Ls 118
Ls 118
ON
LASER COMMUNICATION
 Bachelor of Technology 
In
 Electronics & Communication
2011-2012
Project Incharge :                            Submitted By:
Mr. Saurabh Sharma                      Akshat Mitta !0"2#2$100%&
Miss. S'ati Singh                             (eha Singh     !0"2#2$102)&
                                                                   Shrey Agar'a   !0"2#2$10$#&
                                                     Mudit *ander 
!0"2#2$1+0+& 
                                                           Bharti ,oshi     !0"2#221010&
-e.artment o/ 0ectronics 1 2ommunication
M00*34 I(S4I4340 56 4027(5859:;
M00*34 !3.P.&
20*4I6I2A40
This is to certify that or! hich is "eing #resente$ in the #ro%ect 
entitle$  LASER COMMUNICATION su"mitte$ "y Mr& Akshat Mitta 
Miss& (eha Singh' Mr& Shrey Agar'a' Mr& Mudit *ander' Miss& Bharti 
,oshi  stu$ent of final year B&Tech& In ELECTRONICS & 
COMMUNICATION in #artial fulfillment of the re(uirement for aar$ of 
the $egree of B&Tech in ELECTRONICS & COMMUNICATION is a recor$ 
of stu$ents or! carrie$ out "y them un$er my gui$ance an$ su#er)ision&
As #er the can$i$ates $eclaration this or! has not "een su"mitte$ 
elsehere for the aar$ of any other $egree& 
                
-ated:  2< A.ri 2012                               Signature of *ro%ect +ui$e
Pace: Meerut                                             (ame, Miss& Sati Singh
                                                    -esignation, 80243*0*
   
Signature of *ro%ect Incharge                              Signature of -&O&.
A2=(5>80-90M0(4
?Enthusiasm   is   the   feet   of   all   progresses,   with   it   there   is 
accomplishment and without it there are only slits alibis.@
  
Ac!nole$gment is not a ritual "ut is certainly an im#ortant thing for 
the successful com#letion of the #ro%ect&  At the time hen e ere ma$e to 
!no a"out the #ro%ect'  it as really )ery tough to #rocee$ further as e 
ere to $e)elo# the same on a #latform' hich as ne to us& More so' the 
co$ing  #art   seeme$  so  tric!y  that   it   seeme$  to  "e  im#ossi"le   for   us   to 
com#lete the or! ithin the gi)en $uration&
/e really feel in$e"te$ in ac!nole$ging the organi0ational su##ort 
an$ encouragement recei)e$ from the management of our college.
The  tas!  of   $e)elo#ing  this   system  oul$  not   ha)e   "een  #ossi"le 
ithout   the   constant   hel#  of   our   mentors&   /e   ta!e   this   o##ortunity   to 
e1#ress our #rofoun$ sense of gratitu$e an$ res#ect to those ho hel#e$ us 
throughout the $uration of this #ro%ect&
/e  e1#ress  our  gratitu$e  to  Mr.   Saurabh  Sharma  !7.5.-;MI4&    Miss. 
S'ati Singh!8ecturer;MI4&& /e oul$ again li!e to than! all of them for 
gi)ing their )alua"le time to us in $e)elo#ing this #ro%ect&
-ated:2< A.ri  2012                                         Mr& A!shat Mittal
Pace: Meerut                                                      Miss& Neha Singh
                                                                            Mr& Shrey Agaral              
                                                                  Mr& Mu$it Ran$er
                                                                 Miss& Bharti 2oshi
 
TABLE OF CONTENTS
 INTRODUCTION
 PLATFORM  USED
 AIM  OF THE PROJECT
 BLOCK DIAGRAM
 WORKING OF THE PROJECT
 CIRCUIT  DIAGRAM
 COMPONENT LIST
 CIRCUIT DESCRIPTION 
 PCB LAYOUT
 STEPS FOR MAKING PCB
 PROGRAMMING
 SENSING UNIT DESCRIPTION
 COMPONENTS DESCRIPTION
 APPLICATION
 CONCLUSION
 REFERENCE
 Intro$uction
  
                      I(4*5-324I5( ,
 
Laser   communications   systems   are   ireless   connections   through   the 
atmos#here&   They  or!  similarly  to  fi"er   o#tic  lin!s'   e1ce#t   the  "eam  is 
transmitte$  through  free   s#ace&   /hile   the   transmitter   an$  recei)er   must 
re(uire line3of3sight con$itions' they ha)e the "enefit of eliminating the nee$ 
for "roa$cast rights an$ "urie$ ca"les& Laser communications systems can "e 
easily  $e#loye$  since  they  are  ine1#ensi)e'   small'   lo  #oer   an$  $o  not 
re(uire any ra$io interference stu$ies& The carrier use$ for the transmission 
signal   is   ty#ically   generate$   "y   a   laser   $io$e&   To   #arallel   "eams   are 
nee$e$'   one   for   transmission   an$   one   for   rece#tion&   .ue   to   "u$get 
restrictions'   the   system  im#lemente$   in   this   #ro%ect   is   only   one   ay&
                 This #ro%ect is microcontroller "ase$ Laser communication system 
use$  for     the  successful   transmission  of   $ata&     In  this   #ro%ect   using  to 
microcontroller   'e   are   transmitting   $ata   from   one   en$   using   laser 
transmitter an$ at other en$ recei)e$ "y laser recei)er hich is connecte$ to 
the  #in  of   microcontroller   'here  the  transmitte$  as  ell   as   recei)e$  $ata 
$is#laye$  on lc$ &
  Platform used
7ard'are reAuirements ,
1& Microcontroller AT45C67 
2& L.R
$& LM8496  Regulator
+& *oer Su##ly
)& Resistors 
%& Ca#acitors
<& Transistors
"& LI:UI. CR;STAL .IS*LA;
#& Transformer
10& Connectors
11) Laser Transmitter
12) Laser Recei)er
1$& Sitch
So/t'are reAuirements : 
1& Assem"ler of ATMEL microcontroller series
2& *A.S for *CB $esigning
AIM OF THE 
PROJECT
The  Aim  of   this  #ro%ect   is  to  $esign  a  communication    system    through 
Laser'a laser $io$e at the transmitting en$ act as a trans$user to con)ert the 
$igital   $ata  into  laser   form  an$  transmitte$  'at   the  recei)ing  en$  a  laser 
transistor con)ert the laser $ata into $igital form  &
-ere   the   moti)e   of   using  Laser   is   that   /hile   the  transmitter   an$ 
recei)er   must   re(uire   line3of3sight   con$itions'   they   ha)e   the   "enefit   of 
eliminating   the   nee$   for   "roa$cast   rights   an$   "urie$   ca"les&   Laser 
communications systems can "e easily $e#loye$ since they are ine1#ensi)e' 
small' lo #oer an$ $o not re(uire any ra$io interference stu$ies&
Block diagram
Laser communication
TRANSMITTER
TRANSMITTER
  LASER DIODE 
 SUPPLY
SECTION
     
MICRO 
CONTROLLER
                89C51
Commun!"#o
n
DISPLAY    SECTION
USING
             LCD
Receiver
     
MICRO CONTROLLER
                89C51
RECEI$ER
LDR
DISPLAY  SECTION
USING
             LCD
SUPPLY
SECTION
WORKING OF 
THE PROJECT
                  
There  are  to  microcontroller   one  at   sen$ing  en$  an$  the  other   at 
recei)ing   en$   &Laser     transmitter   is   connecte$   to   the   #in   of   the 
microcontroller   at   the   sen$ing   en$   an$   the   LASER    recei)er   is 
connecte$  to  microcontroller   at   recei)er   en$&hene)er   a  #erson  is 
ishing to sen$ the $ata the microcontroller ma!e the laser transmitter 
to sen$ the fre(uency corres#on$ing to that $ata an$ at recei)er en$ 
that fre(uency can change to the original $ata form hich ill $is#lay 
on the lc$ connecte$ to the #in of the microcontroller&in this ay the 
function   of   transmitting   the   $ata   through   laser     recei)er   an$ 
transmitter ha)e "een com#lete$&    
  
    CIRCUIT 
DIAGRAM
Attach the hard 
copy of the ckt 
da!ra"
Component list
Attach hard copy of
Component list
CIRCUIT 
DE#CRIPTION
POWER  SPPL!  SECTION"
Co$%%t%  of&
1% RLMT  Connector &&&  I# ' " !onn(!#o) u'(* #o !onn(!# 
#+( '#(, *o-n #)"n'.o)m()     #o #+(  /)*0( )(!#.()%
1% Bri#$e  Recti%ier    &&& I# ' " .u22 -"3( )(!#.() u'(* #o 
!on3()# "! n#o *! 4 9&153 "! m"*( /5 #)"n'.o)m() ' 
!on3()#(* n#o *! -#+ #+( +(2, o. )(!#.()%
6% Ca&acitor"            &&&&&I# ' "n (2(!#)o25#! !","!#o) o. 
)"#n0 1777M865$ u'(* #o )(mo3( #+( ),,2('% C","!#o) 
' #+( !om,on(n# u'(* #o ,"'' #+( "! "n* /2o!9 #+( *!%
:% Re$u'ator"    &&&&LM;875  ' u'(* #o 03( " .<(* 53 
)(0u2"#(* 'u,,25%
5% Ca&acitor"     &&&&&I# ' "0"n "n (2(!#)o25#! !","!#o) 
17M8=53 u'(* .o) .2#()n0 #o 03( ,u)( *!%
=% Ca&acitor"     &&&&& I# ' "n !()"m! !","!#o) u'(* #o 
)(mo3( #+( ',9(' 0(n()"#(* -+(n .)(>u(n!5 ' 
+0+?',9('@%
So #+( ou#,u# o. 'u,,25 '(!#on ' 53 )(0u2"#(* *!%
MICROCONTROLLER     SECTION"
      R(>u)(' #+)(( !onn(!#on' #o /( 'u!!(''.u225 *on( .o) 
#A' o,()"#on #o /(0n%
1% ()v   su&&'*"    T+' B53 'u,,25 ' )(>u)(* .o) #+( 
!on#)o22() #o 0(# '#")# -+!+ ' ,)o3*(* .)om #+( ,o-() 
'u,,25 '(!#on% T+' 'u,,25 ' ,)o3*(*  "# ,n no%61"n* 
:7 o. #+( 89!51 !on#)o22()%
1% Cr*sta'  Osci''ator"  A !)5'#"2 o'!22"#o) o. 11 MHC ' 
!onn(!#(* "# ,n no%194<1 "n* ,n no%184<1 #o 0(n()"#( 
#+( .)(>u(n!5 .o) #+( !on#)o22()% T+( !)5'#"2 o'!22"#o) 
-o)9' on ,(Co(2(!#)! (..(!#%T+( !2o!9 0(n()"#(* ' 
u'(* #o *(#()mn( #+( ,)o!(''n0 ',((* o. #+( 
!on#)o22()% T-o !","!#o)' ")( "2'o !onn(!#(* on( (n* 
-#+ #+( o'!22"#o) -+2( #+( o#+() (n* ' !onn(!#(* -#+ 
#+( 0)oun*% A' # ' )(!omm(n*(* n #+( /oo9 #o 
!onn(!# #-o !()"m! !","!#o) o. 17 ,.D:7,.  #o 
'#"/2C( #+( !2o!9 0(n()"#(*%   
6% Reset  section"        I# !on''#' o. "n )! n(#-o)9 
!on''#n0 o. 17M865$ !","!#o) "n* on( )(''#"n!( o. 
19% T+' '(!#on ' u'(* #o )('(# #+( !on#)o22() 
!onn(!#(* "# ,n no%9 o. AT89!51%
+ISPLA!  SECTION"
LC+,LI-I+ CR!STAL +ISPLA!)
EMICROCONTROLLER BASED LCD DISPLAYF 4#+' ,)oG(!# ' "n (m/(**(* 
,)oG(!# % Em/(**(* ' #+( !om/n"#on o. 'o.#-")( "n* +")*-")( /(.o)( 
*('0nn0 "n5 (m/(**(* ,)oG(!# # ' #+( .)'# '#(, #o *('0n #+( ,)o,() 
+")*-")( .o) #+( *(')(* ",,2!"#on% H()( -( ")( n#()."!n0 #+( LCD4 
LIHUID CRYSTAL DISPLAY -#+ #+( M!)o!on#)o22()4 -( ")( u'n0 ATMEL 
'()(' 51 !on#)o22() 89!51 !on#)o22()% I# ' " :7 ,n IC4 #+( .)'# '#(, -+2( 
*('0nn0 +")*-")( ' #o *('0n #+( )(>u)(* ,o-() 'u,,25 "' #+( 
!on#)o22() o,()"#(' on B5 3 'u,,25 'o .)'# -( +"3( #o *('0n #+( 
)(0u2"#(* 'u,,25 -#+ #+( +(2, o. #)"n'.o)m()4 )(0u2"#o) "n* .2#()n0 
!","!#o)%
N(<# '#(, ' #+( n(!(''")5 !onn(!#on' o. #+( !on#)o22() 29( )('(# "n* 
#+( !)5'#"2 o'!22"#o) .o) )('(##n0 "n* ',((* )(',(!#3(25%
T+(n !om(' #+( LCD n#()."!n0 4-( ")( u'n0 1=<1 LCD .o) *',2"54 ,n 
no% ; #o 1: ")( #+( *"#" 2n(' o. #+( LCD -+!+ +"' #o /( n#()."!(* -#+ 
#+( m!)o!on#)o22() n,u#8ou#,u# ,n'% Po)# ,7 +"' /((n u'(* .o) #+( 
n#()."!n0 o. *"#" 2n('%
Sn!( #+( *',2"5 /(!om(' 3()5 ("'5 -+(n -( u'( m!)o!on#)o22() +(n!( 
-( +"3( m"*( #+' ,)oG(!#  "n* -( +"3( #)(* #o '+o- *..()(n# *',2"5 
u'n0 #+( '-#!+%
RELA!  SECTION"
RELAY ' "n 'o2"#o) "n* "n (2(!#)!"2 '-#!+% T+( )(2"5 u'(* 
' 11$&5A%To !on#)o2 #+( o,()"#on o. )(2"5 "n NPN #)"n''#o) 
BC5:; +"' /((n u'(*% W+(n(3() +0+ '0n"2 !om(' "# #+( 
/"'( o. NPN #)"n''#o) # ' '-#!+(* on "n* -+(n(3() 2o- 
"))3(' # ' '-#!+(* o..% B"'( o. #+( #)"n''#o) ' !onn(!#(* 
-#+ #+( I8O ,n o. #+( m!)o!on#)o22()% B"'( )(''#"n!( o. 195 
' !onn(!#(* "# #+( /"'( o. #+( #)"n''#o)% W+(n(3() 2o- ' 
'(n'(* "# #+( ,n o. m!)o!on#)o22() #)"n''#o) 0(#' o.. "n* 
#+( ou#,u# o. #+( !o22(!#o) /(!om(' +0+ "n* #+( )(2"5 -+!+ 
' !onn(!#(* "# #+( ou#,u# o. #+( !o22(!#o) /(!om(' o..% T+( 
)(3()'( "!#on o. # #"9(' ,2"!( -+(n +0+ ' '(n'(* "# #+( 
,n o. m!)o!on#)o22()% 
      
 T+' '(!#on "2'o !on''#' o. ,u22 u, I ,u22 *o-n )(''#"n!(% 
A 191 )(''#"n!( ' u'(* "' ,u22 u,% In "n5 !"'( -+(n mo)( 
#+"n  53   !om('   #+(n  ,u22   u,  )(''#"n!(   'n9'   #+(   (<!('' 
3o2#"0( I m"n#"n' 53% I. ,u22 u, ' no# u'(* #+(n #+( 113 o. 
)(2"5 !"n *"m"0( #+( ,)o!(''o) -+(n #+( #)"n''#o) BC5:; 
' on% A ,u22 *o-n )(''#o) o. 3"2u( 191 ' "2'o u'(*%
PC' (A)OUT
Attach the hard 
copy of the 
co"po$e$t 
*ayo+t
Attach the hard 
copy of the pc, 
*ayo+t
#TEP# FOR 
MAKING PC'
 P)(,")( #+( 2"5ou# o. #+( !)!u# ?,o'#3(@%
 Cu# #+( ,+o#o.2m ?'20+#25 /00()@ o. #+( 'C( o. #+( 2"5ou#%
 P2"!( #+( 2"5ou# n #+( ,+o#o,)n#() m"!+n( -#+ #+( 
,+o#o.2m "/o3( #% M"9( 'u)( #+"# #+( /)om*( ?*")9@ '*( o. 
#+( .2m ' n !on#"!# -#+ #+( 2"5ou#%
 S-#!+ on #+( m"!+n( /5 ,)(''n0 #+( ,u'+ /u##on .o) 5 '(!%
 D, #+( .2m n #+( 'o2u#on ,)(,")(* ?*(3(2o,()@ /5 m<n0 #+( 
!+(m!"2' A I B n (>u"2 >u"n##(' n -"#()%
 No- !2("n #+( .2m /5 ,2"!n0 # n #+( #)"5 !on#"nn0 -"#() .o) 
1 mn%
 A.#() #+'4 *, #+( .2m n #+( .<() 'o2u#on .o) 1 mn% no- #+( 
n(0"#3( o. #+( 
      C)!u# ' )("*5%
 No- -"'+ # un*() #+( .2o-n0 -"#()%
 D)5 #+( n(0"#3( n #+( ,+o#o!u)( m"!+n(%
 T"9( #+( PCB /o")* o. #+( 'C( o. #+( 2"5ou# "n* !2("n # -#+ 
'#((2 -oo2 #o m"9( #+( 'u)."!( 'moo#+%
 No- *, #+( PCB n #+( 2>u* ,+o#o)(''#4 -#+ #+( +(2, o. *, 
!o"# m"!+n(%
 No- !2, #+( PCB n(<# #o #+( n(0"#3( n #+( ,+o#o !u)( 
m"!+n(4 *)5n0 .o) ",,)o<m"#( 17&11 mnu#(%
 No- ,2"!( #+( n(0"#3( on #+( #o, o. #+( PCB n #+( U$ 
m"!+n(4 '(# #+( #m() .o) "/ou# 1%5 mnu#( "n* '-#!+ on #+( 
U$ 20+# "# #+( #o,%
 T"9( #+( LPR *(3(2o,() n " !on#"n() "n* )0o)ou'25 mo3( #+( 
PCB n #%
 A.#() #+'4 -"'+ # -#+ -"#() 3()5 0(n#25%
 T+(n ",,25 LPR *5( on # -#+ #+( +(2, o. " *)o,,() 'o #+"# # ' 
!om,2(#(25 !o3()(* /5 #%
 No- !2"m, #+( PCB n #+( (#!+n0 m"!+n( #+"# !on#"n' .())! 
!+2o)*( 'o2u#on .o) "/ou# 17 mnu#('%
 A.#() (#!+n04 -"'+ #+( PCB -#+ -"#()4 -,( # " *)5 !2o#+ 
'o.#25%
 Fn"225 )u/ #+( PCB -#+ " '#((2 -oo24 "n* #+( PCB ' )("*5% 
   
Pro!ra""$!
Attach hard 
copy of 
pro!ra""$!
#EN#ING UNIT
DE#CRIPTION
Laser transmitter 
Laser receiver 
A aser diode is a laser here the acti)e me$ium is a semicon$uctor similar 
to that foun$ in a light3emitting $io$e& The most common an$ #ractical ty#e 
of laser $io$e is forme$ from a #3n %unction an$ #oere$ "y in%ecte$ electric 
current& These $e)ices are sometimes referre$ to as injection laser diodes to 
$istinguish  them  from  <o#tically=  pumped  laser   diodes'   hich   are   more 
easily manufacture$ in the la"oratory&
4heory o/ o.eration
A laser $io$e' li!e many other semicon$uctor $e)ices' is forme$ "y $o#ing a 
)ery  thin  layer  on  the  surface  of  a  crystal   afer&   The  crystal   is  $o#e$  to 
#ro$uce an n3ty#e region an$ a #3ty#e region' one a"o)e the other' resulting 
in a p3n %unction' or $io$e&
Laser $io$es form a su"set of the larger classification of semicon$uctor p3n 
%unction  $io$es&   As   ith  any  semicon$uctor  p3n  %unction  $io$e'   forar$ 
electrical "ias causes the to s#ecies of charge carrier > holes an$ electrons 
> to "e ?in%ecte$? from o##osite si$es of the p3n %unction into the $e#letion 
region'   situate$   at   its   heart&   -oles   are   in%ecte$   from  the  p3$o#e$'   an$ 
electrons from the n3$o#e$' semicon$uctor& <A $e#letion region' $e)oi$ of 
any charge carriers' forms automatically an$ una)oi$a"ly as a result of the 
$ifference   in   chemical   #otential   "eteen  n3   an$  p3ty#e   semicon$uctors 
here)er they are in #hysical contact&=
As charge in%ection is a $istinguishing feature of $io$e lasers as com#are$ to 
all   other   lasers'   $io$e   lasers   are   tra$itionally   an$   more   formally   calle$ 
?in%ection  lasers&?  <This  terminology  $ifferentiates  $io$e  lasers'   e&g&'   from 
flashlam#3#um#e$  soli$  state  lasers'   such  as  the  ru"y  laser&   Interestingly' 
hereas the term ?soli$3state? as e1tremely a#t in $ifferentiating 7569s3era 
semicon$uctor electronics from earlier generations of )acuum electronics' it 
oul$   not   ha)e   "een   a$e(uate   to   con)ey   unam"iguously   the   uni(ue 
characteristics $efining 75@9s3era semicon$uctor lasers&= /hen an electron 
an$   a   hole   are   #resent   in   the   same   region'   they   may  recom"ine  or 
?annihilate? ith the result "eing s#ontaneous emission A i&e&' the electron 
may re3occu#y the energy state of the hole' emitting a #hoton ith energy 
e(ual to the $ifference "eteen the electron an$ hole states in)ol)e$& <In a 
con)entional   semicon$uctor   %unction  $io$e'   the  energy  release$  from  the 
recom"ination of electrons an$ holes is carrie$ aay as #honons' i&e&' lattice 
)i"rations'   rather   than  as  #hotons&=   S#ontaneous  emission  gi)es   the  laser 
$io$e  "elo  lasing  threshol$  similar   #ro#erties   to  an  LE.&   S#ontaneous 
emission is necessary to initiate laser oscillation' "ut it is one among se)eral 
sources of inefficiency once the laser is oscillating&
The   $ifference   "eteen   the   #hoton3emitting   semicon$uctor   laser   an$ 
con)entional   #honon3emitting  <non3light3emitting=   semicon$uctor   %unction 
$io$es   lies   in  the   use   of   a  $ifferent   ty#e   of   semicon$uctor'   one   hose 
#hysical   an$  atomic  structure  confers  the  #ossi"ility  for  #hoton  emission& 
These  #hoton3emitting  semicon$uctors   are  the  so3calle$  ?$irect   "an$ga#? 
semicon$uctors& The #ro#erties of silicon an$ germanium' hich are single3
element semicon$uctors' ha)e "an$ga#s that $o not align in the ay nee$e$ 
to allo #hoton emission an$ are not consi$ere$ ?$irect&? Other materials' 
the so3calle$ com#oun$ semicon$uctors' ha)e )irtually i$entical crystalline 
structures as silicon or germanium "ut use alternating arrangements of to 
$ifferent   atomic   s#ecies   in   a   chec!er"oar$3li!e   #attern   to   "rea!   the 
symmetry&   The  transition  "eteen  the  materials   in  the  alternating  #attern 
creates   the   critical   ?$irect   "an$ga#?   #ro#erty&  +allium  arseni$e'  in$ium 
#hos#hi$e'  gallium  antimoni$e'   an$  gallium  nitri$e  are   all   e1am#les   of 
com#oun$   semicon$uctor   materials   that   can   "e   use$   to   create   %unction 
$io$es that emit light&
.iagram <not to scale= of a sim#le laser $io$e' such as shon a"o)e&
In the a"sence of stimulate$ emission <e&g&' lasing= con$itions' electrons an$ 
holes may coe1ist in #ro1imity to one another' ithout recom"ining'  for a 
certain   time'   terme$   the   ?u##er3state   lifetime?   or   ?recom"ination   time? 
<a"out   a   nanosecon$   for   ty#ical   $io$e   laser   materials='   "efore   they 
recom"ine&  Then a near"y #hoton ith energy e(ual  to the recom"ination 
energy   can  cause   recom"ination   "y  stimulate$   emission&   This   generates 
another #hoton of the same fre(uency' tra)elling in the same $irection' ith 
the   same  #olari0ation  an$  #hase  as   the   first   #hoton&   This   means   that 
stimulate$   emission   causes   gain   in   an   o#tical   a)e   <of   the   correct 
a)elength= in the in%ection region' an$ the gain increases as the num"er of 
electrons an$ holes in%ecte$ across the %unction increases& The s#ontaneous 
an$   stimulate$   emission   #rocesses   are   )astly   more   efficient   in  $irect 
"an$ga# semicon$uctors than in in$irect "an$ga# semicon$uctorsB therefore 
silicon is not a common material for laser $io$es&
As in other lasers'  the gain region is surroun$e$ ith an o#tical ca)ity  to 
form a laser&  In the sim#lest  form of laser $io$e'  an o#tical  a)egui$e is 
ma$e on that crystal surface'  such that the light is confine$ to a relati)ely 
narro  line&   The   to  en$s   of   the   crystal   are   clea)e$   to  form  #erfectly 
smooth'   #arallel   e$ges'   forming  a  Ca"ry>*Drot  resonator&   *hotons  emitte$ 
into  a   mo$e   of   the   a)egui$e   ill   tra)el   along   the   a)egui$e   an$  "e 
reflecte$ se)eral times from each en$ face "efore they are emitte$& As a light 
a)e #asses through the ca)ity' it is am#lifie$ "y stimulate$ emission' "ut 
light is also lost $ue to a"sor#tion an$ "y incom#lete reflection from the en$ 
facets& Cinally' if there is more am#lification than loss' the $io$e "egins to 
?lase?&
Some im#ortant #ro#erties of laser $io$es are $etermine$ "y the geometry of 
the o#tical ca)ity& +enerally' in the )ertical $irection' the light is containe$ 
in a )ery thin layer' an$ the structure su##orts only a single o#tical mo$e in 
the   $irection  #er#en$icular   to  the   layers&   In  the   lateral   $irection'   if   the 
a)egui$e is i$e com#are$ to the a)elength of light' then the a)egui$e 
can su##ort multi#le lateral o#tical mo$es' an$ the laser is !non as ?multi3
mo$e?&  These laterally multi3mo$e lasers are a$e(uate in cases here one 
nee$s   a  )ery  large  amount   of   #oer'   "ut   not   a  small   $iffraction3limite$ 
"eamB for e1am#le in #rinting' acti)ating chemicals' or #um#ing other ty#es 
of lasers&
In a##lications here a small focuse$ "eam is nee$e$' the a)egui$e must 
"e ma$e narro' on the or$er of the o#tical a)elength&  This ay' only a 
single lateral mo$e is su##orte$ an$ one en$s u# ith a $iffraction3limite$ 
"eam&  Such single s#atial  mo$e $e)ices are use$ for o#tical storage'  laser 
#ointers'  an$ fi"er o#tics& Note that these lasers may still su##ort multi#le 
longitu$inal   mo$es'   an$   thus   can   lase   at   multi#le   a)elengths 
simultaneously&
The a)elength emitte$ is a function of the "an$3ga# of the semicon$uctor 
an$ the mo$es of the o#tical ca)ity& In general' the ma1imum gain ill occur 
for #hotons ith energy slightly a"o)e the "an$3ga# energy' an$ the mo$es 
nearest the gain #ea! ill lase most strongly& If the $io$e is $ri)en strongly 
enough'   a$$itional  side  modes  may  also  lase&   Some  laser   $io$es'   such  as 
most )isi"le lasers'  o#erate at a single a)elength'  "ut that a)elength is 
unsta"le an$ changes $ue to fluctuations in current or tem#erature&
.ue  to  $iffraction'   the  "eam  $i)erges   <e1#an$s=   ra#i$ly  after   lea)ing  the 
chi#' ty#ically at E9 $egrees )ertically "y 79 $egrees laterally& A lens  must 
"e  use$ in  or$er to  form a  collimate$ "eam  li!e that  #ro$uce$ "y  a laser 
#ointer& If a circular "eam is re(uire$' cylin$rical lenses an$ other o#tics are 
use$&   Cor   single   s#atial   mo$e   lasers'   using   symmetrical   lenses'   the 
collimate$ "eam en$s u# "eing elli#tical in sha#e' $ue to the $ifference in 
the )ertical an$ lateral $i)ergences& This is easily o"ser)a"le ith a re$ laser 
#ointer&
The sim#le $io$e $escri"e$ a"o)e has "een hea)ily mo$ifie$ in recent years 
to accommo$ate mo$ern technology' resulting in a )ariety of ty#es of laser 
$io$es' as $escri"e$ "elo&
MI2*525(4*5880* A4"#2)1
6eatures
F Com#ati"le ith MCS367G *ro$ucts
F 4H Bytes of In3System Re #rogramma"le Clash Memory
F En$urance, 7'999 /riteIErase Cycles
F Cully Static O#eration, 9 -0 to JK M-0
F Three3le)el *rogram Memory Loc!
F J6@ 1 43"it Internal RAM
F EJ *rogramma"le IIO Lines
FThree 7@3"it TimerICounters
F Eight Interru#t Sources
F *rogramma"le Serial Channel
F Lo3#oer I$le an$ *oer3$on Mo$es
.ESCRI*TION
The AT45C6J is a lo3#oer' high3#erformance CMOS 43"it microcom#uter   4H"ytes of 
Clash   #rogramma"le   an$   erasa"le   rea$   only   memory   <*EROM=&   The   $e)ice   is 
manufacture$   using   Atmel   Ls   high3$ensity   non)olatile   memory   technology   an$   is 
com#ati"le ith the in$ustry stan$ar$ 49C67 an$ 49C6J instruction set an$ #in out&
The on3chi# Clash allos the #rogram memory to "e re#rogramme$ 
in3system  or   "y   a   Con)entional   non)olatile   memory   #rogrammer&   By 
com"ining a )ersatile 43"it C*U ith Clash on a monolithic chi#' the Atmel 
AT45C6J is a #oerful microcom#uter that #ro)i$es a highly fle1i"le an$ 
cost3effecti)e solution to many em"e$$e$ control a##lication&
4he A4"#2)2 .roBides the /oo'ing standard /eatures: "= bytes o/ 6ash; 2)% 
bytes o/ *AM; $2 IC5 ines; three 1%-bit timerCcounters; a siD-Bector t'o-eBe 
interru.t architecture; a /u-du.eD seria .ort; on-chi. osciator; and cock 
circuitry. In addition; the A4"#2)2 is designed 'ith static ogic /or o.eration do'n 
to Eero /reAuency and su..orts t'o so/t'are seectabe .o'er saBing modes. 4he 
Ide Mode to.s the 2P3 'hie ao'ing the *AMF timerCcounters; seria .ort; and 
interru.t system to continue /unctioning.
The   *oer3$on   mo$e   sa)es   the   RAM  contents   "ut   Cree0es   the 
oscillator' $isa"ling all other chi# functions until the ne1t har$are reset
&
Pin -escri.tion
G22
Su##ly )oltage&
9(-
+roun$&
Port 0
Port 0 is an "-bit o.en drain bi-directiona IC5 .ort. As an out.ut .ort; each .in can 
sink eight 448 in.uts. >hen 1s are 'ritten to .ort 0 .ins; the .ins can be used as 
high im.edance in.uts.
*ort 9 can also "e configure$ to "e the multi#le1e$ lo or$er a$$ressI$ata 
"us $uring accesses to e1ternal #rogram an$ $ata memory& In this mo$e' *9 
has internal #ull3u#s &
*ort 9 also recei)es the co$e "ytes $uring Clash #rogramming an$ out#uts 
the  co$e  "ytes  $uring  #rogram )erification&  E1ternal   #ull3u#s  are re(uire$ 
$uring #rogram )erification&
Port 1
*ort 7 is an 43"it "i3$irectional IIO #ort ith internal #ull3u#s& The *ort 7 
out#ut "uffers can sin!Isource four TTL in#uts& /hen 7s are ritten to *ort 
7  #ins'   they  are  #ulle$  high  "y  the  internal   #ull3u#s  an$  can  "e  use$  as 
in#uts& As in#uts' *ort 7 #ins that are e1ternally "eing #ulle$ lo ill source 
current <IIL= "ecause of the internal #ull3u#s&
In a$$ition' *7&9 an$ *7&7 can "e configure$ to "e the timerIcounter J e1ternal count in#ut 
<*7&9ITJ= an$ the timerIcounter J trigger in#ut <*7&7ITJEM=' res#ecti)ely' as shon in the 
folloing ta"le&
*ort 7 also recei)es the lo3or$er a$$ress "ytes $uring
Port 2
*ort J is an 43"it "i3$irectional IIO #ort ith internal #ull3u#s& The *ort J 
out#ut "uffers can sin!Isource four TTL in#uts& /hen 7s are ritten to *ort 
J  #ins'   they  are  #ulle$  high  "y  the  internal   #ull3u#s  an$  can  "e  use$  as 
in#uts& As in#uts' *ort J #ins that are e1ternally "eing #ulle$ lo ill source 
current   <IIL=  "ecause  of  the  internal   #ull3u#s&   *ort   J  emits  the  high3or$er 
a$$ress   "yte   $uring  fetches   from  e1ternal   #rogram  memory   an$  $uring 
accesses   to  e1ternal   $ata   memory  that   use   7@3"it   a$$resses   <MONM  O 
.*TR=&   In   this   a##lication'   *ort   J   uses   strong   internal   #ull3u#s   hen 
emitting   7s&   .uring   accesses   to   e1ternal   $ata   memory   that   use   43"it 
a$$resses   <MONM  O  RI='   *ort   J  emits   the   contents   of   the   *J  S#ecial 
Cunction Register& *ort J also recei)es the high3or$er a$$ress "its an$ some 
control signals $uring Clash #rogramming an$ )erification&
Port $
*ort E is an 43"it "i3$irectional IIO #ort ith internal #ull3u#s& The *ort E 
out#ut "uffers can sin!Isource four TTL in#uts& /hen 7s are ritten to *ort 
E  #ins'   they  are  #ulle$  high  "y  the  internal   #ull3u#s  an$  can  "e  use$  as 
in#uts& As in#uts' *ort E #ins that are e1ternally "eing #ulle$ lo ill source 
current   <IIL=  "ecause  of  the  #ull3u#s&   *ort   E  also  ser)es  the  functions  of 
)arious s#ecial features of the AT45C67'  as shon in the folloing ta"le& 
*ort E also recei)es some control signals for Clash #rogramming&
*S4
*eset in.ut. A high on this .in /or t'o machine cyces 'hie the osciator is running 
resets the deBice.
A80CP*59
A$$ress Latch Ena"le is an out#ut #ulse for latching the lo "yte of the a$$ress $uring 
accesses to e1ternal memory& This #in is also the #rogram #ulse in#ut <*RO+= $uring Clash 
#rogramming& In normal o#eration' ALE is emitte$ at a constant rate of 7I@ the oscillator 
fre(uency an$ may "e use$ for e1ternal timing  or cloc!ing #ur#oses& Note' hoe)er' that 
one ALE #ulse is s!i##e$ $uring each access to e1ternal $ata memory& If $esire$' ALE 
o#eration can "e $isa"le$ "y setting "it 9 of SCR location 4E-& /ith the "it set' ALE is 
acti)e  only  $uring  a  MONM or MONC instruction& Otherise' the #in is ea!ly #ulle$ 
high&   Setting  the  ALE3$isa"le  "it   has   no  effect   if   the  micro  controller   is   in  e1ternal 
e1ecution mo$e&
PS0(
*rogram Store Ena"le is the rea$ stro"e to e1ternal #rogram memory& /hen the AT45C6J 
is e1ecuting co$e from e1ternal #rogram memory' *SEN is acti)ate$ tice each machine 
cycle' e1ce#t that to *SEN acti)ations are s!i##e$ $uring each access to e1ternal $ata 
memory&
EA/VPP
E1ternal Access Ena"le& EA must "e stra##e$ to +N. in or$er to ena"le the 
$e)ice  to  fetch  co$e  from  e1ternal   #rogram  memory  locations  starting  at 
9999- u# to CCCC-&
Note'   hoe)er'   that   if   loc!  "it   7  is   #rogramme$'   EA  ill   "e  internally 
latche$ on reset&
EA  shoul$  "e  stra##e$  to  NCC for  internal   #rogram  e1ecutions&   This  #in 
also recei)es the  7J3)olt   #rogramming ena"le  )oltage  <N**= $uring Clash 
#rogramming hen 7J3)olt #rogramming is selecte$&
H4A81
In#ut to the in)erting oscillator am#lifier an$ in#ut to the internal cloc! o#erating circuit&
H4A82
Out#ut from the in)erting oscillator am#lifier &
S.ecia 6unction *egisters
A  ma#  of  the  on3chi#  memory  area  calle$  the  S#ecial   Cunction  Register 
<SCR= s#ace is shon in Ta"le 7&
(ote that not a o/ the addresses are occu.ied; and unoccu.ied addresses may not 
be im.emented on the chi.. *ead accesses to these addresses 'i in genera return 
random data; and 'rite accesses 'i haBe an indeterminate e//ect. 3ser so/t'are 
shoud not 'rite 1s to these unisted ocations; since they may be used in /uture .rod 
ne' /eatures. In that case; the reset or inactiBe Baues o/ the ne' bits 'i a'ays be 
0.
Timer 2 Registers
 Control an$ status "its are containe$ in registers TJCON <shon in Ta"le J= 
an$ TJMO. <shon in Ta"le K= for Timer J& The register #air <RCA*J-' 
RCA*JL=   are  the  Ca#tureIReloa$  registers   for   Timer   J  in  7@3"it   ca#ture 
mo$e or 7@3"it auto3reloa$ mo$e&
Interru.t *egisters 
The in$i)i$ual interru#t ena"le "its are in the IE register& To #riorities can "e set for each 
of the si1 interru#t sources in the I* register& Instructions that use in$irect a$$ressing 
access the u##er 7J4 "ytes of RAM& Cor e1am#le' the folloing in$irect a$$ressing 
instruction' here R9 contains 9A9-' accesses the $ata "yte at a$$ress 9A9-' rather than 
*J <hose a$$ress is 9A9-=&
MON OR9' P$ata
Note that stac! o#erations are e1am#les of in$irect a$$ressing' so the u##er 7J4 "ytes of 
$ata RAM are a)ail a)aila"le as stac! s#ace&
4imer 0 and 1
Timer 9 an$ Timer 7 in the AT45C6J o#erate the same ay as Timer 9 an$ Timer 7 in the 
T45C67&
4imer 2
Timer J is a 7@3"it TimerICounter that can o#erate as either a timer or an 
e)ent   counter&   The  ty#e  of   o#eration  is  selecte$  "y  "it   CITJ  in  the  SCR 
TJCON  <shon  in  Ta"le  J=&Timer   J  has  three  o#erating  mo$es,   ca#ture' 
auto3reloa$ <u# or $on counting=' an$ "au$ rate generator& The mo$es are 
selecte$ "y "its in TJCON' as shon in Ta"le E&Timer J consists of to 43
"it   registers'   T-J  an$  TLJ&   In  the   Timer   function'   the   TLJ  register   is 
incremente$  e)ery  machine  cycle&   Since  a  machine  cycle  consists   of   7J 
oscillator #erio$s' the count rate is 7I7J of the oscillator in#ut #in' TJ& In this 
function' the e1ternal in#ut is sam#le$ $uring S6*J of e)ery machine cycle& 
/hen the sam#les sho a high in one cycle an$ a lo in the ne1t cycle' the 
count   is  incremente$&   The  ne  count   )alue  a##ears  in  the  register  $uring 
SE*7 of the cycle folloing the one in hich
the transition as $etecte$& Since to machine cycles <JK oscillator #erio$s= 
are re(uire$ to recogni0e a 73to39 transition' the ma1imum count rate is 7IJK 
of the oscillator fre(uency& To ensure that a gi)en le)el is sam#le$ at least 
once "efore it changes' the le)el shoul$ "e hel$ for at least one full machine 
cycle&
2a.ture Mode
In the ca#ture mo$e' to o#tions are selecte$ "y "it EMENJ in TJCON& If EMENJ Q 9' 
Timer J is a 7@3"it timer or counter hich u#on o)erflo sets "it TCJ in TJCON&This "it 
can then "e use$ to generate an interru#t& If EMENJ Q 7' Timer J #erforms the same 
o#eration' "ut a 73to39 transition at e1ternal in#ut TJEM also causes the current )alue in 
T-J an$ TLJ to "e ca#ture$ into CA*J- an$ RCA*JL' res#ecti)ely& In a$$ition' the 
transition at TJEM causes "it EMCJ in TJCON to "e set& The EMCJ "it' li!e TCJ' can 
generate an interru#t& The ca#ture mo$e is illustrate$ in Cigure 7&
Auto-reoad !3. or -o'n 2ounter&
Timer J can "e #rogramme$ to count u# or $on hen configure$ in its 7@3"it auto3reloa$ 
mo$e& This feature is in)o!e$ "y the.CEN <.on Counter Ena"le= "it locate$ in the SCR 
TJMO. <see Ta"le K=& U#on reset' the .CEN "it is set to 9 so that timer J ill $efault to 
count u#& /hen .CEN is set' Timer J can count u# or $on' $e#en$ing on the )alue of the 
TJEM #in& 
Cigure J shos Timer J automatically counting u# hen .CEN Q 9& In this mo$e' to 
o#tions are selecte$ "y "itEMENJ in TJCON& If EMENJ Q 9' Timer J counts u# to 
9CCCC- an$ then sets the TCJ "it u#on o)erflo& The o)erflo also causes the timer 
registers to "e reloa$e$ ith the 7@3"it )alue in RCA*J- an$ RCA*JL& The )alues in 
Timer in Ca#ture Mo$eRCA*J- an$ RCA*JL are #reset "y softare& If EMENJ Q 7' a 7@3
"it reloa$ can "e triggere$ either "y an o)erflo or "y a 73to39 transition at e1ternal in#ut 
TJEM& This transition also sets the EMCJ "it& Both the TCJ an$ EMCJ "its can generate an 
interru#t if ena"le$& Setting the .CEN "it ena"les Timer J to count u# or $on' as shon 
in Cigure E& In this mo$e' the TJEM #in controls
the $irection of the count& A logic 7 at TJEM ma!es Timer J count u#& The 
timer   ill   o)erflo  at   9CCCC-  an$  set   the  TCJ  "it&   This   o)erflo  also 
causes the 7@3"it )alue in RCA*J- an$ RCA*JL to "e reloa$e$ into the 
timer registers' T-J an$ TLJ' res#ecti)ely& A Logic 9 at TJEM ma!es Timer 
J count $on& The timer un$erflos hen T-J an$ TLJ e(ual the )alues 
store$ in RCA*J- an$ RCA*JL& The un$erflo sets the TCJ "it an$ causes 
9CCCC-  to  "e  reloa$e$  into  the   timer   Registers&   The  EMCJ  "it   toggles 
hene)er Timer J o)erflos or un$erflos an$ can "e use$ as a 78th "it of 
resolution& In this o#erating mo$e' EMCJ $oes not flag an interru#t&
Baud *ate 9enerator
Timer J is selecte$ as the "au$ rate generator "y setting TCLH an$Ior RCLH 
in TJCON <Ta"le J=& Note that the "au$ rates for transmit an$ recei)e can "e 
$ifferent  if Timer J is use$ for the recei)er or transmitter an$ Timer 7 is 
use$ for the other function& Setting RCLH an$Ior TCLH #uts Timer J into 
its "au$ rate generator mo$e' as shon in CigureK& The "au$ rate generator 
mo$e is similar to the auto3reloa$ mo$e' in that a rollo)er in T-J causes the 
Timer J registers to "e reloa$e$ ith the 7@3"it )alue in registers RCA*J- 
an$ RCA*JL' hich are #reset "y softare&
The "au$ rates in Mo$es 7 an$ E are $etermine$ "y TimerJLs o)erflo rate accor$ing to 
the folloing e(uation&
The Timer can "e configure$ for either timer or counter o#eration& In most a##lications' it 
is configure$ for timer o#eration <C*ITJ Q 9=& The timer o#eration is $ifferent for Timer J 
hen it is use$ as a "au$ rate generator& Normally' as a timer' it increments e)ery machine 
cycle <at 7I7J the oscillator fre(uency=& As a "au$ rate generator' hoe)er' it increments 
e)ery state time <at 7IJ the oscillator fre(uency=& The "au$ rate formula is gi)en "elo&
here <RCA*J-' RCA*JL= is the content of RCA*J- an$ RCA*JL ta!en as a 7@3"it 
unsigne$ integer& Timer J as a "au$ rate generator is shon in Cigure K& This figure is )ali$ 
only if RCLH or TCLH Q 7 in TJCON& Note that a rollo)er in T-J $oes not set TCJ an$ 
ill not generate an interru#t& Note too' that if EMENJ is set' a 73to39 transition in TJEM 
ill set EMCJ "ut ill not cause a reloa$ from <RCA*J-' RCA*JL= to <T-J' TLJ=& Thus 
hen Timer J is in use as a "au$ rate generator' TJEM can "e use$ as an e1tra e1ternal 
interru#t&
Note that hen Timer J is running <TRJ Q 7= as a timer in the "au$ rate 
generator mo$e' T-J or TLJ shoul$ not "e rea$ from or ritten to& Un$er 
these con$itions' the Timer is incremente$ e)ery state time' an$ the results 
of a rea$ or rite may not "e accurate& The RCA*J registers may "e rea$ 
"ut   shoul$  not   "e  ritten  to'   "ecause  a  rite  might   o)erla#  a  reloa$  an$ 
cause rite an$Ior reloa$ errors& The timer shoul$ "e turne$ off <clear TRJ= 
"efore accessing the Timer J or RCA*J registers&
Programmabe 2ock 5ut
A 69R $uty cycle cloc! can "e #rogramme$ to come out on *7&9' as shon 
in  Cigure  6&   This  #in'   "esi$es   "eing  a  regular   IIO  #in'   has  to  alternate 
functions&   It   can   "e   #rogramme$   to   in#ut   the   e1ternal   cloc!   for 
TimerICounter J or to out#ut a 69R $uty cycle cloc! ranging from @7 -0 to 
K M-0 at a 7@ M-0 o#erating fre(uency& To configure the TimerICounter J 
as  a  cloc!  generator'   "it  CITJ  <TJCON&7=  must   "e  cleare$  an$  "it   TJOE 
<TJMO.&7= must "e set& Bit TRJ <TJCON&J= starts an$ sto#s the timer& The 
cloc!3out fre(uency $e#en$s on the oscillator fre(uency an$ the reloa$ )alue 
of   Timer   J   ca#ture   registers   <RCA*J-'   RCA*JL='   as   shon   in   the 
folloing e(uation&
In the cloc!3out mo$e' Timer J roll3o)ers ill not generate an interru#t& This 
"eha)ior is similar to hen Timer J is use$ as a "au$3rate generator&  It is 
#ossi"le   to  use  Timer   J  as   a  "au$3rate  generator   an$  a  cloc!  generator 
simultaneously& Note' hoe)er' that the "au$3rate an$ cloc!3out
Cre(uencies   cannot   "e  $etermine$  in$e#en$ently  from  one  another   since 
they "oth use RCA*J- an$ RCA*JL&
3A*4
The UART in the AT45C6J o#erates the same ay as the UART in the AT45C67&
Interru.ts
The AT45C6J has a total of si1 interru#t )ectors, to e1ternal interru#ts <INT9 an$ INT7=' 
three timer interru#ts <Timers 9' 7' an$ J=' an$ the serial #ort interru#t& These interru#ts are 
all shon in Cigure @&Each of these interru#t sources can "e in$i)i$ually ena"le$ or 
$isa"le$ "y setting or clearing a "it in S#ecial Cunction Register IE& IE also contains a 
glo"al $isa"le "it' EA' hich $isa"les all interru#ts at once&
Note   that   Ta"le   shos   that   "it   #osition   IE&@   is   unim#lemente$&   In   the 
AT45C67' "it #osition IE&6 is also unim#lemente$& User softare shoul$ not 
rite   7s   to  these  "it   #ositions'   since   they  may  "e  use$  in  future  AT45 
#ro$ucts& Timer J interru#t is generate$ "y the logical OR of "its TCJ an$ 
EMCJ  in  register   TJCON&   Neither   of   these  flags   is  cleare$  "y  har$are 
hen the ser)ice routine is )ectore$ to& In fact' the ser)ice routine may ha)e 
to $etermine hether it as TCJ or EMCJ that generate$ the interru#t' an$ 
that "it ill ha)e to "e cleare$ in softare& The Timer 9 an$ Timer 7 flags' 
TC9 an$ TC7' are set at S6*J of the cycle in hich the timers o)erflo& The 
)alues are then #olle$ "y the circuitry in the ne1t cycle& -oe)er' the Timer 
J flag' TCJ' is set at SJ*J an$ is #olle$ in the same cycle in hich the timer 
o)erflos&
5sciator 2haracteristics
H4A81 and H4A82 are the in.ut and out.ut; res.ectiBey; o/ an inBerting am.i/ier 
that can be con/igured /or use as an on-chi. osciator; as sho'n in 6igure <. 0ither 
a AuartE crysta or ceramic resonator may be used. 4o driBe the deBice /rom an 
eDterna cock source; H4A82 shoud be e/t
Un connecte$ hile MTAL7 is $ri)en' as shon in Cigure 4&There are no re(uirements on 
the $uty cycle of the e1ternal cloc! signal' since the in#ut to the internal cloc!ing circuitry 
is through a $i)i$e3"y3to fli#3flo#' "ut minimum an$ ma1imum )oltage high an$ lo 
time s#ecifications must "e o"ser)e$&
Ide Mode
In i$le mo$e' the C*U #uts itself to slee# hile all the on chi# #eri#herals 
remain acti)e& The mo$e is in)o!e$ "y softare& The content of the on3chi# 
RAM an$ all the s#ecial functions registers remain unchange$ $uring this 
mo$e&  The  i$le  mo$e  can "e terminate$  "y  any ena"le$ interru#t  or "y a 
har$are reset&
Note  that   hen  i$le  mo$e  is  terminate$  "y  a  har$are  reset'   the  $e)ice 
normally  resumes   #rogram  e1ecution   from  here   it   left   off'   u#  to  to 
machine  cycles  "efore  the  internal   reset   algorithm  ta!es  control&   On3chi# 
har$are inhi"its access to internal RAM in this e)ent' "ut access to the #ort 
#ins is not inhi"ite$& To eliminate the #ossi"ility of an une1#ecte$ rite to a 
#ort #in hen i$le mo$e is terminate$ "y a reset' the instruction folloing 
the one that in)o!es i$le mo$e shoul$ not rite to a #ort #in or to e1ternal 
memory&
Po'er-do'n Mode
In the #oer3$on mo$e' the oscillator is sto##e$' an$ the instruction that 
in)o!es #oer3$on is the last instruction e1ecute$& The on3chi# RAM an$ 
S#ecial Cunction Registers retain their )alues until the #oer3$on mo$e is 
terminate$&   The   only  e1it   from  #oer3$on   is   a   har$are   reset&   Reset 
re$efines the SCR s "ut $oes not change the  on3chi# RAM& The reset shoul$ 
not "e culti)ate$ "efore NCC is restore$ to its normal o#erating le)el an$ 
must   "e   hel$   acti)e   long  enough   to   allo  the   oscillator   to   restart   an$ 
sta"ili0e&
AC Characteristics
Un$er o#erating con$itions' loa$ ca#acitance for *ort 9' ALEI*RO+' an$ 
*SEN Q 799 #CB loa$ ca#acitance for all other
out#uts Q 49 #C&
Note, 7& AC In#uts $uring testing are $ri)en at NCC 3 9&6N
for a logic 7 an$ 9&K6N for a logic 9& Timing measurements
are ma$e at NI- min& for a logic 7 an$ NIL ma1&
for a logic 9&
6oat >aBe/orms<7=
Note, 7& Cor timing #ur#oses' a #ort #in is no longer floating
hen a 799 mN change from loa$ )oltage occurs& A
#ort #in "egins to float hen a 799 mN change from
the loa$e$ NO-INOL le)el occurs&
Com#onent $escri#tion
Trans%ormers
A transformer is a $e)ice that transfers electrical energy from one circuit to 
another "y magnetic cou#ling ithout re(uiring relati)e motion "eteen its 
#arts&   It   usually  com#rises   to  or   more  cou#le$  in$ings'   an$'   in  most 
cases' a core to concentrate magnetic flu1& A transformer o#erates from the 
a##lication of an alternating )oltage  to one in$ing' hich creates a time3
)arying magnetic flu1 in the core& This )arying flu1 in$uces a )oltage in the 
other in$ings& Narying the relati)e num"er of turns "eteen #rimary an$ 
secon$ary  in$ings $etermines  the  ratio of  the  in#ut  an$  out#ut  )oltages' 
thus transforming the )oltage "y ste##ing it u# or $on "eteen circuits&
1%8%1Basic .rinci.e
 
The   #rinci#les   of   the   transformer   are   illustrate$   "y   consi$eration   of   a 
hy#othetical i$eal transformer consisting of to in$ings of 0ero resistance 
aroun$  a  core  of   negligi"le  reluctance&   A  )oltage  a##lie$  to  the  #rimary 
in$ing causes a current' hich $e)elo#s a magnetomoti)e force <MMC= in 
the core& The current re(uire$ to create the MMC is terme$ the magnetising 
currentB in the i$eal transformer it is consi$ere$ to "e negligi"le& The MMC 
$ri)es flu1 aroun$ the magnetic circuit of the core& 
6igure 2%: 4he idea trans/ormer as a circuit eement
An  electromoti)e  force  <EMC=   is  in$uce$  across  each  in$ing'   an  effect 
!non as mutual in$uctance& The in$ings in the i$eal transformer ha)e no 
resistance an$ so the EMCs are e(ual in magnitu$e to the measure$ terminal 
)oltages&   In   accor$ance   ith  Cara$aySs   la   of   in$uction'   they   are 
#ro#ortional to the rate of change of flu1,
     an$     
0Auation <: 0M6 induced in .rimary and secondary 'indings 
here,
an$  are the in$uce$ EMCs across #rimary an$ secon$ary in$ings'
an$  are the num"ers of turns in the #rimary an$ secon$ary in$ings'
an$   are  the  time   $eri)ati)es  of   the  flu1  lin!ing  the   #rimary  an$ 
secon$ary in$ings&
In the i$eal transformer' all flu1 #ro$uce$ "y the #rimary in$ing also lin!s 
the secon$ary'  an$ so  ' from hich the ell3!non transformer 
e(uation follos,
0Auation ": 4rans/ormer 0Auation
The ratio of #rimary to secon$ary )oltage is therefore the same as the ratio 
of the num"er of turnsB alternati)ely'  that the )olts3#er3turn is the same in 
"oth in$ings& The con$itions that $etermine Transformer or!ing in STE* 
U* or STE* .O/N mo$e are,
Ns T N#  
0Auation #: 2onditon /or S40P 3P 
Ns U N#
0Auation 10: 2onditon /or S40P -5>( 
*ecti/ier
A bridge recti/ier  is an arrangement of four  $io$es  connecte$ in a "ri$ge 
circuit as shon "elo' that #ro)i$es the same #olarity of out#ut )oltage for 
any   #olarity   of   the   in#ut   )oltage&   /hen   use$   in   its   most   common 
a##lication'   for   con)ersion  of  alternating   current  <AC=   in#ut   into  $irect 
current  <.C= out#ut'  it is !non as a "ri$ge  rectifier& The "ri$ge rectifier 
#ro)i$es full a)e rectification from a to ire AC in#ut <sa)ing the cost of 
a  center   ta##e$  transformer=   "ut   has   to   $io$e   $ro#s   rather   than   one 
re$ucing  efficiency  o)er   a  center   ta#  "ase$  $esign  for   the   same   out#ut 
)oltage&
6igure #: Schematic o/ a  bridge recti/ier
The  essential   feature  of  this  arrangement   is  that   for  "oth  #olarities  of  the 
)oltage at the "ri$ge in#ut' the #olarity of the out#ut is constant&
2.2.1 Basic 5.eration
/hen the in#ut connecte$ at the left corner of the $iamon$ is #ositi)e ith 
res#ect to the one connecte$ at the right han$ corner'  current  flos to the 
right   along  the  u##er  colore$  #ath  to  the  out#ut'   an$  returns  to  the  in#ut 
su##ly )ia the loer one&
/hen  the   right   han$  corner   is   #ositi)e   relati)e   to  the  left   han$  corner' 
current flos along the u##er colore$ #ath an$ returns to the su##ly )ia the 
loer colore$ #ath&
Fi$ure 1." AC/ 0a'%12ave an# %u'' 2ave recti%ie# si$na's
In  ("!+  !"'(4   #+(  u,,()  )0+#  ou#,u#  )(m"n'  ,o'#3(  -#+ 
)(',(!# #o #+( 2o-() )0+# on(% Sn!( #+' ' #)u( -+(#+() #+( 
n,u# ' AC o) DC4  #+' !)!u# no# on25 ,)o*u!(' DC ,o-() 
-+(n  'u,,2(*  -#+  AC  ,o-()J   #   "2'o  !"n  ,)o3*(  -+"#   ' 
'om(#m('   !"22(*  K)(3()'(  ,o2")#5  ,)o#(!#onK%   T+"#   '4   # 
,()m#'   no)m"2   .un!#onn0   -+(n  /"##()('  ")(   n'#"22(* 
/"!9-")*'  o)   DC  n,u#&,o-()   'u,,25  -)n0  K+"'  #'  -)(' 
!)o''(*K   ?"n*   ,)o#(!#'   #+(   !)!u#)5   #   ,o-()'   "0"n'# 
*"m"0( #+"# m0+# o!!u) -#+ou# #+' !)!u# n ,2"!(@%
P)o) #o "3"2"/2#5 o. n#(0)"#(* (2(!#)on!'4  'u!+ " /)*0( 
)(!#.() -"' "2-"5' !on'#)u!#(* .)om *'!)(#( !om,on(n#'% 
Sn!(   "/ou#   19574   "   'n02(   .ou)&#()mn"2   !om,on(n# 
!on#"nn0   #+(   .ou)   *o*('   !onn(!#(*   n   #+(   /)*0( 
!on.0u)"#on   /(!"m(   "   '#"n*")*   !omm()!"2   !om,on(n# 
"n*   '   no-   "3"2"/2(   -#+   3")ou'   3o2#"0(   "n*   !u))(n# 
)"#n0'%
23232 Out&ut Smoot0in$
Fo)   m"n5   ",,2!"#on'4   (',(!"225   -#+   'n02(   ,+"'(   AC 
-+()(  #+(  .u22&-"3(  /)*0(  '()3('  #o  !on3()#   "n  AC  n,u# 
n#o   "   DC   ou#,u#4   #+(   "**#on   o.   "  !","!#o)  m"5   /( 
m,o)#"n#   /(!"u'(   #+(   /)*0(   "2on(   'u,,2('   "n   ou#,u# 
3o2#"0( o. .<(* ,o2")#5 /u# ,u2'"#n0 m"0n#u*(%
Fi$ure 11" Bri#$e Recti%ier 2it0 smoot0en out&ut
T+(   .un!#on   o.   #+'   !","!#o)4   9no-n   "'   "   L'moo#+n0 
!","!#o)L ?'(( "2'o .2#() !","!#o)@ ' #o 2(''(n #+( 3")"#on 
n ?o) L'moo#+L@ #+( )"- ou#,u# 3o2#"0( -"3(.o)m .)om #+( 
/)*0(% On( (<,2"n"#on o. L'moo#+n0L ' #+"# #+( !","!#o) 
,)o3*(' " 2o- m,(*"n!( ,"#+ #o #+( AC !om,on(n# o. #+( 
ou#,u#4   )(*u!n0   #+(   AC  3o2#"0(   "!)o''4   "n*   AC  !u))(n# 
#+)ou0+4 #+( )(''#3( 2o"*% In 2('' #(!+n!"2 #()m'4 "n5 *)o, 
n #+( ou#,u# 3o2#"0( "n* !u))(n# o. #+( /)*0( #(n*' #o /( 
!"n!(22(*  /5  2o''  o.   !+")0(  n  #+(  !","!#o)%   T+'   !+")0( 
.2o-'  ou#  "'  "**#on"2   !u))(n#   #+)ou0+  #+(  2o"*%   T+u'  #+( 
!+"n0(  o.   2o"*  !u))(n#   "n*  3o2#"0(  '  )(*u!(*  )(2"#3(  #o 
-+"# -ou2* o!!u) -#+ou# #+( !","!#o)% In!)("'(' o. 3o2#"0( 
!o))(',on*n025  '#o)(  (<!(''  !+")0(  n  #+(  !","!#o)4   #+u' 
mo*()"#n0 #+( !+"n0( n ou#,u# 3o2#"0( 8 !u))(n#%
T+(  !","!#o)   "n*  #+(  2o"*  )(''#"n!(  +"3(  "  #5,!"2   #m( 
!on'#"n#   M     RC -+()( C "n* R ")( #+( !","!#"n!( "n* 2o"* 
)(''#"n!( )(',(!#3(25% A' 2on0 "' #+( 2o"* )(''#o) ' 2")0( 
(nou0+ 'o #+"# #+' #m( !on'#"n# ' mu!+ 2on0() #+"n #+( 
#m( o. on( ),,2( !5!2(4 #+( "/o3( !on.0u)"#on -22 ,)o*u!( 
"  -(22   'moo#+(*  DC  3o2#"0(  "!)o''  #+(  2o"*  )(''#"n!(%   In 
'om(   *('0n'4   "   '()('   )(''#o)   "#   #+(   2o"*   '*(   o.   #+( 
!","!#o) ' "**(*% T+( 'moo#+n0 !"n #+(n /( m,)o3(* /5 
"**n0   "**#on"2   '#"0('   o.   !","!#o)N)(''#o)   ,")'4   o.#(n 
*on( on25 .o) 'u/&'u,,2(' #o !)#!"2  +0+&0"n !)!u#' #+"# 
#(n* #o /( '(n'#3( #o 'u,,25 3o2#"0( no'(%
4o'ta$e Re$u'ators
A vo'ta$e re$u'ator  ' "n (2(!#)!"2  )(0u2"#o)  *('0n(* #o 
"u#om"#!"225 m"n#"n " !on'#"n#  3o2#"0(  2(3(2% I# m"5 u'( 
"n   (2(!#)om(!+"n!"2   m(!+"n'm4   o)   ,"''3(   o)   "!#3( 
(2(!#)on! !om,on(n#'% D(,(n*n0 on #+( *('0n4 # m"5 /( 
u'(* #o )(0u2"#( on( o) mo)(  AC  o)  DC  3o2#"0('%  W#+ #+( 
(<!(,#on o. '+un# )(0u2"#o)'4 "22 3o2#"0( )(0u2"#o)' o,()"#( 
/5  !om,")n0  #+(  "!#u"2   ou#,u#   3o2#"0(  #o  'om(  n#()n"2 
.<(* )(.()(n!( 3o2#"0(% An5 *..()(n!( ' "m,2.(* "n* u'(* 
#o  !on#)o2   #+(  )(0u2"#on  (2(m(n#%   T+'   .o)m'   "  n(0"#3( 
.((*/"!9 '()3o !on#)o2 2oo,% I. #+( ou#,u# 3o2#"0( ' #oo 2o-4 
#+(  )(0u2"#on (2(m(n#  '  !omm"n*(* #o ,)o*u!(  " +0+() 
3o2#"0(%   Fo)   'om(  )(0u2"#o)'   .   #+(  ou#,u#   3o2#"0(  '   #oo 
+0+4   #+(  )(0u2"#on  (2(m(n#   '  !omm"n*(*  #o  ,)o*u!(  " 
2o-() 3o2#"0(O +o-(3()4 m"n5 Gu'# '#o, 'ou)!n0 !u))(n# "n* 
*(,(n* on #+( !u))(n# *)"- o. -+"#(3() # ' *)3n0 #o ,u22 
#+(  3o2#"0(  /"!9  *o-n%   In  #+'  -"54   #+(  ou#,u#   3o2#"0(  ' 
+(2*  )ou0+25  !on'#"n#%   T+(  !on#)o2   2oo,  mu'#   /(  !")(.u225 
*('0n(*  #o  ,)o*u!(  #+(  *(')(*  #)"*(o..   /(#-((n  '#"/2#5 
"n* ',((* o. )(',on'(%
23531 LM617 ,61Termina' A#8usta9'e Re$u'ator)
+escri&tion
T+(  LM61;  '  "n  "*Gu'#"/2(  #+)((&#()mn"2   ,o'#3(&3o2#"0( 
)(0u2"#o)   !","/2(   o.   'u,,25n0  mo)(  #+"n  1%5  A  o3()   "n 
ou#,u#&3o2#"0( )"n0( o. 1%1 $ #o 6; $% I# ' (<!(,#on"225 ("'5 
#o  u'(  "n*  )(>u)('  on25  #-o  (<#()n"2   )(''#o)'  #o  '(#   #+( 
ou#,u#   3o2#"0(%   Fu)#+()mo)(4   /o#+  2n(  "n*  2o"*  )(0u2"#on 
")( /(##() #+"n '#"n*")* .<(*
)(0u2"#o)'% T+( LM61; ' ,"!9"0(* n #+( KC ?TO&117AB@ "n* 
KTE ,"!9"0('4 -+!+ ")( ("'5 #o +"n*2( "n* u'(% In "**#on 
#o   +"3n0   +0+()   ,().o)m"n!(   #+"n   .<(*   )(0u2"#o)'4   #+' 
*(3!(  n!2u*('   on&!+,  !u))(n#   2m#n04   #+()m"2   o3()2o"* 
,)o#(!#on4   "n*  '".(&o,()"#n0&")("  ,)o#(!#on%   A22   o3()2o"* 
,)o#(!#on   )(m"n'   .u225   .un!#on"24   (3(n   .   #+(   ADJUST 
#()mn"2 ' *'!onn(!#(*%
Fi$ure 1:J TOP IC vie2 o% LM 617
T+( LM61; ' 3()'"#2( n #' ",,2!"#on'4  n!2u*n0 u'(' n 
,)o0)"mm"/2(   ou#,u#   )(0u2"#on   "n*   2o!"2   on&!")* 
)(0u2"#on%   O)4   /5  !onn(!#n0  "  .<(*  )(''#o)   /(#-((n  #+( 
ADJUST "n* OUTPUT #()mn"2'4 #+( LM61; !"n .un!#on "' " 
,)(!'on !u))(n# )(0u2"#o)% An o,#on"2 ou#,u# !","!#o) !"n 
/(   "**(*   #o   m,)o3(   #)"n'(n#   )(',on'(%   T+(   ADJUST 
#()mn"2   !"n   /(   /5,"''(*   #o   "!+(3(   3()5   +0+   ),,2(&
)(G(!#on )"#o'4 -+!+ ")( *..!u2# #o "!+(3( -#+ '#"n*")* 
#+)((&#()mn"2   )(0u2"#o)'%   T+(   LM61;   '   !+")"!#()C(*   .o) 
o,()"#on o3() #+(
3)#u"2 Gun!#on #(m,()"#u)( )"n0( o. 7PC #o 115PC%
Fi$ure 17" A#8usta9'e 4o'ta$e Re$u'ator
23532  LM7;.) ,61Termina' Fi<e# 4o'ta$e Re$u'ator)
T+(   MC;8QQ8LM;8QQ8MC;8QQA   '()('   o.   #+)((   #()mn"2 
,o'#3( )(0u2"#o)' ")( "3"2"/2( n #+(
TO&1178D&PAK   ,"!9"0(   "n*   -#+   '(3()"2   .<(*   ou#,u# 
3o2#"0('4 m"9n0 #+(m u'(.u2 n " -*( )"n0( o.
",,2!"#on'%   E"!+   #5,(   (m,2o5'   n#()n"2   !u))(n#   2m#n04 
#+()m"2   '+u#   *o-n   "n*   '".(   o,()"#n0   ")("   ,)o#(!#on4 
m"9n0 # (''(n#"225 n*('#)u!#/2(% I. "*(>u"#( +("# 'n9n0 
'   ,)o3*(*4   #+(5   !"n   *(23()   o3()   1A   ou#,u#   !u))(n#% 
A2#+ou0+   *('0n(*   ,)m")25   "'   .<(*   3o2#"0(   )(0u2"#o)'4 
#+('(   *(3!('   !"n  /(   u'(*  -#+  (<#()n"2   !om,on(n#'   #o 
o/#"n "*Gu'#"/2( 3o2#"0(' "n* !u))(n#'%
Fi$ure 1;" Interna' 9'oc= +ia$ram
Fi$ure 1> " Fi<e# Out&ut Re$u'ator
Features
R Ou#,u# Cu))(n# u, #o 1A
R Ou#,u# $o2#"0(' o. 54 =4 84 94 174 114 154 184 1:$
R T+()m"2 O3()2o"* P)o#(!#on
R S+o)# C)!u# P)o#(!#on
R Ou#,u# T)"n''#o) S".( O,()"#n0 A)(" P)o#(!#on
Li?ui# cr*sta' #is&'a*,LC+)
A li(ui$ crystal $is#lay <commonly a""re)iate$ LC.= is a thin' .2"# $is#lay 
$e)ice  ma$e  u# of any num"er of color or  monochrome  #i1els  arraye$ in 
front of a light source  or reflector& It is #ri0e$ "y engineers "ecause it uses 
)ery  small   amounts  of  electric  #oer'   an$  is  therefore  suita"le  for  use  in 
"attery3#oere$ electronic $e)ices& Each #i1el of an LC. consists of a layer 
of #er#en$icular molecules aligne$ "eteen to trans#arent electro$es' an$ 
to #olari0ing filters' the a1es of #olarity of hich are #er#en$icular to each 
other&   /ith  no  li(ui$  crystal  "eteen  the  #olari0ing  filters'  light  #assing 
through one filter oul$ "e "loc!e$ "y the electro$es& The surfaces of the 
electro$es that are in contact ith the li(ui$ crystal material are treate$ so as 
to align the li(ui$ crystal molecules in a #articular $irection& This treatment 
ty#ically  consists   of   a  thin  #olymer   layer   that   is   uni$irectionally  ru""e$ 
using a cloth <the $irection of the li(ui$ crystal alignment is $efine$ "y the 
$irection of ru""ing=& Before a##lying an electric fiel$' the orientation of the 
li(ui$ crystal molecules is $etermine$ "y the alignment at the surfaces& In a 
tiste$ nematic $e)ice <the most common li(ui$ crystal $e)ice=' the surface 
alignment   $irections   at   the  to  electro$es   are  #er#en$icular'   an$  so  the 
molecules  arrange  themsel)es  in  a  helical  structure'   or  tist&   Because  the 
li(ui$ crystal material is  "irefringent' light  #assing through one #olari0ing 
filter   is  rotate$  "y  the  li(ui$  crystal   heli1  as  it   #asses  through  the  li(ui$ 
crystal layer' alloing it to #ass through the secon$ #olari0e$ filter& -alf of 
the  light  is  a"sor"e$  "y the  first  #olari0ing  filter'  "ut  otherise  the entire 
assem"ly is trans#arent& /hen a )oltage  is a##lie$ across the electro$es' a 
tor(ue acts to align the li(ui$ crystal molecules #arallel to the electric fiel$' 
$istorting  the  helical   structure  <this  is  resiste$  "y  elastic  forces  since  the 
molecules are constraine$  at the surfaces=&  This re$uces the rotation of the 
#olari0ation of the inci$ent light' an$ the $e)ice a##ears gray& If the a##lie$ 
)oltage   is   large   enough'   the   li(ui$   crystal   molecules   are   com#letely 
untiste$ an$ the #olari0ation of the inci$ent light is not rotate$ at all as it 
#asses   through  the  li(ui$  crystal   layer&   This   light   ill   then  "e  #olari0e$ 
#er#en$icular to the secon$ filter' an$ thus "e com#letely "loc!e$ an$ the 
#i1el ill a##ear "lac!& By controlling the )oltage a##lie$ across the li(ui$ 
crystal layer in each #i1el' light can "e alloe$ to #ass through in )arying 
amounts'   corres#on$ingly  illuminating  the  #i1el&   /ith  a  tiste$  nematic 
li(ui$  crystal   $e)ice   it   is   usual   to   o#erate   the   $e)ice   "eteen   crosse$ 
#olari0ers'   such  that   it   a##ears   "right   ith  no  a##lie$  )oltage&   /ith  this 
setu#'   the  $ar!  )oltage3on  state  is   uniform&   The  $e)ice  can  "e  o#erate$ 
"eteen  #arallel   #olari0ers'   in  hich  case  the  "right   an$  $ar!  states   are 
re)erse$&
Both  the  li(ui$  crystal   material   an$  the  alignment   layer   material   contain 
ionic com#oun$s& If an electric fiel$ of one #articular #olarity is a##lie$ for 
a  long  #erio$  of  time'   this  ionic  material   is  attracte$  to  the  surfaces  an$ 
$egra$es   the  $e)ice  #erformance&   This   is   a)oi$e$  "y  a##lying  either   an 
alternating current' or "y re)ersing the #olarity of the electric fiel$ as the 
$e)ice  is   a$$resse$  <the  res#onse  of   the  li(ui$  crystal   layer   is  i$entical' 
regar$less   of   the  #olarity  of   the  a##lie$  fiel$=&   /hen  a  large  num"er   of 
#i1els is re(uire$ in a $is#lay' it is not feasi"le to $ri)e each $irectly since 
then each #i1el oul$ re(uire in$e#en$ent electro$es& Instea$' the $is#lay is 
multiplexed.  In a multi#le1e$ $is#lay' electro$es on one si$e of the $is#lay 
are grou#e$ an$ ire$ together <ty#ically in columns=' an$ each grou# gets 
its on )oltage source& On the other si$e'  the electro$es are also grou#e$ 
<ty#ically in ros=' ith each grou# getting a )oltage sin!& The grou#s are 
$esigne$ so each #i1el  has a uni(ue'  unshare$ com"ination of source an$ 
sin!&  The electronics or the  softare $ri)ing the  electronics  then turns  on 
sin!s in se(uence' an$ $ri)es sources for the #i1els of each sin!&
6igure 20:82- Pictoria Gie'
2.).1   82- Standards
Cre(uently'   an  4967  #rogram  must   interact   ith  the  outsi$e  orl$  using 
in#ut an$ out#ut $e)ices that communicate $irectly ith a human "eing& One 
of the most common $e)ices attache$ to an 4967 is an LC. $is#lay& Some 
of   the   most   common  LC.s   connecte$   to  the   4967  are   7@1J   an$  J91J 
$is#lays& This means 7@ characters #er line "y J lines an$ J9 characters #er 
line  "y  J  lines'   res#ecti)ely&   Cortunately'   a  )ery  #o#ular   stan$ar$  e1ists 
hich allos us to communicate ith the )ast ma%ority of LC.s regar$less 
of   their   manufacturer&   The  stan$ar$  is   referre$  to  as   -.KK849U'   hich 
refers to the controller chi# hich recei)es $ata from an e1ternal source <in 
this case' the 4967= an$ communicates $irectly ith the LC.&
2.).2   ++<"0 Standard
The KK849 stan$ar$ re(uires E control lines as ell as either K or 4 IIO lines 
for the $ata "us& The user may select hether the LC. is to o#erate ith a K3
"it $ata "us or an 43"it $ata "us&  If a K3"it $ata "us is use$ the LC. ill 
re(uire a total of 8 $ata lines <E control lines #lus the K lines for the $ata 
"us=& If an 43"it $ata "us is use$ the LC. ill re(uire a total of 77 $ata lines 
<E control lines #lus the 4 lines for the $ata "us=&
The three control lines are referre$ to as 0(' *S' an$ *>&
The 0( line is calle$ ?Ena"le&? This control line is use$ to tell the LC. that 
you are sen$ing it $ata& To sen$ $ata to the LC.' your #rogram shoul$ ma!e 
sure this line is lo <9= an$ then set the other to control lines an$Ior #ut 
$ata on the $ata "us& /hen the other lines are com#letely rea$y' "ring 0( 
high  <7=  an$  ait   for  the  minimum  amount   of  time  re(uire$  "y  the  LC. 
$atasheet   <this )aries from  LC. to  LC.='   an$  en$ "y  "ringing  it  lo <9= 
again&
The *S line is the ?Register Select? line& /hen RS is lo <9=' the $ata is to 
"e treate$ as a comman$ or s#ecial instruction <such as clear screen' #osition 
cursor'   etc&=&   /hen  RS is  high  <7='   the  $ata "eing sent   is te1t  $ata hich 
soul$ "e $is#laye$ on the screen& Cor e1am#le' to $is#lay the letter ?T? on 
the screen you oul$ set RS high&
The  *>  line  is  the  ?Rea$I/rite?  control   line&   /hen  R/  is  lo  <9='   the 
information on the $ata "us is "eing ritten to the LC.& /hen R/ is high 
<7='   the  #rogram  is  effecti)ely  (uerying  <or   rea$ing=   the  LC.&   Only  one 
instruction  <?+et   LC.  status?=   is   a  rea$  comman$&   All   others   are  rite 
comman$s33so R/ ill almost alays "e lo&Cinally' the $ata "us consists 
of K or 4 lines <$e#en$ing on the mo$e of o#eration selecte$ "y the user=& In 
the case of an 43"it $ata "us' the lines are referre$ to as .B9' .B7' .BJ' 
.BE' .BK' .B6' .B@' an$ .B8&
2.).$   An 0Dam.e 7ard'are 2on/iguration
As   eS)e   mentione$'   the   LC.  re(uires   either   4   or   77   IIO  lines   to 
communicate ith& Cor the sa!e of this tutorial' e are going to use an 43"it 
$ata "us33so eSll "e using 77 of the 4967Ss IIO #ins to interface ith the 
LC.&A sam#le #sue$o3schematic of ho the LC. ill "e connecte$ to the 
4967&
6igure 21: Schematic 5/ 82- inter/acing 'ith microcontroer
As  you  can  see'   eS)e  esta"lishe$  a  73to37  relation  "eteen  a  #in  on  the 
4967 an$ a line on the KK849 LC.& Thus as e rite our assem"ly #rogram 
to access the LC.' e are going to e(uate constants to the 4967 #orts so that 
e can refer to the lines "y their KK849 name as o##ose$ to *9&7' *9&J' etc& 
LetSs go ahea$ an$ rite our initial e(uates,
-B0 0I3 P1.0
-B1 0I3 P1.1
-B2 0I3 P1.2
-B$ 0I3 P1.$
-B+ 0I3 P1.+
-B) 0I3 P1.)
-B% 0I3 P1.%
-B< 0I3 P1.<
0( 0I3 P$.<
*S 0I3 P$.%
*> 0I3 P$.)
-A4A 0I3 P1
-a)ing esta"lishe$ the a"o)e e(uates' e may no refer to our IIO lines "y 
their KK849 name& Cor e1am#le' to set the R/ line high <7=' e can e1ecute 
the folloing insutrction,
S04B *> 
2.).+   7anding the 0( 2ontro 8ine
As e mentione$ a"o)e' the EN line is use$ to tell the LC. that you are 
rea$y for it to e1ecute an instruction that youS)e #re#are$ on the $ata "us an$ 
on  the  other   control   lines&   Note  that   the  EN  line  must   "e  raise$Iloere$ 
"eforeIafter   each  instruction  sent   to  the  LC.  regar$less   of   hether   that 
instruction  is  rea$  or  rite'   te1t   or  instruction&   In  short'   you  must   alays 
mani#ulate EN hen communicating ith the LC.& EN is the LC.Ss ay of 
!noing  that   you  are  tal!ing  to  it&   If  you  $onSt   raiseIloer   EN'   the  LC. 
$oesnSt !no youSre tal!ing to it on the other lines&
Thus' "efore e interact in any ay ith the LC. e ill alays "ring the 
0( line lo ith the folloing instruction,
28* 0(
An$  once  eS)e  finishe$  setting  u#  our  instruction  ith  the  other  control 
lines an$ $ata "us lines' eSll alays "ring this line high, 
S04B 0(
The line must "e left high for the amount of time re(uire$ "y the LC. as 
s#ecifie$   in  its   $atasheet&   This   is   normally   on   the   or$er   of   a"out   J69 
nanosecon$s' "ut chec! the $atasheet& In the case of a ty#ical 4967 running 
at 7J M-0' an instruction re(uires 7&94 microsecon$s to e1ecute so the EN 
line   can   "e   "rought   lo   the   )ery   ne1t   instruction&   -oe)er'   faster 
microcontrollers <such as the .S45CKJ9 hich e1ecutes an instruction in 59 
nanosecon$s gi)en an 77&965J Mh0 crystal= ill re(uire a num"er of NO*s 
to create a $elay hile EN is hel$ high& The num"er of NO*s that must "e 
inserte$ $e#en$s on the microcontroller you are using an$ the crystal  you 
ha)e selecte$& The instruction is e1ecute$ "y the LC. at the moment the EN 
line is "rought lo ith a final CLR EN instruction&
Programming 4i.:  The LC. inter#rets an$ e1ecutes our comman$ at the 
instant   the  0(  line   is   "rought   lo&   If   you   ne)er   "ring  0(  lo'   your 
instruction  ill   ne)er  "e  e1ecute$&   A$$itionally'   hen  you  "ring  0(  lo 
an$ the LC. e1ecutes your instruction' it re(uires a certain amount of time 
to  e1ecute   the  comman$&   The  time   it   re(uires   to  e1ecute   an  instruction 
$e#en$s on the instruction an$ the s#ee$ of the crystal hich is attache$ to 
the KK849Ss oscillator in#ut& 
2.).)   2hecking the Busy Status o/ the 82-
As   #re)iously   mentione$'   it   ta!es   a   certain   amount   of   time   for   each 
instruction to "e e1ecute$ "y the LC.&  The $elay )aries $e#en$ing on the 
fre(uency of the crystal attache$ to the oscillator in#ut of the KK849 as ell 
as the instruction hich is "eing e1ecute$& /hile it is #ossi"le to rite co$e 
that   aits   for   a   s#ecific   amount   of   time   to  allo  the   LC.  to  e1ecute 
instructions'   this   metho$  of   ?aiting?   is   not   )ery  fle1i"le&   If   the  crystal 
fre(uency is change$' the softare ill nee$ to "e mo$ifie$& A$$itionally' if 
the   LC.   itself   is   change$   for   another   LC.   hich'   although   KK849 
com#ati"le' re(uires more time to #erform its o#erations' the #rogram ill 
not   or!   until   it   is   #ro#erly   mo$ifie$&   A   more   ro"ust   metho$   of 
#rogramming is to use the ?+et LC. Status? comman$ to $etermine hether 
the LC. is still "usy e1ecuting the last instruction recei)e$&
The ?+et LC. Status? comman$ ill return to us to ti$"its of informationB 
the information that is useful to us right no is foun$ in .B8& In summary' 
hen e issue the ?+et LC. Status? comman$ the LC. ill imme$iately 
raise .B8 if itSs still "usy e1ecuting a comman$ or loer .B8 to in$icate 
that the LC. is no longer occu#ie$& Thus our #rogram can (uery the LC. 
until .B8 goes lo' in$icating the LC. is no longer "usy& At that #oint e 
are free to continue an$ sen$ the ne1t comman$&
Since e ill use this co$e e)ery time e sen$ an instruction to the LC.' it 
is useful to ma!e it a su"routine& 
LetSs rite the co$e,
>AI4J82-:
28* 0( B Start LC. comman$
28* *S B ItSs a comman$
S04B *> B ItSs a rea$ comman$
M5G -A4A;K066h B Set all #ins to CC initially
S04B 0( B Cloc! out comman$ to LC.
M5G A;-A4A B Rea$ the return )alue
,B A22.<;>AI4J82- B If "it 8 high' LC. still "usy
28* 0( B Cinish the comman$
28* *> B Turn off R/ for future comman$s
*04
Thus' our stan$ar$ #ractice ill "e to sen$ an instruction to the LC. an$ 
then call our >AI4J82- routine to ait until the instruction is com#letely 
e1ecute$ "y the LC.& This ill assure that our #rogram gi)es the LC. the 
time it nee$s to e1ecute instructions an$ also ma!es our #rogram com#ati"le 
ith any LC.' regar$less of ho fast or slo it is&
Programming 4i.: The a"o)e routine $oes the %o" of aiting for the LC.' 
"ut   ere  it   to  "e  use$  in  a  real   a##lication  a  )ery  $efinite  im#ro)ement 
oul$ nee$ to "e ma$e, as ritten' if the LC. ne)er "ecomes ?not "usy? the 
#rogram ill  effecti)ely ?hang'? aiting for .B8 to go lo&  If this ne)er 
ha##ens' the #rogram ill free0e& Of course' this shoul$ ne)er ha##en an$ 
'onLt  ha##en   hen   the   har$are   is   or!ing   #ro#erly&   But   in   a   real 
a##lication it oul$ "e ise to #ut some !in$ of time limit on the $elay33for 
e1am#le' a ma1imum of J6@ attem#ts to ait for the "usy signal to go lo& 
This   oul$  guarantee  that   e)en  if   the  LC.  har$are  fails'   the  #rogram 
oul$ not loc! u#& 
2.).%   InitiaiEing the 82-
Before you may really  use the  LC.'   you  must  initiali0e  an$  configure it& 
This is accom#lishe$ "y sen$ing a num"er of initiali0ation instructions to the 
LC.&   The  first   instruction  e  sen$  must   tell   the  LC.  hether   eSll   "e 
communicating ith it ith an 43"it or K3"it $ata "us& /e also select a 614 
$ot character font& These to o#tions are selecte$ "y sen$ing the comman$ 
E4h to the LC. as a comman$& As you ill recall from the last section' e 
mentione$ that the *S line must "e lo if e are sen$ing a comman$ to the 
LC.&   Thus'   to  sen$  this  E4h  comman$  to  the  LC.  e  must   e1ecute  the 
folloing 4967 instructions,
28* *S
M5G -A4A; K$"h
S04B 0(
28* 0(
82A88 >AI4J82-
Programming 4i.: The LC. comman$ E4h is really the sum of a num"er 
of o#tion "its& The instruction itself is the instruction J9h <?Cunction set?=& 
-oe)er' to this e a$$ the )alues 79h to in$icate an 43"it $ata "us #lus 94h 
to in$icate that the $is#lay is a to3line $is#lay& 
/eS)e no sent the first "yte of the initiali0ation se(uence& The secon$ "yte 
of the initiali0ation se(uence is the instruction 9Eh& Thus e must re#eat the 
initiali0ation co$e from a"o)e' "ut no ith the instruction& 
Thus the the ne1t co$e segment is,
28* *S
M5G -A4A; K00h
S04B 0(
28* 0(
82A88 >AI4J82-
Programming 4i.: The comman$ 9Eh is really the instruction 94h #lus 9Kh 
to turn the LC. on& To that an a$$itional 9Jh is a$$e$ in or$er to turn the 
cursor on& 
The  last   "yte  e  nee$  to  sen$  is  use$  to  configure  a$$itional   o#erational 
#arameters of the LC.& /e must sen$ the )alue 9@h&
28* *S
M5G -A4A; K0%h
S04B 0(
28* 0(
82A88 >AI4J82-
Programming 4i.: The comman$ 9@h is really the instruction 9Kh #lus 9Jh 
to configure the LC. such that e)ery time e sen$ it a character' the cursor 
#osition automatically mo)es to the right& 
So' in all' our initiali0ation co$e is as follos,
I(I4J82-:
28* *S
M5G -A4A; K$"h
S04B 0(
28* 0(
82A88 >AI4J82-
28* *S
M5G -A4A; K00h
S04B 0(
28* 0(
82A88 >AI4J82-
28* *S
M5G -A4A; K0%h
S04B 0(
28* 0(
82A88 >AI4J82-
*04
-a)ing e1ecute$ this co$e the LC. ill "e fully initiali0e$ an$ rea$y for us 
to sen$ $is#lay $ata to it&
2.).<   2earing the -is.ay
/hen the LC. is first initiali0e$' the screen shoul$ automatically "e cleare$ 
"y  the  KK849  controller&   -oe)er'   itSs   alays   a  goo$  i$ea  to  $o  things 
yourself so that you can "e com#letely sure that the $is#lay is the ay you 
ant it& Thus' itSs not a "a$ i$ea to clear the screen as the )ery first o#reation 
after the LC. has "een initialie0$&
An LC. comman$ e1ists to accom#lish this function& Not su#risingly' it is 
the comman$ 97h& Since clearing the screen is a function e )ery li!ely ill 
ish to call more than once' itSs a goo$ i$ea to ma!e it a su"routine,
280A*J82-:
28* *S
M5G -A4A; K01h
S04B 0(
28* 0(
82A88 >AI4J82-
*04
-o that eS)e ritten a ?Clear Screen? routine' e may clear the LC. at 
any time "y sim#ly e1ecuting an 82A88 280A*J82-&
Programming 4i.:  E1ecuting the ?Clear Screen? instruction on the LC. 
also #ositions the cursor in the u##er left3han$ corner as e oul$ e1#ect& 
2.)."   >riting 4eDt to the 82-
No e get to the real meat of hat eSre trying to $o, All this effort is 
really so e can $is#lay te1t on the LC.&  Really' eSre #retty much $one& 
Once again' riting te1t to the LC. is something eSll almost certainly ant 
to $o o)er an$ o)er33so letSs ma!e it a su"routine&
>*I40J40H4:
S04B *S
M5G -A4A; A
S04B 0(
28* 0(
82A88 >AI4J82-
*04
The >*I40J40H4 routine that e %ust rote ill sen$ the character in the 
accumulator to the LC. hich ill' in turn' $is#lay it& Thus to $is#lay te1t 
on  the  LC.  all   e  nee$  to  $o  is  loa$  the  accumulator   ith  the  "yte  to 
$is#lay an$ ma!e a call to this routine& *retty easy' huhV
2.).#   A Program: M70885 >5*8-M
No that e ha)e all the com#onent su"routines ritten' riting the classic 
?-ello /orl$? #rogram33hich $is#lays the te1t ?-ello /orl$? on the LC. 
is a relati)ely tri)ial matter& Consi$er,
82A88 I(I4J82-
82A88 280A*J82-
M5G A;KL7L
82A88 >*I40J40H4
M5G A;KL0L
82A88 >*I40J40H4
M5G A;KL8L
82A88 >*I40J40H4
M5G A;KL8L
82A88 >*I40J40H4
M5G A;KL5L
82A88 >*I40J40H4
M5G A;KL L
82A88 >*I40J40H4
M5G A;KL>L
82A88 >*I40J40H4
M5G A;KL5L
82A88 >*I40J40H4
M5G A;KL*L
82A88 >*I40J40H4
M5G A;KL8L
82A88 >*I40J40H4
M5G A;KL-L
82A88 >*I40J40H4
The  a"o)e  ?-ello  /orl$?   #rogram  shoul$'   hen  e1ecute$'   initiali0e  the 
LC.'   clear the  LC. screen'  an$ $is#lay  ?-ello /orl$?  in the  u##er  left3
han$ corner of the $is#lay&
2.).10   2ursor Positioning 
The a"o)e ?-ello /orl$? #rogram is sim#listic in the sense that it #rints its 
te1t in the u##er left3han$ corner of the screen& -oe)er' hat if e ante$ 
to  $is#lay  the  or$  ?-ello?  in  the  u##er   left3han$  corner   "ut   ante$  to 
$is#lay  the  or$  ?/orl$?  on  the  secon$  line  at   the  tenth  characterV  This 
soun$s sim#le33an$ actually' it  is  sim#le& -oe)er' it re(uires a little more 
un$erstan$ing of the $esign of the LC.&
The KK849 contains a certain amount of memory hich is assigne$ to the 
$is#lay& All the te1t e rite to the KK849 is store$ in this memory' an$ the 
KK849 su"se(uently rea$s this memory to $is#lay the te1t on the LC. itself& 
This memory can "e re#resente$ ith the folloing ?memory ma#?,
6igure 22: Memory Ma..ing in 82-
In the a"o)e memory ma#' the area sha$e$ in "lue is the )isi"le $is#lay& As 
you can see' it measures 7@ characters #er line "y J lines& The num"ers in 
each  "o1  is  the  memory  a$$ress  that   corres#on$s  to  that   screen  #osition& 
Thus' the first character in the u##er left3han$ corner is at a$$ress 99h& The 
folloing character #osition <character PJ on the first line= is a$$ress 97h' 
etc& This continues until e reach the 7@th character of the first line hich is 
at   a$$ress   9Ch&   -oe)er'   the  first   character   of   line  J'   as   shon  in  the 
memory ma#' is at a$$ress K9h& This means if e rite a character to the last 
#osition  of   the   first   line   an$  then  rite   a  secon$  character'   the   secon$ 
character   ill  not  a##ear   on  the  secon$  line&   That   is  "ecause  the  secon$ 
character   ill   effecti)ely  "e  ritten  to  a$$ress   79h33"ut   the  secon$  line 
"egins at a$$ress K9h& Thus e nee$ to sen$ a comman$ to the LC. that 
tells it to #osition the cursor on the secon$ line& The ?Set Cursor *osition? 
instruction is 49h& To this e must a$$ the a$$ress of the location here e 
ish to #osition the cursor& In our e1am#le' e sai$ e ante$ to $is#lay 
?/orl$? on the secon$ line on the tenth character #osition& Referring again 
to the memory ma#' e see that the tenth character #osition of the secon$ 
line is a$$ress KAh& Thus' "efore riting the or$ ?/orl$? to the LC.' e 
must sen$ a  ?Set  Cursor *osition?  instruction33the )alue of this  comman$ 
ill   "e  49h  <the  instruction  co$e  to  #osition  the  cursor=   #lus  the  a$$ress 
KAh& 49h W KAh Q CAh& Thus sen$ing the comman$ CAh to the LC. ill 
#osition the cursor on the secon$ line at the tenth character #osition,
28* *S
M5G -A4A;K02Ah
S04B 0(
28* 0(
82A88 >AI4J82-
The a"o)e co$e ill #osition the cursor on line J' character 79& To $is#lay 
?-ello? in the u##er left3han$ corner ith the or$ ?/orl$? on the secon$ 
line at character #osition 79 %ust re(uires us to insert the a"o)e co$e into our 
e1isting ?-ello /orl$? #rogram& 
This results in the folloing,
82A88 I(I4J82-
82A88 280A*J82-
M5G A;KL7L
82A88 >*I40J40H4
M5G A;KL0L
82A88 >*I40J40H4
M5G A;KL8L
82A88 >*I40J40H4
M5G A;KL8L
82A88 >*I40J40H4
M5G A;KL5L
82A88 >*I40J40H4
28* *S
M5G -A4A;K02Ah
S04B 0(
28* 0(
82A88 >AI4J82-
M5G A;KL>L
82A88 >*I40J40H4
M5G A;KL5L
82A88 >*I40J40H4
M5G A;KL*L
82A88 >*I40J40H4
M5G A;KL8L
82A88 >*I40J40H4
M5G A;KL-L
82A88 >*I40J40H4
 
*08A:S
Circuit sym"ol for a relay
Relays 
*hotogra#hs X Ra#i$ Electronics
A relay is an electrically o#erate$ sitch& Current floing through the coil 
of the relay creates a magnetic fiel$' hich attracts a le)er an$ changes the 
sitch contacts& The coil current can "e on or off so relays ha)e to sitch 
#ositions an$ they are $ou"le thro <changeo)er= sitches& 
Relays allo one circuit to sitch a secon$ circuit that can "e com#letely 
se#arate from the first& Cor e1am#le a lo )oltage "attery circuit can use a 
relay to sitch a JE9N AC mains circuit& There is no electrical connection 
insi$e the relay "eteen the to circuits' the lin! is magnetic an$ 
mechanical& 
The coil of a relay #asses a relati)ely large current' ty#ically E9mA for a 
7JN relay' "ut it can "e as much as 799mA for relays $esigne$ to o#erate 
from loer )oltages& Most ICs <chi#s= cannot #ro)i$e this current an$ a 
transistor is usually use$ to am#lify the small IC current to the larger )alue 
re(uire$ for the relay coil& The ma1imum out#ut current for the #o#ular 666 
timer IC is J99mA so these $e)ices can su##ly relay coils $irectly ithout 
am#lification& 
          Relays are usually S*.T or .*.T "ut they can ha)e many more sets 
of sitch contacts' for e1am#le relays ith K sets of changeo)er contacts are 
rea$ily a)aila"le& Cor further information a"out sitch contacts an$ the 
terms use$ to $escri"e them #lease see the #age on sitches& 
Most relays are $esigne$ for *CB mounting "ut you can sol$er ires 
$irectly to the #ins #ro)i$ing you ta!e care to a)oi$ melting the #lastic case 
of the relay& 
The su##lierSs catalogue shoul$ sho you the relaySs connections& The coil 
ill "e o")ious an$ it may "e connecte$ either ay roun$& Relay coils 
#ro$uce "rief high )oltage Ss#i!esS hen they are sitche$ off an$ this can 
$estroy transistors an$ ICs in the circuit& To #re)ent $amage you must 
connect a #rotection $io$e across the relay coil& 
The animate$ #icture shos a or!ing relay ith its coil an$ sitch 
contacts& ;ou can see a le)er on the left "eing attracte$ "y magnetism hen 
the coil is sitche$ on& This le)er mo)es the sitch contacts& There is one 
set of contacts <S*.T= in the foregroun$ an$ another "ehin$ them' ma!ing 
the relay .*.T& 
The relaySs sitch connections are usually la"ele$ COM' NC an$ NO, 
 COM Q Common' alays connect to this' it is the mo)ing #art of the 
sitch& 
 NC Q Normally Close$' COM is connecte$ to this hen the relay coil 
is off& 
 NO Q Normally O#en' COM is connecte$ to this hen the relay coil is 
on& 
 Connect to COM an$ NO if you ant the sitche$ circuit to "e on 
hen the relay coil is on& 
 Connect to COM an$ NC if you ant the sitche$ circuit to "e on 
hen the relay coil is off& 
2hoosing a reay
;ou nee$ to consi$er se)eral features hen choosing a relay, 
1% Physica siEe and .in arrangement 
If you are choosing a relay for an e1isting *CB you ill nee$ to 
ensure that its $imensions an$ #in arrangement are suita"le& ;ou 
shoul$ fin$ this information in the su##lierSs catalogue& 
1% 2oi Botage 
The relaySs coil )oltage rating an$ resistance must suit the circuit 
#oering the relay coil& Many relays ha)e a coil rate$ for a 7JN 
su##ly "ut 6N an$ JKN relays are also rea$ily a)aila"le& Some relays 
o#erate #erfectly ell ith a su##ly )oltage hich is a little loer 
than their rate$ )alue& 
6% 2oi resistance 
The circuit must "e a"le to su##ly the current re(uire$ "y the relay 
coil& ;ou can use OhmSs la to calculate the current, 
Relay coil current   Q
   Su##ly )oltage 
  Coil resistance
6or eDam.e, A 7JN su##ly relay ith a coil resistance of K99  #asses a 
current of E9mA& This is OH for a 666 timer IC <ma1imum out#ut current 
J99mA=' "ut it is too much for most ICs an$ they ill re(uire a transistor to 
am#lify the current&
 
:% S'itch ratings !Botage and current& 
The relaySs sitch contacts must "e suita"le for the circuit they are to 
control& ;ou ill nee$ to chec! the )oltage an$ current ratings& Note 
that the )oltage rating is usually higher for AC' for e1am#le, ?6A at 
JKN .C or 7J6N AC?& 
5% S'itch contact arrangement !SP-4; -P-4 etc& 
Most relays are S*.T or .*.T hich are often $escri"e$ as ?single 
#ole changeo)er? <S*CO= or ?$ou"le #ole changeo)er? <.*CO=& 
25MPA*IS5( B04>00( 4*A(SIS45*S 1 *08A:S
AdBantages o/ reays: 
 Relays can sitch AC an$ .C' transistors can only sitch .C& 
 Relays can sitch high )oltages' transistors cannot& 
 Relays are a "etter choice for sitching large currents <T 6A=& 
 Relays can sitch many contacts at once& 
-isadBantages o/ reays: 
 Relays are "ul!ier than transistors for sitching small currents& 
 Relays cannot sitch ra#i$ly <e1ce#t ree$ relays=' transistors can 
sitch many times #er secon$& 
 Relays use more #oer $ue to the current floing through their coil& 
Relays re(uire more current than many chi#s can #ro)i$e' so a lo #oer 
transistor may "e nee$e$ to sitch the current for the relaySs coil&
Crystal Oscillator
It is often re(uire$ to #ro$uce a signal hose fre(uency or #ulse rate is )ery 
sta"le an$ e1actly !non& This is im#ortant in any a##lication here 
anything to $o ith time or e1act measurement is
crucial& It is relati)ely sim#le to ma!e an oscillator that #ro$uces some sort 
of a signal' "ut another matter to #ro$uce one of relati)ely #recise fre(uency 
an$ sta"ility& AM ra$io stations must ha)e a carrier fre(uency accurate 
ithin 79-0 of its assigne$ fre(uency' hich may "e from 6E9 to 7879 !-0& 
SSB ra$io systems use$ in the -C range <J3E9 M-0= must "e ithin 69 -0 
of channel fre(uency for acce#ta"le )oice (uality' an$ ithin 79 -0 for "est 
results& Some $igital mo$es use$ in ea! signal communication may re(uire 
fre(uency sta"ility of less than 7 -0 ithin a #erio$ of se)eral minutes& The 
carrier fre(uency must "e !non to fractions of a hert0 in some cases& An 
or$inary (uart0 atch must ha)e an oscillator accurate to "etter than a fe 
#arts #er million& One #art #er million ill result in an error of slightly less 
than one half secon$ a $ay' hich oul$ "e a"out E minutes a year& This 
might not soun$ li!e much' "ut an error of 79 #arts #er million oul$ result 
in an error of a"out a half an hour #er year& A cloc! such as this oul$ nee$ 
resetting a"out once a month' an$ more often if you are the #unctual ty#e& A 
#rogramme$ NCR ith a cloc! this far off coul$ miss the recor$ing of #art 
of a TN sho& Narro "an$ SSB communications at N-C an$ U-C 
fre(uencies still nee$ 69 -0 fre(uency accuracy& At KK9 M-0' this is 
slightly more than 9&7 #art #er million&
Or$inary L3C oscillators using con)entional in$uctors an$ ca#acitors can 
achie)e ty#ically 9&97 to 9&7 #ercent fre(uency sta"ility' a"out 799 to 7999 
-0 at 7 M-0& This is OH for AM an$ CM "roa$cast recei)er a##lications 
an$ in other lo3en$ analog recei)ers not re(uiring high tuning accuracy& By 
careful $esign an$ com#onent selection' an$ ith rugge$ mechanical 
construction' &97 to 9&997R' or e)en "etter <&9996R= sta"ility can "e 
achie)e$& The "etter figures ill un$ou"te$ly em#loy tem#erature 
com#ensation com#onents an$ regulate$ #oer su##lies' together ith 
en)ironmental control <goo$ )entilation an$ am"ient tem#erature regulation= 
an$ Y"attleshi#Z mechanical construction& This has "een $one in some 
communications recei)ers use$ "y the military an$ commercial -C 
communication recei)ers "uilt in the 7569375@6 era' "efore the  i$es#rea$ 
use of $igital fre(uency synthesis& But these recei)ers ere e1tremely 
e1#ensi)e' large' an$ hea)y& Many mo$ern consumer gra$e AM' CM' an$ 
shorta)e recei)ers em#loying crystal controlle$ $igital fre(uency synthesis 
ill $o as ell or "etter from a fre(uency sta"ility stan$#oint&
An oscillator is "asically an am#lifier an$ a fre(uency selecti)e fee$"ac! 
netor! <Cig 7=& /hen' at a #articular fre(uency' the loo# gain is unity or 
more' an$ the total #haseshift at this fre(uency is 0ero' or some multi#le of 
E@9 $egrees' the con$ition for oscillation is satisfie$' an$ the circuit ill 
#ro$uce a #erio$ic a)eform of this fre(uency& This is usually a sine a)e' 
or s(uare a)e' "ut triangles' im#ulses' or other a)eforms can "e 
#ro$uce$& In fact' se)eral $ifferent a)eforms often are simultaneously 
#ro$uce$ "y the same circuit' at $ifferent #oints& It is also #ossi"le to ha)e 
se)eral fre(uencies #ro$uce$ as ell' although this is generally un$esira"le&
CA*ACITOR
A ca.acitor or condenser is a #assi)e electronic com#onent consisting of a 
#air of con$uctors se#arate$ "y a $ielectric <insulator=& /hen a #otential 
$ifference <)oltage= e1ists across the con$uctors' an electric fiel$ is #resent 
in the $ielectric& This fiel$ stores energy an$ #ro$uces a mechanical force 
"eteen the con$uctors& The effect is greatest hen there is a narro 
se#aration "eteen large areas of con$uctor' hence ca#acitor con$uctors are 
often calle$ #lates&
An i$eal ca#acitor is characteri0e$ "y a single constant )alue' ca#acitance' 
hich is measure$ in fara$s& This is the ratio of the electric charge on each 
con$uctor to the #otential $ifference "eteen them& In #ractice' the $ielectric 
"eteen the #lates #asses a small amount of lea!age current& The con$uctors 
an$ lea$s intro$uce an e(ui)alent series resistance an$ the $ielectric has an 
electric fiel$ strength limit resulting in a "rea!$on )oltage&
Ca#acitors are i$ely use$ in electronic circuits to "loc! the flo of $irect 
current hile alloing alternating current to #ass' to filter out interference' 
to smooth the out#ut of #oer su##lies' an$ for many other #ur#oses& They 
are use$ in resonant circuits in ra$io fre(uency e(ui#ment to select #articular 
fre(uencies from a signal ith many fre(uencies&
4heory o/ o.eration
Main article, Ca#acitance
Charge se#aration in a #arallel3#late ca#acitor causes an internal electric 
fiel$& A $ielectric <orange= re$uces the fiel$ an$ increases the ca#acitance&
A sim#le $emonstration of a #arallel3#late ca#acitor
A ca#acitor consists of to con$uctors se#arate$ "y a non3con$ucti)e 
region&The non3con$ucti)e su"stance is calle$ the $ielectric me$ium' 
although this may also mean a )acuum or a semicon$uctor $e#letion region 
chemically i$entical to the con$uctors& A ca#acitor is assume$ to "e self3
containe$ an$ isolate$' ith no net electric charge an$ no influence from an 
e1ternal electric fiel$& The con$uctors thus contain e(ual an$ o##osite 
charges on their facing surfaces' an$ the $ielectric contains an electric fiel$& 
The ca#acitor is a reasona"ly general mo$el for electric fiel$s ithin electric 
circuits&
An i$eal ca#acitor is holly characteri0e$ "y a constant ca#acitance C' 
$efine$ as the ratio of charge [Q on each con$uctor to the )oltage V "eteen 
them
Sometimes charge "uil$u# affects the mechanics of the ca#acitor' causing 
the ca#acitance to )ary& In this case' ca#acitance is $efine$ in terms of 
incremental changes,
In SI units' a ca#acitance of one fara$ means that one coulom" of charge on 
each con$uctor causes a )oltage of one )olt across the $e)ice&
 0nergy storage
/or! must "e $one "y an e1ternal influence to mo)e charge "eteen the 
con$uctors in a ca#acitor& /hen the e1ternal influence is remo)e$' the 
charge se#aration #ersists an$ energy is store$ in the electric fiel$& If charge 
is later alloe$ to return to its e(uili"rium #osition' the energy is release$& 
The or! $one in esta"lishing the electric fiel$' an$ hence the amount of 
energy store$' is gi)en "y,
2urrent-Botage reation
The current i<t= through a com#onent in an electric circuit is $efine$ as the 
rate of change of the charge q<t= that has #asse$ through it& *hysical charges 
cannot #ass through the $ielectric layer of a ca#acitor' "ut rather "uil$ u# in 
e(ual an$ o##osite (uantities on the electro$es, as each electron accumulates 
on the negati)e #late' one lea)es the #ositi)e #late& Thus the accumulate$ 
charge on the electro$es is e(ual to the integral of the current' as ell as 
"eing #ro#ortional to the )oltage <as $iscusse$ a"o)e=& As ith any 
anti$eri)ati)e' a constant of integration is a$$e$ to re#resent the initial 
)oltage v <t
9
=& This is the integral form of the ca#acitor e(uation'
&
Ta!ing the $eri)ati)e of this' an$ multi#lying "y C' yiel$s the $eri)ati)e 
form'
\7J]
&
The $ual of the ca#acitor is the in$uctor' hich stores energy in the 
magnetic fiel$ rather than the electric fiel$& Its current3)oltage relation is 
o"taine$ "y e1changing current an$ )oltage in the ca#acitor e(uations an$ 
re#lacing C ith the in$uctance L&
 -2 circuits
A sim#le resistor3ca#acitor circuit $emonstrates charging of a ca#acitor&
A series circuit containing only a resistor' a ca#acitor' a sitch an$ a 
constant .C source of )oltage V
9
 is !non as a charging circuit&
 
     If the 
ca#acitor is initially uncharge$ hile the sitch is o#en' an$  the sitch is 
close$ at t Q 9' it follos from HirchhoffSs )oltage la that
 
Ta!ing the $eri)ati)e an$ multi#lying "y C' gi)es a first3or$er $ifferential 
e(uation'
At t Q 9'                the )oltage across the ca#acitor is 0ero an$ the )oltage 
across the resistor is V
9
& The initial current is then i <9= QV
9
 IR& /ith this 
assum#tion' the $ifferential e(uation yiel$s
here 
9
 Q RC is the time constant of the system&
As the ca#acitor reaches e(uili"rium ith the source )oltage' the )oltage 
across the resistor an$ the current through the entire circuit $ecay 
e1#onentially& The case of discharging a charge$ ca#acitor li!eise 
$emonstrates e1#onential $ecay' "ut ith the initial ca#acitor )oltage 
re#lacing V
9
 an$ the final )oltage "eing 0ero&
*0SIS45*
Resistors are use$ to limit the )alue of current in a circuit& Resistors offer 
o##osition to the flo of current& They are e1#resse$ in ohms for hich the 
sym"ol is ^L& Resistors are "roa$ly classifie$ as 
<7= Ci1e$ Resistors
<J= Naria"le Resistors
6iDed *esistors : 
The most common of lo attage' fi1e$ ty#e resistors is the mol$e$3car"on 
com#osition resistor& The resisti)e material is of car"on clay com#osition& 
The lea$s are ma$e of tinne$ co##er& Resistors of this ty#e are rea$ily 
a)aila"le in )alue ranging from fe ohms to a"out J9M' ha)ing a 
tolerance range of 6 to J9R& They are (uite ine1#ensi)e& The relati)e si0e of 
all fi1e$ resistors changes ith the attage rating&
    Another )ariety of car"on com#osition resistors is the metali0e$ 
ty#e& It is ma$e "y $e#osition a homogeneous film of #ure car"on o)er a 
glass' ceramic or other insulating core& This ty#e of film3resistor is 
sometimes calle$ the #recision ty#e' since it can "e o"taine$ ith an 
accuracy of   7R&
               Lea$ Tinne$ Co##er Material
    
   Colour Co$ing     Mol$e$ Car"on Clay Com#osition 
                                            
          Ci1e$ Resistor
A >ire >ound *esistor :
It uses a length of resistance ire' such as nichrome& This ire is oun$e$ 
on to a roun$ hollo #orcelain core& The en$s of the in$ing are attache$ to 
these metal #ieces inserte$ in the core& Tinne$ co##er ire lea$s are attache$ 
to these metal #ieces& This assem"ly is coate$ ith an enamel coating 
#o$ere$ glass& This coating is )ery smooth an$ gi)es mechanical 
#rotection to in$ing& Commonly a)aila"le ire oun$ resistors ha)e 
resistance )alues ranging from 7 to 799H' an$ attage rating u# to a"out 
J99/&
2oding 5/ *esistor :
 Some resistors are large enough in si0e to ha)e their resistance #rinte$ on 
the "o$y& -oe)er there are some resistors that are too small in si0e to ha)e 
num"ers #rinte$ on them& Therefore' a system of colour co$ing is use$ to 
in$icate their )alues& Cor fi1e$' moul$e$ com#osition resistor four colour 
"an$s are #rinte$ on one en$ of the outer casing& The colour "an$s are 
alays rea$ left to right from the en$ that has the "an$s closest to it& The 
first an$ secon$ "an$ re#resents the first an$ secon$ significant $igits' of the 
resistance )alue& The thir$ "an$ is for the num"er of 0eros that follo the 
secon$ $igit& In case the thir$ "an$ is gol$ or sil)er' it re#resents a 
multi#lying factor of 9&7to 9&97& The fourth "an$ re#resents the 
manufactureLs tolerance&
 
RESISTOR COLOUR C-ART
    
6or eDam.e' if a resistor has a colour "an$ se(uence, yello' )iolet' orange 
an$ gol$
Then its range ill "eA
;elloQK'   )ioletQ8'  orangeQ79_'     gol$Q[6R   QK8H` [6R   QJ&E6H` 
Most resistors haBe + bands:
 The first "an$ gi)es the first $igit&
 The secon$ "an$ gi)es the secon$ $igit&
 The thir$ "an$ in$icates the num"er of 0eros&
 The fourth "an$ is use$ to sho the tolerance <#recision= of the 
resistor&
5 0)((n
7  /2"!9
1 /)o-n
1 )(*
6 o)"n0(
: 5(22o-
= /2u(
; ,u),2(
8 '23()
9 -+#(
7  /2"!9
1 /)o-n
1 )(*
6 o)"n0(
: 5(22o-
= /2u(
; ,u),2(
8 '23()
9 -+#(
5 0)((n
5 0)((n
7  /2"!9
1 /)o-n
1 )(*
6 o)"n0(
: 5(22o-
= /2u(
; ,u),2(
8 '23()
9 -+#(
5 0)((n
7  /2"!9
1 /)o-n
1 )(*
6 o)"n0(
: 5(22o-
= /2u(
; ,u),2(
8 '23()
9 -+#(
This resistor has re$ <J=' )iolet <8=' yello <K 0eros= an$ gol$ "an$s& 
So its )alue is J89999  Q J89 ! & 
The stan$ar$ colour co$e cannot sho )alues of less than 79 & To sho 
these small )alues to s#ecial colours are use$ for the thir$ "an$, gol$' 
hich means a 9&7 an$ sil)er hich means a 9&97& The first an$ secon$ 
"an$s re#resent the $igits as normal&
6or eDam.e:
re$' )iolet' gol$ "an$s re#resent J8 a 9&7 Q J&8 
"lue' green' sil)er "an$s re#resent 6@ a 9&97 Q 9&6@ 
The fourth "an$ of the colour co$e shos the tolerance of a resistor& 
Tolerance is the #recision of the resistor an$ it is gi)en as a #ercentage& Cor 
e1am#le a E59  resistor ith a tolerance of [79R ill ha)e a )alue ithin 
79R of E59 ' "eteen E59 3 E5 Q E67  an$ E59 W E5 Q KJ5  <E5 is 79R of 
E59=&
A s#ecial colour co$e is use$ for the fourth "an$ tolerance,
sil)er [79R'   gol$ [6R'   re$ [JR'   "ron [7R& 
If no fourth "an$ is shon the tolerance is [J9R&
GA*IAB80 *0SIS45*:In electronic circuits' sometimes it "ecomes 
necessary to a$%ust the )alues of currents an$ )oltages& Cor n e1am#le it is 
often $esire$ to change the )olume of soun$' the "rightness of a tele)ision 
#icture etc& Such a$%ustments can "e $one "y using )aria"le resistors&
Athough the Bariabe resistors are usuay caed rheostats in 
other a..ications; the smaer Bariabe resistors commony used in 
eectronic circuits are caed .otentiometers.
*esistor shorthand:
Resistor )alues are often ritten on circuit $iagrams using a co$e system 
hich a)oi$s using a $ecimal #oint "ecause it is easy to miss the small $ot& 
Instea$ the letters R' H an$ M are use$ in #lace of the $ecimal #oint& To rea$ 
the co$e, re#lace the letter ith a $ecimal #oint' then multi#ly the )alue "y 
7999 if the letter as H' or 7999999 if the letter as M& The letter R means 
multi#ly "y 7&
Cor e1am#le,
6@9R means 6@9 
JH8  means J&8 !  Q J899 
E5H  means E5 !  
7M9  means 7&9 M  Q 7999 !
Po'er *atings o/ *esistors
0ectrica energy is conBerted to heat 
'hen current /o's through a resistor. 
3suay the e//ect is negigibe; but i/ 
the resistance is o' !or the Botage 
across the resistor high& a arge 
current may .ass making the resistor 
become noticeaby 'arm. 4he resistor 
must be abe to 'ithstand the heating e//ect and resistors haBe .o'er 
ratings to sho' this.
*oer ratings of resistors are rarely (uote$ in #arts lists "ecause for most 
circuits the stan$ar$ #oer ratings of 9&J6/ or 9&6/ are suita"le& Cor the 
rare cases here a higher #oer is re(uire$ it shoul$ "e clearly s#ecifie$ in 
the #arts list' these ill "e circuits using lo )alue resistors <less than a"out 
E99 = or high )oltages <more than 76N=&
The #oer' *' $e)elo#e$ in a resistor is gi)en "y,
* Q Ib a R
or 
* Q Nb I R
here, * Q #oer $e)elo#e$ in the resistor in atts </= 
I  Q current through the resistor in am#s <A= 
R Q resistance of the resistor in ohms < = 
N Q )oltage across the resistor in )olts <N=
0Dam.es:
 A K89  resistor ith 79N across it' nee$s a #oer rating * Q NbIR Q 
79bIK89 Q 9&J7/& 
n this case a standard !.2"# resistor $ould %e suita%le.
 A J8  resistor ith 79N across it' nee$s a #oer rating * Q NbIR Q 
79bIJ8 Q E&8/& 
A high #oer resistor ith a rating of 6/ oul$ "e suita"le&
4*A(SIS45*S
 A transistor is an acti)e $e)ice& It consists of to *N %unctions forme$ "y 
san$iching either #3ty#e or n3ty#e semicon$uctor "eteen a #air of 
o##osite ty#es&
-igh #oer resistors
<6/ to#' J6/ "ottom=
*hotogra#hs X Ra#i$ Electronics
There are to ty#es of transistor,
7& n3#3n transistor             
J& #3n3# transistor
        An n3#3n transistor is com#ose$ of to n3ty#e semicon$uctors 
se#arate$ "y a thin section of #3ty#e& -oe)er a #3n3# ty#e semicon$uctor is 
forme$ "y to #3sections se#arate$ "y a thin section of n3ty#e&
  Transistor has to #n %unctions one %unction is forar$ "iase$ an$ 
other is re)erse$ "iase$& The forar$ %unction has a lo resistance #ath 
hereas a re)erse "iase$ %unction has a high resistance #ath&     
  The ea! signal is intro$uce$ in the lo resistance circuit an$ out#ut 
is ta!en from the high resistance circuit& Therefore a transistor transfers a 
signal from a lo resistance to high resistance&
Transistor has three sections of $o#e$ semicon$uctors& The section on 
one si$e is emitter an$ section on the o##osite si$e is collector& The mi$$le 
section is "ase&
0mitter : The section on one si$e that su##lies charge carriers is calle$ 
emitter& The emitter is alays forar$ "iase$ &r&t& "ase&
                             
2oector : The section on the other si$e that collects the charge is calle$ 
collector& The collector is alays re)erse$ "iase$&
Base : The mi$$le section hich forms to #n3%unctions "eteen the 
emitter an$ collector is calle$ "ase& 
A transistor raises the strength of a ea! signal an$ thus acts as an 
am#lifier& The ea! signal is a##lie$ "eteen emitter3"ase %unction an$ 
out#ut is ta!en across the loa$ Rc connecte$ in the collector circuit& The 
collector current floing through a high loa$ resistance Rc #ro$uces a large 
)oltage across it& Thus a ea! signal a##lie$ in the in#ut a##ears in the 
am#lifie$ form in the collector circuit&
7eat sink
/aste heat is #ro$uce$ in transistors $ue to the current floing through 
them& -eat sin!s are nee$e$ for #oer transistors "ecause they #ass large 
currents& If you fin$ that a transistor is "ecoming too hot to touch it certainly 
nee$s a heat sin!c The heat sin! hel#s to $issi#ate <remo)e= the heat "y 
transferring it to the surroun$ing air& 
25((0245*S
        Connectors are "asically use$ for interface "eteen to& -ere e 
use connectors for ha)ing interface "eteen *CB an$ 4967 
Micro#rocessor Hit&
        There are to ty#es of connectors they are male an$ female& The one' 
hich is ith #ins insi$e' is female an$ other is male&
These connectors are ha)ing "us ires ith them for connection&
Cor high fre(uency o#eration the a)erage circumference of a coa1ial ca"le 
must "e limite$ to a"out one a)elength' in or$er to re$uce multimo$al 
#ro#agation an$ eliminate erratic reflection coefficients' #oer losses' an$ 
signal $istortion& The stan$ar$i0ation of coa1ial connectors $uring /orl$ 
/ar II as man$atory for microa)e o#eration to maintain a lo reflection 
coefficient or a lo )oltage stan$ing a)e ratio&
SeBen ty.es o/ micro'aBe coaDia connectors are as /oo's:
7&A*C3E&6
J&A*C38
E&BNC
K&SMA
6&SMC
@&TNC
8&Ty#e N
80- !8I974 0MI44I(9 -I5-0&
A %unction $io$e' such as LE.' can emit light or e1hi"it electro 
luminescence& Electro luminescence is o"taine$ "y in%ecting minority 
carriers into the region of a #n %unction here ra$iati)e transition ta!es 
#lace& In ra$iati)e transition' there is a transition of electron from the 
con$uction "an$ to the )alence "an$' hich is ma$e #ossi"ly "y emission of 
a #hoton& Thus' emitte$ light comes from the hole electron recom"ination& 
/hat is re(uire$ is that electrons shoul$ ma!e a transition from higher 
energy le)el to loer energy le)el releasing #hoton of a)elength 
corres#on$ing to the energy $ifference associate$ ith this transition& In 
LE. the su##ly of high3energy electron is #ro)i$e$ "y forar$ "iasing the 
$io$e' thus in%ecting electrons into the n3region an$ holes into #3region&
The #n %unction of LE. is ma$e from hea)ily $o#e$ material& On 
forar$ "ias con$ition' ma%ority carriers from "oth si$es of the %unction 
cross the #otential "arrier an$ enter the o##osite si$e here they are then 
minority carrier an$ cause local minority carrier #o#ulation to "e larger than 
normal& This is terme$ as minority in%ection& These e1cess minority carrier 
$iffuse aay from the %unction an$ recom"ine ith ma%ority carriers&
In LE.' e)ery in%ecte$ electron ta!es #art in a ra$iati)e recom"ination 
an$ hence gi)es rise to an emitte$ #hoton& Un$er re)erse "ias no carrier 
in%ection ta!es #lace an$ conse(uently no #hoton is emitte$& Cor $irect 
transition from con$uction "an$ to )alence "an$ the emission a)elength&
In #ractice' e)ery electron $oes not ta!e #art in ra$iati)e recom"ination 
an$ hence' the efficiency of the $e)ice may "e $escri"e$ in terms of the 
(uantum efficiency hich is $efine$ as the rate of emission of #hotons 
$i)i$e$ "y the rate of su##ly of electrons& The num"er of ra$iati)e 
recom"ination' that ta!e #lace' is usually #ro#ortional to the carrier in%ection 
rate an$ hence to the total current floing&
L&' (aterials)
5ne o/ the /irst materias used /or 80- is 9aAs. 4his is a direct band 
ga. materia; i.e.; it eDhibits Bery high .robabiity o/ direct transition 
o/ eectron /rom conduction band to Baence band. 9aAs has 0N 1.++ 
eG. 4his 'orks in the in/rared region. 
+a* an$ +aAs* are higher "an$ ga# materials& +allium #hos#hi$e is an 
in$irect "an$ ga# semicon$uctor an$ has #oor efficiency "ecause "an$ to 
"an$ transitions are not normally o"ser)e$&  
+allium Arseni$e *hos#hi$e is a tertiary alloy& This material has a s#ecial 
feature in that it changes from "eing $irect "an$ ga# material&
Blue LE.s are of recent origin& The i$e "an$ ga# materials such as +aN 
are one of the most #romising LE.s for "lue an$ green emission& Infrare$ 
LE.s are suita"le for o#tical cou#ler a##lications& 
*'V*+T*,&- ./ L&'s)
1. 8o' o.erating Botage; current; and .o'er consum.tion makes 
8eds com.atibe 'ith eectronic driBe circuits. 4his aso makes 
easier inter/acing as com.ared to /iament incandescent and 
eectric discharge am.s.
J& The rugge$' seale$ #ac!ages $e)elo#e$ for LE.s e1hi"it high 
resistance to mechanical shoc! an$ )i"ration an$ allo LE.s to "e 
use$ in se)ere en)ironmental con$itions here other light sources 
oul$ fail&
E& LE. fa"rication from soli$3state materials ensures a longer o#erating 
lifetime' there"y im#ro)ing o)erall relia"ility an$ loering 
maintenance costs of the e(ui#ment in hich they are installe$&
K& The range of a)aila"le LE. colours3from re$ to orange' yello' an$ 
green3#ro)i$es the $esigner ith a$$e$ )ersatility&
6& LE.s ha)e lo inherent noise le)els an$ also high immunity to 
e1ternally generate$ noise&
@& Circuit res#onse of LE.s is fast an$ sta"le' ithout surge currents or 
the #rior Yarm3u#Z' #erio$ re(uire$ "y filament light sources&
8& LE.s e1hi"it linearity of ra$iant #oer out#ut ith forar$ current 
o)er a i$e range&
80-s haBe certain imitations such as:
7& Tem#erature $e#en$ence of ra$iant out#ut #oer an$ a)e 
 length&
J& Sensiti)ity to $amages "y o)er )oltage or o)er current&
E& Theoretical o)erall efficiency is not achie)e$ e1ce#t in s#ecial 
     coole$ or #ulse$ con$itions&
BuEEer
                                                                        
It is an electronic signaling $e)ice hich #ro$uces "u00ing soun$& It is 
commonly use$ in automo"iles' #hone alarm systems an$ househol$ 
a##liances& Bu00ers or! in the same manner as an alarm or!s& They are 
generally e(ui##e$ ith sensors or sitches connecte$ to a control unit an$ 
the control unit illuminates a light on the a##ro#riate "utton or control #anel' 
an$ soun$ a arning in the form of a continuous or intermittent "u00ing or 
"ee#ing soun$&
 
The or$ ?"u00er? comes from the ras#ing noise that "u00ers ma$e hen 
they ere electromechanical $e)ices' o#erate$ from ste##e$3$on AC line 
)oltage at 69 or @9 cycles& 
Ty#ical uses of "u00ers an$ "ee#ers inclu$e alarms' timers an$ confirmation 
of user in#ut such as a mouse clic! or !eystro!e&
J&5&14y.es o/ BuEEers 
The $ifferent ty#es of "u00ers are electric "u00ers' electronic "u00ers' 
mechanical "u00ers' electromechanical' magnetic "u00ers' #ie0oelectric 
"u00ers an$ #ie0o "u00ers&
 
!i& 0ectric buEEers > 
A "asic mo$el of electric "u00er usually consists of sim#le circuit 
com#onents such as resistors' a ca#acitor an$ 666 timer IC or an integrate$ 
circuit ith a range of timer an$ multi3)i"rator functions& It or!s through 
small "its of electricity )i"rating together hich causes soun$&
<ii= Electronic "u00ers > 
An electronic "u00er com#rises an acoustic )i"rator com#rise$ of a circular 
metal #late ha)ing its entire #eri#hery rigi$ly secure$ to a su##ort' an$ a 
#ie0oelectric element a$here$ to one face of the metal #late& A $ri)ing 
circuit a##lies electric $ri)ing signals to the )i"rator to )i"rationally $ri)e it 
at a 7IN multi#le of its natural fre(uency' here N is an integer' so that the 
)i"rator emits an au$i"le "u00ing soun$& The metal #late is #refera"ly 
mounte$ to un$ergo )i"ration in a natural )i"ration mo$e ha)ing only one 
no$al circle& The $ri)e circuit inclu$es an in$uctor connecte$ in a close$ 
loo# ith the )i"rator' hich functions as a ca#acitor' an$ the circuit a##lies 
signals at a selecti)ely )aria"le fre(uency to the close$ loo# to accor$ingly 
)ary the in$uctance of the in$uctor to there"y )ary the #erio$ of oscillation 
of the acoustic )i"rator an$ the resultant fre(uency of the "u00ing soun$&
<iii= Mechanical Bu00er3 
A %oy "u00er is an e1am#le of a #urely mechanical "u00er&
<i)= *ie0o Bu00ersI *ie0oelectric Bu00ers >  
 
A pie0o %u00er is ma$e from to con$uctors that are se#arate$ "y *ie0o 
crystals&  /hen a )oltage is a##lie$ to these crystals' they #ush on one 
con$uctor an$ #ull on the other& The result of this #ush an$ #ull is a soun$ 
a)e& These "u00ers can "e use$ for many things' li!e signaling hen a 
#erio$ of time is u# or ma!ing a soun$ hen a #articular "utton has "een 
#ushe$& The #rocess can also "e re)erse$ to use as a guitar #ic!u#& /hen a 
soun$ a)e is #asse$' they create an electric signal that is #asse$ on to an 
au$io am#lifier&
*ie0o "u00ers are small electronic $e)ices that emit soun$s hen $ri)en "y 
lo )oltages an$ currents& They are also calle$ #ie0oelectric "u00ers& They 
usually ha)e to electro$es an$ a $ia#hragm& The $ia#hragm is ma$e from a 
metal #late an$ #ie0oelectric material such as a ceramic #late&
<)= Magnetic Bu00ers > 
 
 
Magnetic "u00ers are magnetic au$i"le signal $e)ices ith "uilt3in 
oscillating circuits& The construction com"ines an oscillation circuit unit 
ith a $etection coil' a $ri)e coil an$ a magnetic trans$ucer& Transistors' 
resistors' $io$es an$ other small $e)ices act as circuit $e)ices for $ri)ing 
soun$ generators& /ith the a##lication of )oltage' current flos to the $ri)e 
coil on #rimary si$e an$ to the $etection coil on the secon$ary si$e& The 
am#lification circuit' inclu$ing the transistor an$ the fee$"ac! circuit' causes 
)i"ration& The oscillation current e1cites the coil an$ the unit generates an 
AC magnetic fiel$ corres#on$ing to an oscillation fre(uency& This AC 
magnetic fiel$ magneti0es the yo!e com#rising the magnetic circuit& The 
oscillation from the intermittent magneti0ation #rom#ts the )i"ration 
$ia#hragm to )i"rate u# an$ $on' generating "u00er soun$s through the 
resonator&
In this #ro%ect' a magnetic "u00er has "een use$&
2.#.2 2ircuit o/ buEEer O
                          
2.#.$ *oe o/ buEEer in this .roject