SECTION
1.0
2.0
TABLES
APPENDIX
FIGURE
1.0
DESCRIPTION
INTRODUCTION
1.1
General
1.2
The Report
DESIGN OF WATER RETICULATION
2.1
Reference
2.2
Design Criteria
2.3
Analysis of Flow Network
2.4
Result of Flow Analysis
2.5
Tapping Point Pressure
Table 1 & 2
Estimated Water Demand & Breakdown of Water Demand
Table 3
Summary of Flow Network Analysis Results from Tapping Point
By Pass to Water Tank
Table 4
Summary of Peak Flow Network (with PRV) Analysis Results
Table 5
Summary of Peak Flow Network (Without PRV) Analysis Results
Table 6
Summary of Fire Flow Network (With PRV) Analysis Results
Table 7
Summary of Fire Flow Network (Without PRV) Analysis Results
Appendix 1
Schematic Diagram for Incoming Pipe to Suction Tank
Appendix 2
Schematic Diagram for Peak Flow Network Analysis
Appendix 3
Schematic Diagram for Hydrant Flow Network Analysis
Figure 1
Water Reticulation Layout Plan
INTRODUCTION
1.1
General
Unik Sejati Sdn. Bhd. is desirous of developing an area of approximately 88.05
acres (35.64 Hectares) at Lot 14645 in Mukim Sungai Buloh, Daerah Petaling,
Selangor Darul Ehsan. The development consists of residential including
bungalow, semi-D, terrace house, shop lot, low cost apartment and medium cost
apartment when is fully developed. This report only included phase 1 that is 81
unit bungalow water supply only.
1.2
The Report
This report presents the detailed network analysis for the internal water supply
pipeline and it includes the following:a) Water supply pipe line system from tapping point by pass to suction
tank.
b) Water supply system via the elevated water tank which provided by
developer.
This report calculation should included:a.
b.
c.
d.
Total daily water demand.
Network flow analysis for peak flow demand (2.5 x Average flow)
Network flow analysis for fire flow demand
Computation of flow, hydraulic grade line, residual pressure, discharge
and headloss
Pipe line system from suction tank to water tank which is in M&E scope and will
not present in this report.
Meanwhile, the detail design of elevated water tank and suction tank will submit
after obtain approval from this report.
2.0
DESIGN OF WATER RETICULATION
2.1
Reference
Reference is made to the Water Reticulation Guide Line for Selangor State,
Kuala Lumpur and Putrajaya published by PUAS Berhad.
2.2
Design Criteria
The water reticulation system consists of pipelines network designed to meet 2
criteria.
The 2 criteria are :
Case 1 : Peak Domestic Demand Condition
( 2.5 x Average Flow )
Case 2 : Average Domestic Demand and 2 Fire Flows
( Fire flow at 300 gpm at each stream )
All piping materials, valves, hydrants, and specials shall be in accordance with
British Standards and PUASs requirement..
The following design criteria have been adopted in this proposed water supply
system:
1. Minimum pipe size to be 150mm of HDPE pipe.
2. Dead ends of pipeline shall be minimized and looped system is encouraged
2.3
Analysis of Flow Network
The proposed water supply system is carried out in PipeNet program. Major
friction losses are computed based on Hazen William formula.
Value of Hazen-William coefficient (C) of 130 is used for HDPE and DI pipe. The
peak factor for peak flow is taken as 2.5 and 1.0 for fire flow. Headloss in
pipelines should not exceed 2 feet head per 1000 feet of pipe length.
Minimal residual pressure for each node during domestic draw-off should not
less than 7.5 metres from the highest supply level for peak flow case if the
source of water is supply from JBA main pipe.
Minimal residual pressure for each node during domestic draw-off should not
less than 4.5 metres from the highest supply level if the source of water is supply
from the water reservoir prepared by developer.
Breakdown of water demand is tabulated in Table 2.
2.4
Result of Flow Analysis
The results of flow analysis from tapping point via by pass suction tank attached
in Table 3.
The results of the flow analysis consist of two conditions which are peak flow
analysis and fire flow analysis. The network analysis results are attached in
Table 4 and Table 5 respectively.
The water supply layout plan is shown in Figure 1.
2.5
Tapping Point Pressure
Tapping point is given as 52.0m ODL from Jalan Kuala Selangor Sungai Buloh.
TABLE 1 & 2
ESTIMATED OF WATER DEMAND &
BREAKDOWN OF WATER DEMAND
Table 1 : Estimated Of Water Demand
Description
Daily Demand
Daily Demand
A. Residential
Rumah Kos Rendah dan Rumah Pangsa Kos Rendah
Rumah Pangsa Kos Sederhana dan Sederhana
Rendah
Rumah Berderet satu dan dua Tingkat
Pangsapuri / Kondominium
Rumah Berkembar satu dan dua Tingkat
Rumah sesebuah satu dan dua Tingkat
1000 lsh
1500 lsh
220 gsh
330 gsh
1500 lsh
1500 lsh
2000 lsh
2000 lsh
330 gsh
330 gsh
440 gsh
440 gsh
2000 lsh
1500 lsh
1000 lsh
5000 lsh
25000 lsh
25000 lsh
1500 lsh
1000 lsh
1500 lsh
5000 lsh
440 gsh
330 gsh
200 gsh
1000 gsh
5000 gsh
5000 gsh
330 gsh
220 gsh
330 gsh
1100 gsh
1000 lsh
50 lsh
25000 lsh
50000 lsh
2000 lsh
50 lsh
250 lsh
25000 lsh
30 lsh
200 gsh
11 gsh
5500 gsh
11000 gsh
440 gsh
11 gsh
55 gsh
5500 gsh
7 gsh
Units
Daily
Demand
B. Commercial
Rumah Kedai satu tingkat
Rumah Kedai Bertingkat setiap tingkat
Pejabat setiap 100 meter persegi
Stesyen Minyak
Pasar
Pusat Penjaja
Hotel setiap bilik
Komplek membeli-belah setiap 100 meter persegi
Bengkel industri ringan
Kilang Berderet
C. Public Facilities
Hospital setiap 100 meter persegi
Masjid / Surau setiap orang
Dewan orang ramai
Rumah Kelab
Balai Raya
Sekolah harian setiap murid
Sekolah berasrama setiap murid
Institusi setiap hektar
Tadika setiap kanak-kanak
Table 2 : Breakdown Of Water Demand
Item
Description
Quantity
Total Daily
Demand
1
2
3
4
5
6
7
8
9
10
11
12
Rumah Sesebuah
Rumah Pangsa Kos Sederhana
Rumah Pangsa Kos Sederhana Rendah
Rumah Kos Rendah
Kemajuan Akan Datang (Perniagaan)
Kemajuan Akan Datang (Rumah Sesebuah)
Kemajuan Akan Datang (Rumah Berkembar)
Kemajuan Akan Datang (Rumah Teres)
Kemajuan Akan Datang (Tadika)
Kemajuan Akan Datang (Surau)
Kemajuan Akan Datang (Lot 403 Rumah Teres)
Loji Rawatan Kumbahan STP
Total Water Daily Demand = 330,000 gpd
Suction Tank
1
330,000 gpd
3
= 110,000 gpd
size = 10 m 13m 4.3 m (depth)
Elevated Water Tank =
2
330,000 gpd
3
= 220,000 gpd
size = 16 m 16m 4.3 m (depth)
Nos
Nos
Nos
Nos
m2
Nos
Nos
Nos
Nos
Nos
81
24
49
49
10,854
55
32
70
100
50
470
1
(gpd/unit)
(gpd)
440
330
330
220
2.2
440
440
330
7
11
330
330
35,640
7,920
16,170
10,780
23,880
24,200
14,080
23,100
700
550
155,100
330
Sum-Total
312,450
Say
330,000
TABLE 3 , 4, 5, 6 & 7
SUMMARY OF FLOW NETWORK ANALYSIS RESULT
Table 3 : Summary of Flow Network Analysis Results from Tapping Point By Pass to
Water Tank
Node
No.
Highest
Supply
Level
Case 1 = Peak Flow
Demand
Peak Flow =2.5 x
Average flow
Pressure at node
Residual
Pressure
(m)
(l/s)
(l/s)
(m)
(m)
34.0
52.0
18.00
40.0
16.42
41.06
51.57
11.57
Table 4 : Summary of Peak Flow (Without PRV) Network Analysis Results
Node
No.
Highest
Supply
Level
(m)
Case 1 = Peak Flow
Demand
Peak Flow =2.5 x
Average flow
Pressure at node
Residual
Pressure
(l/s)
(l/s)
(m)
(m)
31
24.00
0.00
0.00
79.75
55.75
30
60.50
0.00
0.00
80.95
20.45
29
67.80
0.21
0.52
80.89
13.09
28
67.80
0.23
0.58
80.78
12.98
27
64.40
0.19
0.46
80.67
16.27
0.00
0.00
0.00
80.59
18.19
46.50
1.26
3.14
79.72
47.72
36.00
0.00
0.00
79.76
54.76
40.80
0.09
0.23
79.75
55.75
37.00
0.00
0.00
79.75
54.75
37.00
0.00
0.00
79.88
49.88
51.80
0.19
0.46
79.88
25.88
69.80
0.23
0.58
80.03
42.03
42.00
0.00
0.00
80.03
30.03
10
66.30
0.09
0.23
80.35
19.85
11
66.80
0.07
0.17
80.35
21.85
12
72.80
0.16
0.41
80.95
8.15
13
60.00
0.00
0.00
80.95
11.65
14
69.30
0.05
0.12
80.95
20.95
15
72.80
0.16
0.41
80.98
8.18
16
58.50
1.28
3.20
80.86
14.06
17
60.50
0.00
0.00
80.86
14.56
18
50.00
0.35
0.87
80.63
38.63
19
38.00
0.00
0.00
80.63
10.83
20
54.00
1.67
4.17
80.62
28.82
21
30.00
0.00
0.00
80.6
43.6
22
25.00
1.83
4.59
80.6
43.6
23
24.00
0.00
0.00
80.6
39.8
24
25.00
0.00
0.00
80.59
44.59
25
32.00
8.16
20.40
80.55
34.05
26
62.40
0.21
0.52
81
Table 5 : Summary of Peak Flow (With PRV) Network Analysis Results
Node
No.
Highest
Supply
Level
(m)
Case 1 = Peak Flow
Demand
Peak Flow =2.5 x
Average flow
Pressure at node
Residual
Pressure
(l/s)
(l/s)
(m)
(m)
31
24.00
0.00
0.00
79.75
55.75
30
60.50
0.00
0.00
80.95
20.45
29
67.80
0.21
0.52
80.89
13.09
28
67.80
0.23
0.58
80.78
12.98
27
64.40
0.19
0.46
80.67
16.27
0.00
0.00
0.00
80.59
18.19
46.50
1.26
3.14
79.72
47.72
36.00
0.00
0.00
79.76
54.76
40.80
0.09
0.23
54.00
30.00
37.00
0.00
0.00
54.00
29.00
37.00
0.00
0.00
79.88
49.88
51.80
0.19
0.46
79.88
25.88
69.80
0.23
0.58
80.03
42.03
42.00
0.00
0.00
80.03
30.03
10
66.30
0.09
0.23
80.35
19.85
11
66.80
0.07
0.17
80.35
21.85
12
72.80
0.16
0.41
80.95
8.15
13
60.00
0.00
0.00
80.95
11.65
14
69.30
0.05
0.12
80.95
20.95
15
72.80
0.16
0.41
80.98
8.18
16
58.50
1.28
3.20
80.86
14.06
17
60.50
0.00
0.00
80.86
14.56
18
50.00
0.35
0.87
80.63
38.63
19
38.00
0.00
0.00
80.63
10.83
20
54.00
1.67
4.17
80.62
28.82
21
30.00
0.00
0.00
80.60
43.60
22
25.00
1.83
4.59
67.00
30.00
23
24.00
0.00
0.00
67.00
26.20
24
25.00
0.00
0.00
66.98
30.98
25
32.00
8.16
20.40
66.95
20.45
26
62.40
0.21
0.52
81.00
0.00
Table 6 : Summary of Hydrant Flow (Without PRV) Network Analysis Results
Node
No.
Highest
Supply
Level
(m)
Case 2 = Hydrant Flow
Demand
Hydrant Flow=1.0 x
Average flow
Pressure at node
Residual
Pressure
(l/s)
(l/s)
(m)
(m)
31
24.00
0.00
0.00
80.71
56.71
30
60.50
22.83
22.83
80.28
19.78
29
67.80
0.21
0.21
80.95
13.15
28
67.80
0.23
0.23
80.92
13.12
27
64.40
0.19
0.19
80.89
16.49
0.00
0.21
0.21
80.87
18.47
46.50
8.16
8.16
80.71
48.71
36.00
0.00
0.00
80.71
55.71
40.80
0.00
0.00
80.71
56.71
37.00
1.83
1.83
80.71
55.71
37.00
0.00
0.00
80.74
50.74
51.80
1.67
1.67
80.74
26.74
69.80
0.00
0.00
80.76
42.76
42.00
0.35
0.35
80.76
30.76
10
66.30
0.00
0.00
80.82
20.32
11
66.80
1.28
1.28
80.82
22.32
12
72.80
0.16
0.16
80.28
7.48
13
60.00
0.05
0.05
80.28
10.98
14
69.30
0.00
0.00
80.83
20.83
15
72.80
0.16
0.16
80.98
8.18
16
58.50
0.07
0.07
80.83
14.03
17
60.50
0.09
0.09
80.83
14.53
18
50.00
0.00
0.00
80.83
38.83
19
38.00
0.23
0.23
80.83
11.03
20
54.00
0.19
0.19
80.83
29.03
21
30.00
0.00
0.00
80.83
43.83
22
25.00
0.00
0.00
80.83
43.83
23
24.00
0.09
0.09
80.83
40.03
24
25.00
0.00
0.00
80.83
44.83
25
32.00
1.26
1.26
80.82
34.32
26
62.40
-39.25
-39.25
81.00
0.00
Table 7 : Summary of Hydrant Flow (With PRV) Network Analysis Results
Node
No.
Highest
Supply
Level
(m)
Case 2 = Hydrant Flow
Demand
Hydrant Flow=1.0 x
Average flow
Pressure at node
Residual
Pressure
(l/s)
(l/s)
(m)
(m)
31
24.00
0.00
0.00
80.71
56.71
30
60.50
22.83
22.83
80.28
19.78
29
67.80
0.21
0.21
80.95
13.15
28
67.80
0.23
0.23
80.92
13.12
27
64.40
0.19
0.19
80.89
16.49
0.00
0.21
0.21
80.87
18.47
46.50
8.16
8.16
80.71
48.71
36.00
0.00
0.00
80.71
55.71
40.80
0.00
0.00
54.00
30.00
37.00
1.83
1.83
54.00
29.00
37.00
0.00
0.00
80.74
50.74
51.80
1.67
1.67
80.74
26.74
69.80
0.00
0.00
80.76
42.76
42.00
0.35
0.35
80.76
30.76
10
66.30
0.00
0.00
80.82
20.32
11
66.80
1.28
1.28
80.82
22.32
12
72.80
0.16
0.16
80.28
7.48
13
60.00
0.05
0.05
80.28
10.98
14
69.30
0.00
0.00
80.83
20.83
15
72.80
0.16
0.16
80.98
8.18
16
58.50
0.07
0.07
80.83
14.03
17
60.50
0.09
0.09
80.83
14.53
18
50.00
0.00
0.00
80.83
38.83
19
38.00
0.23
0.23
80.83
11.03
20
54.00
0.19
0.19
80.83
29.03
21
30.00
0.00
0.00
80.83
43.83
22
25.00
0.00
0.00
67.00
30.00
23
24.00
0.09
0.09
67.00
26.20
24
25.00
0.00
0.00
67.00
31.00
25
32.00
1.26
1.26
66.99
20.49
26
62.40
-39.25
-39.25
81.00
0.00
APPENDIX 1
Schematic Diagram Incoming Main to
Suction Tank
APPENDIX 2
Schematic Diagram for Peak Flow Network Analysis
APPENDIX 3
Schematic Diagram for Hydrant Flow Network Analysis
Figure 1
Water Reticulation Layout Plan