0% found this document useful (0 votes)
84 views7 pages

Unsymmetrical Bendding Apparatus: Instructional Manual

This document provides an instruction manual for an unsymmetrical bending apparatus. It describes the theory behind unsymmetrical bending where the plane of loading is not parallel to the principal axis of the cross section. The objective is to study the behavior of a cantilever beam under symmetrical and unsymmetrical bending. The apparatus consists of an angle section clamped as a cantilever beam that can be rotated to vary the angle between its principal axis and the loading plane. Suggested experiments involve applying incremental loads and measuring deflections at different rotation angles to analyze unsymmetrical bending behavior.

Uploaded by

Elroy Lee
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
84 views7 pages

Unsymmetrical Bendding Apparatus: Instructional Manual

This document provides an instruction manual for an unsymmetrical bending apparatus. It describes the theory behind unsymmetrical bending where the plane of loading is not parallel to the principal axis of the cross section. The objective is to study the behavior of a cantilever beam under symmetrical and unsymmetrical bending. The apparatus consists of an angle section clamped as a cantilever beam that can be rotated to vary the angle between its principal axis and the loading plane. Suggested experiments involve applying incremental loads and measuring deflections at different rotation angles to analyze unsymmetrical bending behavior.

Uploaded by

Elroy Lee
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 7

Factory & Works:

Adarsh Nagar
New Hardwar Road
Roorkee 247 667
Phone: 01332 273721
INSTRUCTIONAL MANUAL
OF
UNSYMMETRICAL
BENDDING APPARATUS


ENGINEERING MODELS & EQUIPMENT
Regd. Office:
Mahavir Jain Market
7 Civil Lines, ost !o" No# 13
Roorkee 247 667
Phone: 01332 27$%3&, 273121 'Resi(
Fax: 01332 271%21
E-mail: engg)od*nde#vsnl#net#in, engg)odels*san+harnet#in
Visit us at: www#engg)od#+o)
By:
UNSYMMETRICAL BENDING APPARATUS
CONTENTS: Page No.
1.0 Theory 03
2.0 Objective 06
3.0 Apparatus 06
4.0 Suggested experimeta! "or# 06
$.0 %esu!ts & 'iscussios 06
6.0 Samp!e 'ata Sheet 06
(.0 )recautios 0(
UNSYMMETRICAL BENDING APPARATUS
1.0 THEORY:
A member may be subjected to a bedig momet* "hich acts o a p!ae ic!ied to
the pricipa! axis +say,. This type o- bedig does ot occur i a p!ae o- symmetry o-
the cross sectio* it is ca!!ed usymmetrica! bedig. Sice the prob!em re!ated to
-!exure i geera! di--ers -rom symmetrica! bedig* it may be termed as s#e"
bedig.

Oe o- the basic assumptios i derivig the -!exura! -ormu!a
I
MY
f =
is that the
p!ae o- the !oad is perpedicu!ar to the eutra! axis. .very cross/sectio has got t"o
mutua!!y perpedicu!ar pricipa! axis o- iertia* about oe o- "hich the momet o-
iertia is the maximum ad about the other a miimum. 0t ca be sho" that a
symmetric axis o- cross/sectio is oe o- the pricipa! axis ad oe at right ag!es to
the same "i!! be the other pricipa! axis.
1or beams havig usymmetrica! cross/sectio such as ag!e +2, or chae! +3,
sectios* i- the p!ae o- !oadig is ot coicidet "ith or para!!e! to oe o- the
pricipa! axis* the bedig is ot simp!e. 0 that case it is said to be usymmetrica! or
o/uip!aar bedig.
0 the preset experimet -or a cati!ever beam o- a ag!e sectio* the p!ae o-
!oadig is a!"ays #ept vertica! ad the ag!e iro cati!ever beam itse!- is rotated
through ag!es i steps o- 4$
0
.
4osiderig the positio o- ag!e iro "herei the p!ae o- !oadig ma#es a ag!e
"ith 5/5 axis o- the sectio* "hich is oe o- the pricipa! axes o- the sectio. The
compoets o- the vertica! !oad ) a!og 5/5 ad 6/6 axis are )cos ad )si
respective!y.
The de-!ectio 6 ad 5 a!og 6/6 ad 5/5 axis respective!y are give by
VV
EI
L P
U
3
. si
3

=
+1,
UU
EI
L P
V
3
. cos
3

=
+2,
ad the magitude o- resu!tat de-!ectio oo* is give by
( ) ( )
2 2
V U + = +3,
7
5ertica! axis
ad its directio is give by
U
V

=
1
ta
+4,
"here* is the ic!iatio o- the resu!tat de-!ectio "ith the 6/6 axes. This resu!tat
disp!acemet is perpedicu!ar to the eutra! axis / but ot i the p!ae o- the !oad ).
OO8 9
O8) 9 5
O8: 9 ;
O) 9 6
O: 9 7
7
7< 6
;
5
A
;
x
4
5
O
4$
0
=
x
6
>ori?ota! axis
A<
;<
=< 7<
;<
O
1
4<
Deflecte !o"#t#o$
y
y
6

= =

=
OP
P O
U
V 8
ta

VV
UU
EI
L P
EI
L P
3
. si
3
. cos
3
3

9
cot
UU
VV
I
I
+$,
1or the ag!e sectio used i the preset experimet 0uu ad 0vv ca be #o" -rom the
tab!es o- =ureau o- 0dia Stadards had boo#* -or properties o- stadard sectios.
There-ore -or a give ag!e * the magitude o- ag!e ca be -oud out.
The hori?ota! ad vertica! compoets o- the de-!ectio ca be ca!cu!ated o the basis
o- the geometry avai!ab!e as sho" i -ig. 0t ca be see@
, + si
, + cos


+ =
+ =
Y
X
+6,
Simi!ar!y*


cos si
si cos
V U Y
V U X
+ =
=
+(,
There-ore* the procedure o- ca!cu!atig the de-!ectios "ou!d be

;
5
7
u
;

5
O

u
y

A0/ +B,
+B,

O<
u
7
5 ;
+A0/,
)
4a!cu!ate 6 ad 5 usig eCuatios +1, ad +2,.
4ompute usig eCuatios +3,.
4ompute usig eCuatios +4, ad to chec# the va!ues by usig the eCuatio +$,
4a!cu!ate the reCuired va!ues o- ; ad 7 usig eCuatios +$, ad +6, separate!y.
%.0. OB&ECTI'E:
To study the behavior o- a cati!ever beam uder symmetrica! ad usymmetrica!
bedig.
(.0 APPARATUS:
Apparatus cosist o- a ag!e o- si?e 1D x 1D x 1EFD or i eCuiva!et metric uits o-
!egth F0cm is tied as a cati!ever beam. The beam is -ixed at oe ed such that the
rotatio o- 4$
0
iterva!s ca be give ad c!amped such that the pricipa! axis o- its
cross/sectio may be ic!ied at ay ag!e "ith the hori?ota! ad vertica! p!aes.
A!so arragemet is provided to app!y vertica! !oad at the -ree ed o- the cati!ever
ad to measure hori?ota! ad vertica! de-!ectio o- the -ree ed. A dia! gauge "ith
magetic base is supp!ied "ith the apparatus.
).0 SUGGESTED E*PERIMENTAL +OR,:
Step1@ 4!amp the beam at ?ero positio ad put a "eight o- $00gms +$G, o the hager ad
ta#e the ?ero !oadig o the beam to activate the member.
Step2@ Set the dia! gauges to ?ero readig to measure vertica! ad hori?ota! disp!acemet at
the -ree ed o- the beam.
Step3@ 2oad the beam i steps o- 1#g +10G, up to 4#g ad ote the vertica! ad hori?ota!
de-!ectios each time.
Step4@ %epeat the steps +1, to +3, turig the beam through 4$
0
iterva!s. )rob!em o-
usymmetrica! bedig "i!! arise o!y i those cases "here the !egs o- the ag!e
sectio are i hori?ota! ad vertica! positios. 0 those cases both vertica! ad
hori?ota! de-!ectios eed to measure.
-.0 RESULTS AND DISCUSSIONS:
4ompute the theoretica! de-!ectios ad compare "ith those measured experimeta!!y.
..0 SAMPLE DATA SHEET:
Hateria! o- beam 9
7oug<s modu!us o- the materia! +., 9
Spa o- cati!ever beam +2, 9
Sectioa! properties
Si?e 9
0xx 9 cm
4
0yy 9 cm
4
0uu 9 cm
4
0vv 9 cm
4
Area 9 cm
4
S!.
Go.
Ag!e
+degree,
2oad
+#g,+G,
Observed de-!ectio
+mm,
Heasured de-!ectios
+mm,
; 7 ; 7
1.
2.
3.
4.
$.
6.
(.
F.
0
4$
0
A0
0
13$
0
1F0
0
22$
0
2(0
0
31$
0
/.0PRECAUTIONS:
Ta#e care to see that you do ot exert -orce o the -ree ed o- the cati!ever beam.
)ut the !oad o the hager gradua!!y "ithout ay jer#.
)er-orm the test at a !ocatio* "hich is -ree -rom vibratio.

You might also like