Reduction Formula
1.
x 2n
In =
(a)
Prove that
(i)
(b)
By considering
Jn + Jn-1
1 x2
dx
J0 =
2.
If
un =
If
In =
/ 2
Evaluate
3.
If
If
1 x2
(ii)
and
xn
a +x
, show that the reduction formula for
In
allows
Jn
to be evaluated
n.
74 2
16
.
un = 
1
n
n 1
n
u n 2 .
u5 .
dx
x5
5 + x2
( n = 0, 1, 2, 3,  )
dx
2nIn = (2n  1) In-1 .
x cos n xdx , where n > 1 , show that
u4
In =
, show that
x n 1
n
a2 + x2 
n 1
n
a 2 I n 2 , where
n2.
dx .
u m = x m (a 2  x 2 ) dx , show that (m + 2) um =  xm  1 (a2  x2 )3/2 + a2 (m  1) um  2 .
1/ 2
/ 2
Evaluate
5.
Evaluate
4.
J3 =
Prove that
x 2n
I0
for any particular value of
(c)
 (1 + x )
Jn =
and
sin 2 m  cos 2 d , where m is a positive integer.
u n = x n (2ax  x 2 ) dx , where n is a positive integer, prove that:
1/ 2
(n + 2) un  (2n + 1) aun  1 + x n  1 (2ax  x2)3/2 = 0 .
Show that
6.
7.
If
If
In =
x 2 (2ax  x 2 ) dx =
2a
1/ 2
xn
3a + x
2
I p ,q =
xp
 (1 + x )
2 q
5a 4
dx , show that
 (1 + x )
2 3
In =
2a
0
Let
In (z) =
3( n  1)
n
a 2 I n 2 .
x p1
(1 + x 2 )q1
Evaluate
I7 .
+ ( p  1)I p2 ,q 1 .
dx .
x n 2ax  x 2 dx , prove that 3aIn  3In+1 = n (In+1  2a In) .
Hence, or otherwise, show that
9.
2a n
2(q  1)I p ,q = 
x6
If
In =
dx , show that
Hence, or otherwise, evaluate
8.
1
0
Prove that for all
In =
(1  y) n (e yz  1)dy ,
n  1,
I n 1 ( z ) =
z
n
( 2 n + 1)( 2 n  1)...7  5  n+2
 a
, where
( n + 2)( n + 1)...5  4 2
for all
I n (z) +
is a positive integer.
n0.
z
n ( n + 1)
. Deduce that
ez =
zr
 r!
r =0
zn
( n  1)!
I n 1 ( z ) .
1
10.
11.
(a)
(b)
Prove that
If
In =
(a)
(ii)
(iii)
(c)
13.
(a)
(b)
14.
If
x m (ln x ) n dx =
 (1  x ) dx
1
2 n
and use it to evaluate
2 8
(  1)n n!
.
( m + 1)n +1
x n (a 2  x 2 )1 / 2 dx ,
n > 1,
 n 1  2
In = 
 a I n 2 .
n +2
prove that
I4 .
Prove the Wallis formulae:
(i)
(b)
 (1  x ) dx
Hence find
12.
In =
Find a reduction formula for the integral
/2
/2
/2
sin 2 n x dx =
2 2 n n! n! 2
sin 2 n+1 x dx =
(2 n )! 
2 2 n n! n!
(2 n + 1)!
sin 2 n 1 x dx =  1 +
 2n 
0<x<
Prove that
Deduce that
/ 2
, then
I ( p, q ) =
/2
/2
/2
0
sin 2 n x dx = 1 
sin 2 n+1 xdx
Obtain a reduction formula for
Prove that
sin 2 n x dx = 1 + n 
2n 
1  n
2n + 1 n 2
/4
0
 sin x  cos x 
 sin x + cos x 
/2
sin 2 n +1 xdx ,
where
and deduce that
( 2 n )!
2n
2 n!n!
= 1
0 < n < 1 .
1  n
2n + 1 n
2 n +1
dx
and hence deduce its value.
(ln cos x ) cos xdx = ln 2  1 .
( x  a ) p (b  x ) q dx
(b > a),
prove that when
n1,
(i)
I(n, n  1) = I(n  1, n)
(ii)
2(2n + 1) I(n, n) = 2n (b  a) I(n , n  1)
= n(b  a)2 I(n  1, n  1).
Hence or otherwise, show that
15.
Find a reduction formula for
 (5 + x )
2
Prove that
2 3/ 2
 (a
dx =
I( n , n ) =
+ x2 )
n/2
( 2 n + 1)!
dx , where n is an odd positive integer.
396 + 75 ln 5
16
( b  a )2 n +1 n!n!