0% found this document useful (0 votes)
304 views7 pages

Biochemistry of Carbohydrates

This document provides an overview of carbohydrate biochemistry. It defines carbohydrates as carbon compounds containing carbonyl carbon and hydroxyl functional groups. Carbohydrates are classified based on size of carbon chain, number of sugar units, and location of carbonyl carbon. Key topics covered include monosaccharide and disaccharide structure, isomerism, derivatives of monosaccharides, oligosaccharides, homopolysaccharides like starch and cellulose, and complex heteropolysaccharides.

Uploaded by

Robin Tolentino
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
304 views7 pages

Biochemistry of Carbohydrates

This document provides an overview of carbohydrate biochemistry. It defines carbohydrates as carbon compounds containing carbonyl carbon and hydroxyl functional groups. Carbohydrates are classified based on size of carbon chain, number of sugar units, and location of carbonyl carbon. Key topics covered include monosaccharide and disaccharide structure, isomerism, derivatives of monosaccharides, oligosaccharides, homopolysaccharides like starch and cellulose, and complex heteropolysaccharides.

Uploaded by

Robin Tolentino
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

Marco Perikar R.

Dimaano 1BMed Class 2015



BIOCHEMISTRY OF CARBOHYDRATES
UST FMS
General Formula: C
x
(H
2
O)
y
or (CH
2
O)
n
Carbon compounds havi ng Carbonyl Carbon (C=O) and hydroxyl ( -OH) functi onal groups
Carbonyl Functional Groups:
Al dehyde (Pol yhydroxyal dehydes): 1
st
C (C=O)
Ketone (Pol yhydroxyketones): 2
nd
C (C=O)
Classification
1) Size of base Carbon chain
Tri ose (3C), Tetrose (4C), Pentose (5C), Hexose (6C), Heptose (7C), Nanose (9C)
2) Number of sugar units
Monosacchari de 1 CHO uni t
Di sacchari de 2 CHO uni ts
Ol i gosacchari de 3-10 CHO uni ts
Pol ysacchari de >10 uni ts
3) Location of Carbonyl carbon
Al dose
Ketose
Nomenclature

*Aldohexoses: ALL ALTruists GLadly MAke GUm IN GALlon TAnk.
2
nd
C: alternate OH
3
rd
C: alternate OH by 2
4
th
C: 1
st
4 Right OH, Last 4 Left OH
5
th
C: all OH at right side Ketoses

Ketotriose


Ketotetrose



Ketopentose




Ketohexose


Aldotriose
Aldotetrose
Aldopentose
Aldohexose
Marco Perikar R. Dimaano 1BMed Class 2015

Fischer Projection
Sugars drawn i n strai ght chai n
Perspective structural formula: 3D Fi sher
Haworth Projection
Cycl i c forms whi ch show the mol ecul es as cycl i c and
pl anar wi th substi tuents above or bel ow the ri ng
Boat and Chair conformation: more pl ausi ble bent forms
Fischer projection Haworth projection
Optical Activity
Abi l i ty to rotate pl ane of pol ari zed l i ght
Al l CHOs contai n assymetri cal (chi ral ) carbon and are, therefore,
optically active.
a. Dextrorotatory (+): D i somer
o Rotates to ri ght
o In Fi scher, -OH i s at the ri ght si de of penul ti mate Carbon
o In Haworth, l ast Carbon i s above the ri ng
b. Levorotatory (-): L i somer
o Rotate to l eft
o In Fi scher, -OH i s at the l eft si de of penul ti mate Carbon
o In Haworth, l ast Carbon i s bel ow the ri ng
*Assymetric or Chiral Carbon: carbon with 4 different substituents
*Penultimate Carbon: chiral carbon farthest from functional group

Stereochemistry
Isomers: same mol ecul ar formul a and bonds but di ffer i n spati al arrangement
A. Constitutional Isomers
Di fferent atom connecti vi ti es
B. Stereoisomers
Same atom connecti vi ty, di fferent spati al arrangement
2 types: Confi gurati onal and Conformati onal
1. Configurational Isomers
o Interconverted onl y by breaki ng coval ent bonds (separabl e)
o 4 types: Enanti omer, Di astereomer, Epi mer, Anomer
a. Enantiomer
Stereoi somers whi ch are non-superi mposabl e mi rror i mages of each
other (Eg. D-gl ucose and L-gl ucose)
b. Diastereomer
Stereoi somers whi ch are non-superi mposabl e non-mi rror i mages of
each other (Eg. D-gal actose and D-gl ucose)
c. Epimer
Stereoi somers whi ch di ffer i n one stereocenter (di fferent -OH
posi ti on al ong 1 Carbon atom onl y)
Exampl e: D-gl ucose, D-mannose and D-gal actose
d. Anomer
Stereoi somers whi ch di ffer onl y i n the confi gurati on around the
carbon (anomeri c carbon, usual l y C1) whi ch was i nvol ved i n the
i ntramol ecul ar nucl eophi l i c attack (Eg. and anomers)
Fischer Projection:
anomer (Cis): OH of anomeric Carbon and hemibridge on same side
anomer (Trans): OH of anomeric Carbon and hemibridge on opposite side
Haworth Projection:
anomer (Trans): C6 up, -OH of C1 (anomeric carbon) down if in D isomer
C6 down, -OH of C1 (anomeric carbon) up if in L isomer
anomer (Cis): C6 up, -OH of C1 (anomeric carbon) up if in D isomer
C6 down, -OH of C1 (anomeric carbon) down if in L isomer
*Mutarotation: and are in equilibrium
Marco Perikar R. Dimaano 1BMed Class 2015

2. Conformational Isomers
o Rel ated by rotati on around si ngl e bond (bendi ng
and twi sti ng)
o Interchange wi thout breaki ng coval ent bonds
o Boat and Chai r conformati on
a. Boat conformation: l ess stabl e due to steri c
hi ndrances
b. Chair conformation: more stabl e
*Axial Bond: perpendicular to plane
*Equatorial Bond: parallel to plane

Monosaccharides

Glucose
Central sugar i n metabol i sm
Can cycl i ze through i ntermol ecul ar nucl eophi l i c attack of one of
the OHs on the Carbonyl Carbon of the al dehyde
Occurs i f stabl e 5 or 6 member ri ngs can form
Furanose (5 member) or Pyranose (6 member)
On nucl eophi l i c attack to form the ri ng, carbonyl O becomes an OH
Fructose: 67% pyranose, 33% furanose
Ribose: 25%pyranose, 75% furanose
* Glucose is exclusively pyranose. Fructose and Ribose are exclusively furanose.

Monosaccharide Derivatives

1. Sugar Acids
Oxi di zed forms i n whi ch al dehyde and/or al cohol functi onal groups are oxi di zed to carboxyl i c aci d ( Oxi dati on)
a. Aldonic Acid
o Al dehyde group i s oxi di zed (Eg. Gl uconi c Aci d)
b. Uronic Acid
o Termi nal al cohol i s oxi di zed (Eg. Gl ucuroni c Aci d)
c. Aldaric Acid
o Both al dehyde and termi nal al cohol are oxi di zed
2. Sugar Alcohol
Reducti on of Carbonyl group to OH (-ol) (Eg. Dulcitol:
excess causes cataract in galactosemia patients)
3. Phosphorylated Sugar
Phosphate i s added by ATP formi ng phosphoester
deri vati ves
Eg. Gl ucose-6-Phosphate Glucose-6-Phosphate
4. Amino Sugars
Ami no group repl aced hydroxyl group (-OH to -NH)
Eg. Gl ucosami ne, Gal actosami ne
5. Acetylated Amine Derivative
Sugars deri ved from ami no sugars
Eg. N-acetyl gl ucosami ne, N-acteyl gal actosami ne
6. Lactone Forms
Intramol ecul ar esters
Hydroxyl group attacks Carbonyl carbon that was previ ousl y oxi di zed
to Carboxyl i c aci d (Eg. Gl uconol actone)
7. Deoxysugars
One or more Carbon atoms have been reduced, l osi ng hydroxyl
group (-OH to -H) (Eg. Deoxyri bose)


Marco Perikar R. Dimaano 1BMed Class 2015

8. Condensation Products of Sugar Derivatives with Lactate and Pyruvate
Forms Murami c Aci d (gl ucosami ne + l acti c aci d)
Forms Neurami ni c Aci d (mannosami ne + pyruvi c aci d)
N-acetyl murami c Aci d (MurNAc or NAM): Gl cNac + l acti c aci d (ether l i nk at C3)
o found i n bacteri al cel l wal l s
Sialic Acids:
o Found on surface of al l cel l s
o Invol ved i n cel l contact/communi cati on
o Invol ved i n recogni ti on bacteri a (chol era) and vi ruses (i nfl uenza)
o N-acetyl -neurami ni c Aci d (NANA):
N-acetyl mannosami ne (ManNac) + pyruvi c aci d
found onl y i n humans
l ack hydrol ase gene (92 base pai rs of gene mi ssi ng)
o N-gl ycoyl -neurami ni c Aci d: N-gl ycoyl mannosami ne + pyruvi c aci d
Have hydroxyl ase








Neuraminic Acid

Oligosaccharides











Polysaccharides

Homopolysaccharides: pol ysacchari des wi th 1 type of repeati ng monosacchari de uni t
Starch: found i n pl ants; composed of:
o Amylose (20%)
Li near chai n of Glc i n 1-4 l i nks (or repeati ng mal toses)
o Amylopectin (80%)
Branched chai n i n 1-6 l i nks
o Major part: Glc chai n of 24-30 uni ts (amyl ose) then branches
off (amyl opecti n)
Glycogen
o Mai n carbohydrate storage i n ani mal s
o Composed of Glc resi dues i n 1-4 l i nks and 1-6 branches
(greater than starch)
o Synthesi zed on Glycogenin protei n pri mer
o Reason why gl ycogen i s stored rather than gl ucose: Has l ess osmoti c pressure than gl ucose, therefore, does not easi l y
reacts wi th water
o Source: Muscl es (greatest source i n terms of total gl ycogen mass source) and l i ver (greatest source i n terms of grams
gl ycogen per gram ti ssue)
Marco Perikar R. Dimaano 1BMed Class 2015

Cellulose
o Li near chai n of Glc resi dues i n 1-4 l i nks (or repeati ng cel l obi ose)
o Hel d together by i ntra- and i nter-chai n H-bonds
o Most abundant bi ol ogi cal mol ecul e i n nature; cannot be broken
down by humans (l ack of cel l ul ase)
Chitin
o Li near chai n of GlcNAc i n 1-4 l i nks
Heteropolysaccharides: pol ysacchari des wi th 2 di fferent monosacchari de uni ts
Complex Oligosaccharide Units
Mucopolysaccharides/Glycosaminoglycans (MPS/GAG)
o Ami no sugar + negati vel y charged sul fate or
carboxyl group (uroni c aci d: gl ucuroni c or i duroni c
aci d)
o Form matri x to hol d protei n component of ski n,
connecti ve ti ssue and extracel l ul ar matri x
o Often coval entl y attached to protei ns to form
proteogl ycans
o Hyaluronic Acid Hyaluronic Acid Dermatan Sulfate
Gl ucuronate(1-3)Gl cNAc
Water sol ubl e; found i n synovi al fl ui d
Backbone for attachment protei ns
o Dermatan Sulfate
L-Iduronate(1-3)Gal NAc-4-Sul fate
o Chondroitin Sulfate
D-Gl ucoronate(1-4)Gal NAc-4or6-Sul fate
o Heparin
D-Gl ucoronate-2-Sul fate(1-4)Gl cNSul fo-6-Sul fate Chondroitin Sulfate Heparin
Anti thrombi n, natural l y-occurri ng anti coagul ant
o Keratan Sulfate
D-Gal (1-4)Gl cNAc-6-Sul fate
No uroni c aci d component
o Syndecan Heparan Sulfate
Bi nds through i ntracel l ul ar domai n to the cytoskel eton
Interacts wi th fi bronecti n
o Glypican Heparin Keratan Sul fate
Attached to outer surface of pl asma membrane vi a
phosphati dyl i nositol l i pi d
Peptidoglycans
o Bacterial Cell Walls
Offer protecti on from hypotoni c condi ti on and hi gh i nternal osmoti c
pressure
Long chai n of GlcNAc(1-4)MurNAc (NAG,NAM)
Gram (+) Bacteria
Mul ti -l ayered; cel l wal l can be Gram stai ned (vi ol et)
Chai ns are coval entl y connected by a Pentaglycine Bridge through the
-Ami no group of tetrapepti de Lysi ne on one
strand and D-Al ani ne on another strand
Teichoic Acid
Al ternati ng resi due of D-Al a and NAG i n C2 Gl ycerol
or Ri bi tol Phosphate backbone
Mul ti pl e gl ycerol s are l i nked through Phosphodi ester
Bonds
Often attached to C6 of NAM
Make up 50% of cel l wal l dry wei ght
Present a forei gn anti geni c surface to i nfected host
Serve as receptors for bacteri ophages
Marco Perikar R. Dimaano 1BMed Class 2015

Gram (-) Bacteria
Cel l wal l cannot be Gram-stai ned (red)
No pentagl yci ne bri dge; chai ns are connected by di rect ami de bond between the -Ami no group of
tetrapepti de Lysi ne on one strand and D-Al ani ne on another strand
Hydrophobi c protei n coval entl y attaches (through Lys ami de bond) to the l ast ami no aci d i n the tetrapepti de
uni t of cel l wal l (actual l y di ami nopi mel i c aci d/DAP, whi ch repl aces 10% of D-Al a i n cel l wal l )
No tei choi c aci d; Cel l wal l sandwi ched between l i pi d bi l ayer; Peri pl asmi c space space between l i pi d bi l ayers
Lipopolysaccharide (O anti gen) coats the outer membrane and determi nes anti geni ci ty of bacteri a
Proteoglycans
o GAG coval entl y O-l i nked to protei n (usual l y to Ser resi due
of Ser-Gl y di pepti des)
o May contai n N-l i nked ol i gosacchari de groups
o Carbohydrates > Protei ns
o Sol ubl e
o CHO part provi des an i ncredi bl e vari ety of bi ndi ng
structures (acts l i nke gl ue) i n connecti ng i ntra- and
extracel l ul ar cel l functi ons
o Syndecan: protei n + hepari n sul fate + chondroi ti n sul fate;
bi nds through i ts i ntracel l ul ar domai n to the i nternal
cytoskel eton of the cel l whi l e i nteracti ng wi th fi bronecti n
i n the extracel l ul ar matri x
o Aggrecan: protei n + Chondroi ti n sul fate + Keratan sul fate; bi nds hyal uroni c aci d; i mportant i n hydrati on of carti l ages
o Versican: protei n + Chondroi ti n sul fate; bi nds hyal uroni c aci d i n extracel l ul ar matri x
Glycoproteins/Glycosylated Proteins
o Protei ns post-transl ati onal l y modi fi ed by attachment of carbohydrates
o Usual l y attached through ei ther Asn or Ser si de chai ns
o Invol ved i n recogni ti on of bi ndi ng mol ecul es, preventi on of aggregati on
duri ng protei n fol di ng, protecti on from preoteol ysi s , i ncrease i n protei n
hal f-l i fe, bl ood cl otti ng, i mmunol ogi c protecti on and ABO bl ood groups.
o N-linked glycoproteins
Carbohydrate attached to ei ther Gl cNAc or Gal NAc to an Asn i n a X-
Asn-X-Thr sequence of protei n
Core ol i gosacchari de: (Man)
3
(GlcNAc)
2
attached to Asn
3 types: Mannose, Compl ex, Hybri d
o O-linked glycoproteins
Carbohydrate usual l y attached from a Gal (1-3)Gal NAc to a Ser or
Thr of a protei n
Eg. Bl ood Group Anti gens
Storage Polysaccharides: Starch, Gl ycogen
Structural Polysaccharides: Cel l ul ose, Chi ti n, GAGs, Pepti dogl ycans
Marco Perikar R. Dimaano 1BMed Class 2015

Hemiacetal and Hemiketal Formation

Al dehyde or ketone group of monosacchari des can cycl ize through i ntramol ecul ar nucl eophi l i c attack of a hydroxyl group ( -OH)
at the Carbonyl carbon i n an addi ti on reacti on formi ng Hemi acetal or Hemi ketal , respecti vel y.
On addi ti on of aci d: anomeri c OH i s protonated, formi ng water, a l eavi ng group
Another al cohol can be added formi ng Acetal or Ketal

Reducing Property of Sugars

Reducing Sugars: sugars whi ch can form an al dehyde at C1 or have an -hydroxymethyl ketone group whi ch can i someri ze
to an al dehyde under basi c condi ti ons, such as fructose
o Eg. Al l common monosacchari des, mal tose
o Eg. Lactose: Si nce Gl c i s attached through the OH on C4, i ts anomeri c carbon coul d revert to noncycl i c al dehyde form,
whi ch i s suscepti bl e to oxi dati on , thus, subsequentl y reduced.
Non-Reducing Sugar: sugars i n whi ch there are no al dehyde or ketone group to react; sugar ri ngs are l ocked or not capabl e
of openi ng
o Eg. Sucrose: Si nce the anomeri c carbons of both Gl c and Fru are l i nked, i t cannot be reduced (nei ther of the ri ngs can
be opened).
Tests for i denti fyi ng Reduci ng Sugars:
o Benedicts: Copper Sul fate + Al kal i ne Ci trate; deep bl ue bri ck red ppt
o Fehlings: Copper Sul fate + Al kal i ne Tartrate; deep bl ue bri ck red ppt
o Tollens: Si l ver Ni trate + Aqueous Ammoni a; col orl ess si l ver mi rror

You might also like