Math 1105(11)
Solutions to Assignment #1
1. (a) x 2  5 x  6  0
Since x 2  5 x  6  ( x  1)( x  6)  0 , we have
x 1  0 & x  6  0
Case 1:
or x  1
& x  6
x 1  0 & x  6  0
Case 2:
or x  1
& x  6 -------------- no solution
So the solution set is the closed interval [-6, 1].
(b) | 2 x  5 |  1
| 2 x  5 | 1 is equivalent to 1 < 2x + 5 < 1. From the first inequality we
have 6 < 2x or x > -3. From the second inequality we have 2x < -4 or x <
-2. So the solution set is (-3, -2).
2. Find the domain and range of each function.
(a) f ( x )  3  2  x
Domain: {x | x  2, x 
R}, Range: (-, 3].
f(x)
1
2 x3
Domain: x + 3  0 and
2  x  3  0 , which is [3, 1)  (1, ).
Range: (-, 0)  [1/2, ).
(b) f ( x ) 
x
1
-3
1(b)
3. Sketch the graphs of the functions:
(a) f ( x)  ( x  1) 2  1 (b) f ( x)  1 | x  2 | .
f(x)
f(x)
2
1
1
1
2(a)
2(b)
4. Construct the following composite functions and specify the domain of each
(i) f  f (x) (ii) f  g (x) (iii) g  f (x) (iv) g  g (x)
a. f(x) = 1/x, g(x) = x/(2-x).
The domain of f(x) is {x | x  0 }. The domain of g(x) is {x | x  2 }.
1
 x. Domain: { x | x  0 }
1/ x
1
2 x
 x 
f  g ( x)  f 
.
 
x
(ii)
Domain: { x | x  0, x  2 }.
x
 2 x
2 x
1
1
x  x 1 x  1 .
(iii) g  f ( x )  g (1 / x) 
1
2x  1 x 2x  1 2x  1
2
x
x
(i) f  f ( x)  f (1 / x) 
Domain: { x | x  0, x  1/2 }
x
x
x
2 x  2 x  x 2 x  x .
 
(iv) g  g ( x)  g 
x
4  2 x  x 2  x 4  3x 4  3x
 2 x
2
2x
2 x
Domain: { x | x  2, x  4/3 }
(b)
f ( x) 
2  x, g ( x )  1  x
The domain of f(x) is {x | x  2 }. The domain of g(x) is all real number.
(i) f  f ( x)  f ( 2  x )  2  2  x . Domain: [-2, 2].
(ii) f  g ( x)  f (1  x)  2  (1  x)  1  x . Domain: [-1, ).
(iii) g  f ( x)  g ( 2  x )  1  2  x . Domain: (-, 2].
(iv) g  g ( x)  g (1  x)  1  (1  x)  x . Domain: (-, ).
5. (a) If f ( x)  x  4 and f  g ( x)  x , what is g (x) . Verify your answer.
g(x) = x  4 because f  g ( x )  f ( x  4)  ( x  4)  4  x.
(b) If g ( x)  x  1 and f  g ( x)  1 / x 2 , what is f (x ) . Verify your answer.
f ( x) 
1
1
1
f  g ( x)  f ( x  1) 
 2
2 because
2
( x  1)
[( x  1)  1]
x
6. The motion of a particle moving along the x-axis so that at time t it is at
position x  3t 2  2t  1 m.
(a) Find the average velocity of the particle over the time intervals [1, 2] and
[2, 3].
3t 22  2t 2  1  (3t12  2t1  1)
Average velocity in [t1, t2] =
t 2  t1
3  (2) 2  2  2  1  (3  12  2  1  1)
 11 m/s
2 1
3  (3) 2  2  3  1  (3  2 2  2  2  1)
 17 m/s
Average velocity in [2, 3] =
32
Average velocity in [1, 2] =
(b) Make a table giving the average velocities of the particle over time
interval [1, 1+h], for h = 1, 0.1, 0.01, 0.001, 0.0001 second.
x 3  (1  h) 2  2(1  h)  1  (3  12  2  1  1)
 8  3h
t
h
h
1
0.1
0.01
0.001
0.0001
x /t
11
8.3
8.03
8.003
8.0003
(c) Using the results of (b) to find the velocity of the particle at t=1 and t=2.
3  (t  h) 2  2(t  h)  1  (3t 2  2t  1)
Velocity at t = lim
h 0
h
3(t 2  2th  h 2 )  2(t  h)  1  3t 2  2t  1
h0
h
h(6t  3h  2)
 lim
 6t  2
h0
h
 lim
The velocity of the particle is 8 m/s at t=1 and 14 m/s at t=2.
7. Evaluate the limit or explain why it does not exist.
t2
( 4) 2
16
2
4  t 4  ( 4)
8
(a) tlim
 4
x2  4
( x  2)( x  2)
 lim
 lim ( x  2)  2  2  4
x  2 x  2
x  2
x  2
x2
(b) lim
(c) lim
h 0
h  2h 2
h(1  2h)
1  2h
 lim 2
 lim
. No limit.
h 0 h (1  3h)
h 0 h (1  3h )
h 2  3h 3
2
(3  x) 2
|3 x |
(d) lim 9  6 x  x  lim
. No limit because
 lim
x 3
x 3 x  3
x 3
x3
|3 x |
 (3  x )
|3 x |
3 x
lim
 lim
 1 and lim
 lim
1
x 3  x  3
x 3  x  3
x 3 x  3
x 3
x3
x 3
(e) lim
x0
| 2x  1 |  | 2x  1 |
 (2 x  1)  (2 x  1)
 4x
 lim
 lim
 4
x 0
x0
x
x
x
 ( x  2)
| x2 |
| x2|
 lim
 1 and
doesnt exist because lim
x2 x2
x2
x2 x  2
x2
| x2|
lim
 lim x  2  1 .
x 2 x  2
x 2 x  2
(f) lim
1
4 
x2
4 
x2
  lim
 2
 2
  lim
x
2
x
2
( x  2)( x  2)
 x 2 x 4
 ( x  2)( x  2) x  4 
(g) lim
x 2
 lim
x 2
1
1
 .
x2 4
8. Find the indicated one-side limit or explain why it does not exist.
(a) lim 2  x . Undefined because the domain of 2  x is x  2.
x 2
2  x  2  (2)  2 . The domain the same as that in (a)
(b) xlim
 2 
x 4  x 2  lim x 2 ( x 2  1) . Since the domain is x-1 or x1, the
(c) xlim
0 
x 0 
limit is undefined.
x2
if
2
9. Define f ( x )    2 x  1 if
 ( x   ) 2 if
x  1
1 x  0
x0
Find the indicated limits.
f ( x)  lim ( x  2)  3 (b)
(a) xlim
 1
x  1
lim f ( x )  lim ( 2 x 2  1)  3
x  1
x  1
f ( x )  lim ( 2 x 2  1)  1 (d) lim f ( x)  lim ( x   ) 2   2
(c) xlim
0 
x 0 
x 0
x 0