/hr
L2
l2
x2
X2
l1
L1
x1
X1
66.66666667
2.4
0.036
0.037344398
2.401360174
66.66802684
0.036019668
0.037365563
kmol/hr
kmol/hr
Gm
Lm
m
299.9993199 kmol/hr
66.66734675 kmol/hr
1.234 pv/pt
G
L
252.7379949 kg/hr
1200 kg/hr
300
1200
1
2
kmol/hr
lit/hr
M
M
kmol/hr
kmol/hr
kmol/hr
kmol/hr
Properties
g
l
MW air
MW water
MW NO2
l
g
g
packing
1.187
1000
29.03
18
46
1
9.81
1
0.0185
pall rings
kg/m3
kg/m3
gas density
liquid density
cP
m/s
liquid viscosity
cP
gas viscosity
metal
300 kmol/hr gas
removal nox is 99%
nominal size
no of elements
mass
surface area (a)
percent void space ()
packing factor (Fp)
MWR
liquid rate
16
214000
116
340
87
310
0.1
34
mm
/m3
kg/m3
m2/m3
/m
m3/m2/hr
Tower diameter
FLG
KF
K
P
Gw
G1 (mass)
A'
D'
D
A
0.163582209
0.12
0.052272
45
2.088316895
0.070204999
0.033617981
0.206890656
0.21
0.034636059
from figure 9.3
mmWC/m of packing from fig. 9.3
kg/m2/s
kg/s
m2
m
m
take
m2
ratio
12.93066598 if >10 than accept
for pall rings
liquid rate 35.69518302 >
34 accept
34.64597401
scrubbing of NO2 from air by water is liquid phase controlling problem
NTU
absorption with reaction
NOG
4.605165606
HTU
Gw
Lw
P
L
caL
ReG
Dl
Dg
T
C1
R
c
2.026933797
9.623881668
101325
70
0.000137484
1933.482159
2.00E-09
1.53E-05
298
5.23
8314
33
Trial and Error
kg/m2/s
kg/m2/s
Pa
mN/m
pure water
m2/s
m2/s
K
for d>12 mm
J/Kmol/K
mN/m
method 2 cornell
HOG
2.31
Calulation of HG
z'
10.63793255
Scg
f1
f2
f3
kappa
1.018660764
1
1
1
60 for metal pall ring
HG
0.083372
HOG
z'
2.309200112 m
10.63424893
z
take
17.72374822 m
18 m
Calculation for HL
phi
0.065 fig. 9.5
C
0.75 fig. 9.6
(l/l/Dl)^0.522.36068
(Z/3.05)^0.151.206101
HL
0.400838
Data:
Flow rate of incoming gas
Flow rate of incoming liquids
HNO3 final concentration
NO2 absorbed
G1
g1
Gs
y1
Y1
y2
Y2
G2
g2
20.4443679
0.01373913
20.43062876
0.000672025
0.000672477
6.72477E-07
6.72478E-07
20.4306425
1.37391E-05
kmol/hr
kmol/hr
kmol/hr
L2
l2
x2
X2
l1
L1
x1
X1
55.55555556
2
0.036
0.037344398
2.013725391
55.56928095
0.036238104
0.037600682
kmol/hr
kmol/hr
Gm
Lm
m
20.4375052 kmol/hr
55.56241825 kmol/hr
1.234 pv/pt
G
L
500
1000
1
2
m3/hr
lit/hr
M
M
0.632 kg/hr
kmol/hr
kmol/hr
kmol/hr
kmol/hr
593.5 kg/hr
1000 kg/hr
Properties
g
l
MW air
MW water
MW NO2
l
g
g
packing
1.187
1000
29.03
18
46
1
9.81
1
0.0185
pall rings
kg/m3
kg/m3
gas density
liquid density
cP
m/s2
liquid viscosity
cP
gas viscosity
metal
500 m3/hr gas
removal nox is 99.9%
nominal size
no of elements
mass
surface area (a)
percent void space ()
packing factor (Fp)
MWR
liquid rate
25
50100
88
205
90
170
0.1
20.5
mm
/m3
kg/m3
m2/m3
/m
51.816 /ft
m3/m2/hr
Tower diameter
FLG
KF
PF
K
P
Gw
G1 (mass)
A'
D'
D
A
0.058050322
0.175
1.902418081
0.07623
60
2.285063969
0.164861111
0.072147263
0.303085381
0.32
0.080424772
No need of fig
Correlation found by datafit
KF = 1/(4.363+31.534*FLG+10.419*FLG^
PF = 0.12*Fp^0.7
P = (0.66^2)*PF
from figure 9.3
inchH2O/ft 158.5348 mmH2O/m
mmWC/m of packing from fig. 9.3
kg/m2/s
kg/s
m2
m
m
take
m2
ratio
12.12341525 if >10 than accept
liquid rate 13.86053966 >
12.43397993
FLG
KF
PF
K
P
for pall rings
accept
scrubbing of NO2 from air by water is liquid phase controlling problem
NTU
absorption with reaction
NOG
6.907083028
HTU
Lw
Dl
Dg
3.453883314 kg/m2/s
2.00E-09 m2/s
1.53E-05 m2/s
Trial and Error
method 2 cornell
HOG
0.224
z'
1.547186598
Calulation of HG
Calculation for HL
Scg
phi
1.018660764
0.065 fig. 9.5
0.05805
0.160548
1.902418
0.069935
69.05778
f1
f2
f3
kappa
HG
1
1
1
60 for metal pall ring
0.137583206
HOG
z'
0.273832453 m
1.891383485
z
take
3.152305809 m
3.3 m
Crosscheck:
Flg
Gw
K
KF
Flooding
0.05805
2.04988 Kg/m2/s
0.061346
0.17
0.600715
0.080424772 m2
distributor ias required for each 194 cm2 are
nh
Lm
v
a
dp
4.145606801
4
0.000277778
3
9.25926E-05
5.428916799
6
C
0.75 fig. 9.6
(l/l/Dl)^0.522.36068
(Z/3.05)^0.150.903205
HL
0.300173
take
m3/s
m/s
m2
mm
mm
A
nh
Lm
v
a
dp
c/s area of column
no if ditributor
volumetric flowrate of liquid
solvent velocity in holes
c/s of liquid pipe
dia of pipe
void space
perforated pipe type distributor
dia of ring would be
0.16 m with 4 no of holes with 6 mm dia. seperated 90 deg apart
paking support design
hs
x
height of the riser
width of slot in riser
dc
320 mm
90 %
use cap type packing support
dr
n
dc
diameter fo riser
no of risers
inside diameter of the coulmn
riser design
dr
53.33333333 mm
let, x
10
ns
8.37758041
7 take
minimum area required
minimum height of slot in riser (hs)
take
let, dw
vw
aw
nw
5
1
1.9635E-05
14.14710605
20
so, n
ns
as
vw
nw
dw
no of slots per riser
total area of slots of riser
velocity of liquid thropugh weep hole
no of weeping holes
dia of weeping hole
nr
no of redistributor required
72382.29 mm2
147.719 mm
90 mm
mm
m/s
m2
take
redistributor design
nr
1.64
take 1 at 1.25 m
use same as packing support.
use hold down plate above packings
use 12 mm sqaure aperture wire grid.
n found by datafit
63+31.534*FLG+10.419*FLG^2)
inchH2O/ft 158.5348 mmH2O/m
mmWC/m of packing
flowrate of liquid
ocity in holes
meter of the coulmn
of slots of riser
ns*n*h*x
liquid thropugh weep hole
tributor required