0% found this document useful (0 votes)
544 views5 pages

Matrix True/False Quiz

1. If a matrix A is multiplied by its inverse, it results in the identity matrix I. However, multiplying a non-identity matrix by itself does not necessarily result in I or -I. 2. If two matrices are multiplied and the result is the zero matrix, it does not necessarily mean that one of the matrices is the zero matrix or their product is the zero matrix. 3. If the product of three square matrices is the zero matrix, it does not necessarily mean that one of the matrices is the zero matrix. 4. Determining if the statements are true or false based on counter examples provided in the given matrix quiz document.

Uploaded by

Samuel Ab
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
544 views5 pages

Matrix True/False Quiz

1. If a matrix A is multiplied by its inverse, it results in the identity matrix I. However, multiplying a non-identity matrix by itself does not necessarily result in I or -I. 2. If two matrices are multiplied and the result is the zero matrix, it does not necessarily mean that one of the matrices is the zero matrix or their product is the zero matrix. 3. If the product of three square matrices is the zero matrix, it does not necessarily mean that one of the matrices is the zero matrix. 4. Determining if the statements are true or false based on counter examples provided in the given matrix quiz document.

Uploaded by

Samuel Ab
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 5

Matrix Quiz

Put T if the statement is always true, otherwise put F .


O is the zero matrix and I is the identity matrx.
All variables are assumed to be well-defined unless otherwise stated. All equations are linear.
There is no need to prove if the statement is true. Thin of a !ounter-example if it is false.
"""""1. If A is a square matrix and A
#
$ I, then A $ I or A $ -I.
"""""2. If A% $ O, then A $ O or % $ O.
"""""3. If A, %, & are square and A%& $ O, then one of them is O .
"""""4. If A% $ A&, then % $ &.
"""""5. If A is non-zero and A% $ A&, then % $ &.
"""""6. The square of a non-zero square matrix must be a non-zero matrix
"""""7. If A% $ %A, then 'A t %(
)
$ A
)
t )A
#
% * )A%
#
t %
)
.
"""""8. An invertible matrix must be square.
"""""9. 'A%(
-+
$ A
-+
%
-+
.
"""""10. If A has a zero row or zero !olumn, then A is not invertible.
"""""11. If A is a square matrix whi!h has no zero rows or zero !olumns, then A is invertible.
"""""12. ,et A, % be invertible matri!es of same size. Then A% is also invertible.
"""""13. ,et A, % be invertible matri!es of same size. Then A t % is also invertible.
"""""14. If A% is equal to the identity matrix, then A must be invertible matrix.
"""""15. If A, % are square matri!es. If A% $ I, then %A $ I. -en!e, A is invertible.
"""""16. .or square matrix A, AA
T
$ I if and only if A
T
A $ I
"""""17. If A% is invertible, then %A is invertible.
"""""18. If A
#
O , then A is invertible.
"""""19. If A is invertible, then A
#
O .
"""""20. If A is a square matrix and A
#
* /A 0 I $ O , then A is invertible.
"""""21. A symmetri! matrix must be a square matrix.
"""""22. If A is symmetri!, so are A
-+
'if exists( and A
)
.
+
"""""23. If % $ A
T
A, then )% is symmetri!.
"""""24. If A is symmetri!, so is p'A( , for any polynomial p'x(.
"""""25. det 'A t %( $ det A t det %.
"""""26. det 'A( $ det A.
"""""27. Three elementary row operations do not !han1e the determinant of a square matrix.
"""""28. If A is row equivalent to %, then det A $ det %.
"""""29. ,et A is row equivalent to %, then det A and det % are either both zero or both nonzero.
"""""30. ,et A be a square matrix without zero rows and !olumns. Then A must be row equivalent to the
identity matrix of the same size.
"""""31. If A, % are nonzero square matri!es and A is row equivalent to % , then both A, % are invertible.
"""""32. If A is an invertible matrix and % is row equivalent to A, then % is also invertible.
"""""33. 'A t %(
T
$ A
T
t %
T
.
"""""34. 'A %(
T
$ A
T
%
T
.
"""""35. If m 2 n, then the system A
mn
x $ O always has a nontrivial solution.
"""""36. If A is an m n matrix with m 3 n, then Ax $ O always has a nontrivial solution.
"""""37. If det A 4, then the system of equation Ax $ O has non-trivial solution.
"""""38. ,et A be an n n matrix. If the equation has a unique solution for a 1iven nonzero
n + ve!tor b , then det A 4.
"""""39. ,et A be m n matrix. If the equation Ax $ b has a unique solution for a nonzero ve!tor m +,
then the homo1eneous equation Ax $ O has only trivial solution.
"""""40. If det A $ 4, then the system of equation Ax $ O has no solution.
"""""41. If A , % are square matri!es and A is not invertible, then A% is not invertible.
"""""42. If row # of a determinant is repla!ed by row + 0 row # , the determinant remains the same.
"""""43. In a system of ) linear equations and ) variables x, y, z , if the determinants
$ x
$ y
$ z
$ 4, then the systems of equations has infinite numbers of solutions.
"""""44.
a b !
! a b
b ! a
x y z
z x y
y z x
!an be expressed in the form A%& ) & % A
) ) )
+ + , where A, %, & are
#
fun!tions of x, y, z, a, b and !.
Solution
1. F , A $

,
_

4 +
+ 4
, A
#
$

,
_

,
_

,
_

+ 4
4 +
4 +
+ 4
4 +
+ 4
$ I, A I and A - I.
2. F ,

,
_

,
_

,
_

4 4
4 4
A% ,
+ 4
4 4
4 4
% ,
4 4 4
4 4 +
A
55 A $

,
_

4 4
4 +
, % $

,
_

+ 4
4 4
, A% $

,
_

4 4
4 4
3. F , A $ % $ & $

,
_

4 +
4 4
, A%& $ O
4. F , &hoose A $ O, % &
5. F , A $

,
_

4 4
4 +
, % $

,
_

4 4
4 4
, & $

,
_

+ 4
4 4
, A% $ A& $

,
_

4 4
4 4
, % &.
6. F ,

,
_

,
_

4 4
4 4
4 4
+ 4
#
7. T
8. T , A is invertible A% $ %A $ I . If A is m n and % is n m, then m $ n.
9. F , 'A%(
-+
$ %
-+
A
-+
sin!e 'A%(' %
-+
A
-+
( $ I.
10. T , det A $ 4 and hen!e not invertible.
11. F ,

,
_

+ +
+ +
has no zero row or zero !olumn and has no inverse.
12. T , A% is defined and square. det 'A%( $ det A det % 4 .
13. F , A $

,
_

+ 4
4 +
% $

,
_

+ 4
4 +
, A * % $

,
_

4 4
4 4
14. F , A $

,
_

+ 4 4
4 4 +
% $

,
_

+ 4
4 4
4 +
, A% $

,
_

+ 4
4 +
$ I
15. T
16. T
17. F , A $

,
_

+ 4 4
4 4 +
% $

,
_

+ 4
4 4
4 +
, A% $

,
_

+ 4
4 +
$ I , %A $

,
_

+ 4 4
4 4 4
4 4 +
I
18. F , A $

,
_

# +
# +
, A
#
O , det A $ 4 A
-+
does not exist.
19. T
20. T , A is square and A'A * /I( $ I A
-+
$ A * /I
)
21. T
22. T 'A
-+
(
T
$ 'A
T
(
-+
, 'A
n
(
T
$ 'A
T
(
n
.
23. T
24. T
25. F , A $

,
_

+ 4
4 +
% $

,
_

+ 4
4 +
det A $ +, det % $ +, det 'A * %( $ 4
26. F , A $

,
_

+ 4
4 +
det A $ +, det 'A( $ det

,
_

4
4
$
#

27. F , +. If % is obtained from A by inter!han1in1 two rows of A, then det % $ - det A
#. If % is obtained from A by multiplyin1 a row in A by , then det % $ det A
). If % is obtained from A by !han1in1 6
i
by 6
i
* 6
7
, det % $ det A .
28. F , A $

,
_

8 )
# +
, then A 9

,
_

+ 4
4 +
$ I , det A $ -# + .
29. T
30. F , A $

,
_

+ +
+ +
, then A 9

,
_

4 4
+ +
31. F , A $

,
_

+ +
+ +
, then A 9

,
_

4 4
+ +
$ %
32. T
33. T
34. F , 'A%(
T
$ %
T
A
T
.
35. T
36. F ,

,
_

,
_

,
_

4
4
y
x
4 4
+ 4
4 +
has only trivial solution .
37. F , :hould be det A $ 4 .
38. T
39. T
40. F ,

'

+
+
# y # x #
+ y x
has infinite number of solutions.
41. T
42. F , the new determinant is the ne1ative of the ori1inal determinant.
43. F ,

'

+ +
+ +
+ +
+ z 4 y 4 x 4
4 z 4 y 4 x 4
4 z 4 y 4 x 4
has no solution.
8
44. T , A ax * bz * !y , % ay * bx * !z, & az * by * !x .
;

You might also like