4 1
4 1
VOLUME 4
47
Mi
\%\
NUMBER 1
PART I-ADVANCED
SOME CONVERGENT RECURSIVE SEQUENCES, HOMEOMORPHIC
IDENTITIES, AND INDUCTIVELY DEFINED COMPLEMENTARY
SEQUENCES
John C. Holladay
Raymond E. Whitney
37
L. Caditz
43
49
Edited
by VernerE.
Hoggait,
Jr.
56
H.W. Gould
59
Edgar I. Emerson
63
'
PART II - ELEMENTARY
. . . . . .
R.S. Beard
70
M.N.S. Swamy
73
J.AM. Hunter
82
Lenard
FEBRUARY
Edited
83
85
Weinstein
88
Gerard R. Deily
89
by A.P. Hillman
90
Lenard
Weinstein
196G
B r o t h e r U. Alfred
He L. Alder
S. L. Basin
M a r j o r i e Bicknell
John L. Brown, J r .
L. C a r l i t z
H. W. Gould
A. P . Hillman
V, E. Hoggatt, J r .
Donald E. Knuth
C T. Long
Leo M o s e r
L D. Ruggles
D. E. Thoro
P . M. Anselone
C h a r l e s H. King
Terry Brennan
L. H. Lange
Maxey Brooke
Douglas Lind
Paul F . Byrd
J a m e s Maxwell
Calvin D. C r a b i l l
S i s t e r M. de Sales McNabb
Ho W. Eves
C. D. Olds
John H. Halton
D. W. Robinson
R i c h a r d A. Hayes
A z r i e l Rosenfeld
Ao F . H o r a d a m
M. N. S. Swamy
Dov J a r d e n
John E . Vinson
Stephen J e r b i c
Lloyd Walker
R. P . Kelisky
C h a r l e s R. Wall
The California M a t h e m a t i c s Council
All s u b s c r i p t i o n c o r r e s p o n d e n c e should be a d d r e s s e d to B r o t h e r U.
Alfred, St. M a r y ' s College, Calif. All checks ($4.00 p e r y e a r ) should
be m a d e out to the Fibonacci A s s o c i a t i o n or the Fibonacci Q u a r t e r l y .
M a n u s c r i p t s intended for publication in the Q u a r t e r l y should be sent
to V e r n e r E . Hoggatt, J r . , M a t h e m a t i c s D e p a r t m e n t , San J o s e State
College, San J o s e , Calif. All m a n u s c r i p t s should be typed, doublespaced, Drawings should be m a d e the s a m e size a s they will a p p e a r
in the Q u a r t e r l y , and should be done in India ink on e i t h e r vellum or
bond p a p e r . A u t h o r s should keep a copy of the m a n u s c r i p t sent to the
editors.
The Q u a r t e r l y is e n t e r e d a s t h i r d c l a s s m a i l at the St. M a r y ' s College
P o s t Office, California, as an official publication of the Fibonacci
Association.
I.
quences, where
A is a given positive n u m b e r :
(1.1)
x
=x
- Ax
'
n+1
n-1
n
It is well known that any sequence so g e n e r a t e d is of the form
(1. 2)
where
C,
and C ?
= C , R ^ + C 0 R^ ,
n
1 1
2 2
a r e c o n s t a n t s , and R and R
a r e the roots of
x 2 = 1 - Ax .
(1.3)
Let R,
be
=R .
x ,
F u r t h e r m o r e , if
A is an i n t e g e r , then
is i r r a t i o n a l .
It should be noted that sequences g e n e r a t e d by a r e c u r s i v e f o r m -
If
A= 1,
then the r e c u r s i v e formula obtained for going in the opposite d i r e c tion is the formula used for generating Fibonacci n u m b e r s .
Let P be a h o m e o m o r p h i s m of |?0,oc ) onto itself.
In other
and x n
(1.4).
x ,. = x 1 - P(x ) .
n+i
n-1
ir
Although the p r o p e r t i e s to be d i s c u s s e d will depend on the n a t u r e
of P on (_0,oo) only, to facilitate the d i s c u s s i o n it will be a s s u m e d
that P is a h o m e o m o r p h i s m of the e n t i r e r e a l line.
1
Feb.
onto itself.
The inverse
(hg)(t) = h [g(t)]
and
(gh)(t) = g[h(t)]
(1. 6)
where
fined to mean that h(t) < g(t) for all t > 0. Similarly,
h < g means
that h(t) < g(t) for ail t > 0. Note that h < g if and only if h~
and that h <_ g if and only if h
> g
and
t > 0.
> g~
and
g,
define
h(Jg
as
that
Define
hf)g
as that homeomorphism
such that
(1.7)
hHg + h U g - h + g .
h and g,
(1.8)
h,
(1. 9)
that
(1.10)
h =P + h
such
1966
( 1 . 11)
and
g= P + h_1
Then
h = g = t h e h o m e o m o r p h i s m of T h e o r e m 1*
T h e o r e m 3:
Let
g,
be any h o m e o m o r p h i s m .
q u e n c e of h o m e o m o r p h i s m s
| g
g _,_ = p + g " 1
&
n+1
n
(1.12)
x
'
c o n v e r g e s u n i f o r m l y on e v e r y b o u n d e d s u b s e t of
morphism
[ 0 , oo) to t h e h o m e o -
of T h e o r e m 1.
T h e o r e m 4:
tive n u m b e r s x , and
h
Then the s e -
I defined inductively by
c o n v e r g e s if a n d o n l y if
is the h o m e o m o r p h i s m
of T h e o r e m
1.
= h ( x ), w h e r e
q u e n c e c o n v e r g e s , it c o n v e r g e s to z e r o .
If
h(xn) > x
even subscripts
, t h e n a i l of t h e e l e m e n t s
are positive,
of t h e s e q u e n c e w i t h
b u t a l l b u t a f i n i t e n u m b e r of t h e e l e -
m e n t s w i t h odd s u b s c r i p t s a r e n e g a t i v e .
If
h(x ) < x
, t h e n a l l of t h e odd s u b s c r i p t e d e l e m e n t s a r e
p o s i t i v e a n d a l l b u t a f i n i t e n u m b e r of t h e e v e n s u b s c r i p t e d
elements
are negative.
T h e o r e m 5:
If
of
Let
n
h1
be a h o m e o m o r p h i s m such that
a positive integer,
( 1 . 13)
v
Then
define
,. = P + h " 1
n+1
n
(1.14)
B y i n d u c t i o n on
m , if
0 < m < n
and
is even,
then
h.. < P .
By
Feb.
(1. 17)
(1.18)
(1.19)
---
(1.20)
for
n > 1 are
[0, r ]
such that
0 <P^)
Let t, , t ?
(1. 21)
(1.22)
and
1'
h ( t j - h (t.)
. n 2
n 1
2' -
and
.
<8.
Then
(1.23)
F o r any
<r
that
1966
Also
(1.24)
P(t2) - P(tx)
Therefore
<P(t2)-P(t1)+h"|1(t2),-h^(t1)
t. < t_ < t. + fe .
1
Consequently the
x
are
uniformly
J
they con-
However, s e q u e n c e s ( 1 . 17)
Therefore,
these
But if a
t h a t h , g, h" 1 . and g " 1 ' a r e the limits of ( 1 . 17), ( 1 . 18), (1.19), and
(1.20) r e s p e c t i v e l y .
Let
quence
X , ,
\l , c.0)
X..,
X_ ,
X_,
X-2,
X ,,
-'
n2 0
(1.26)
x2n= (h^g-1)
(l.?7)
x ^ j
=h(h
(x 0 )
and
-1 - l . n
g ) (x 0 )
(h
is defined as
n =0
6
(1
2(n+1)-1
=X
2n-l "
P(x
Feb.
2n>
^Mh^g-V-Pth^g"1)11]^)
= (h-PXh^g-1)
-1 -1 -1
= g > lg ')
(x 0 )
(x Q )
-Hh'g-1)
< x o>
and a l s o
(1 29)
'
2(n+l)=X2n- ^ ( n - H ) - ! *
-1 -1
l
= (h
-1*-1
(x 0 ) - Ph(h
-l
-l
- 1 - 1l
g )
(x 0 )
n+1
= (g-P)h(h n +V1 )
= (h
n+1
(xQ)
(x Q ) .
(1.30)
T h e r e f o r e , (h
-1 -1 n
g ) (x n ) c o n v e r g e s to z e r o as n tends to infinity.
Consequently, (1.25) a l s o c o n v e r g e s to z e r o .
Let x , y , x
and y
<x-31>
yn+i = yn-i -
<V
J inductively
Yl
- x x = y_ x - P(y Q ) - x ^ + P(x Q ) = y ^ - x_ x = .
n > 0,
1966
(1.33)
/
= y
- x0
- P (wy 0
, ) + P(x
.
'2n-2
2n~2
2n-l
2n-1
< y7
2n-2
'- x
< 0
2n-2
and
(1.34)
2n+l "
2n+1
= y70
, - x9
, - P (wy , ; ) + P (v x - )
2n-l
2n-l
2n
2n'
>
2 n - l " X 2 n - 1 > B
If x , = h (v x ~ ) , t h e n t h e
'-1
0'
( 1 . 35)
y~
'2n
lim
t e r m s d e c r e a s e to l e s s t h a n
x0 = 0
2n
n ~ * oo
but the
v^
,,
J
2n+l
t e r m s a r e bounded above
( 1 . 36)
lim
Conversely,
the
if
x_ J_1 + 8 = e .
2n+l
n oo
= h(yn), then the
x~
t e r m s s t a y above z e r o but
x~ ,, t e r m s d e c r e a s e b e l o w - P .
2n+l
In v i e w of t h e s y m m e t r i c r o l e s of
and
g in (1.11), it m a y
b e s i m i l a r l y s h o w n t h a t t h e s e q u e n c e d e f i n e d b y ( 1 . 4 ) c o n v e r g e s if
a n d o n l y if x
thatwhenever
= g(xn).
h
and
Since t h i s i s t r u e for a n y
> 0, i t f o l l o w s
s a t i s f y ( 1 . 11) t h e y a r e t h e s a m e .
Therefore,
e x c e p t f o r t h e u n i q u e n e s s of h , T h e o r e m s 1 a n d 2 h a v e b e e n p r o v e n ,
B u t t h e u n i q u e n e s s of
is a l s o s i m i l a r l y p r o v e n s i n c e it m a y l i k e -
w i s e b e s h o w n t h a t if
A
(1.37)
_i
h = P + h
A
for
some homeomorphism
A
= h
_l
h,
t h e n (1 25) c o n v e r g e s if a n d o n l y if
( o)
L e t g, b e a n y h o m e o m o r p h i s m
tested, and choose
(1.38)
for w h i c h T h e o r e m 3 is to be
\ = gl ng 2 np .
Then h
< g
Feb.
n > 0,
g 0 = P + g^ 1 i < P + h^ 1 i = ho
6
Zn
2n-l ~
2n-l
2n
(1. 39)
x
'
and
(1. 40)
v
'
g, ^
2n+l
to
^P +g ^ P + L ^ L
1
s
2n
2n
2n+l
f ( )
and x .
x^ = (h
-1
L
)
(x )
for
n > 0 .
Sequences defined by
x , . = P(x ) - x
n+1
n
n-1
(2. 2)
h + h" 1 = P
In order to establish
additional
1966
9
Then
(hug)"1 = h - 1 n g " 1
(2.3)
and
(hHg)" 1 = h - ^ u g " 1
(2.4)
Proof;
implies
(h
)(y) = x.
(2.5)
Whenever
g(x) < h(x) = y ,
then
h _ 1 ( y ) = x = g _ 1 g(x) < g _ 1 h(x) = g ' V )
(2. 6)
and so
(h"1ng"1)(y).= h-1(y) = x
(2.7)
Similarly, whenever
(2.8)
Replacing h by h"
and g by g
(2.4).
L e m m a 2:
(2.9)
Then
hUg + (hUg)" 1 = h + h " 1
(2.10)
and
hHg + (hflg)" 1 = h + I T 1
(2.11)
Proof:
1^
Dg
-l
,-1,
)(x) = h
(x).
Therefore,
10
Feb.
h + h"1
(2. 12)
= (h + h ^ y n t g + g~1)
<.hUg + h ^ D g " " 1
<(h + h " 1 ) U ( g H-g" 1 )
= h + h~X
, application of L e m m a
If h is r e p l a c e d by h
(2. 9) r e m a i n s i n v a r i a n t .
and g by g
, then
T h e r e f o r e , if t h e s e substitutions a r e applied
(2. 13)
x
_1
[g(t) + g"*(t)] dt
(2.15)
0 < s <x ,
h
~ (s) <
0 < s <x,
g(t) < s < h(t)
0 <t
T h e r e f o r e (see F i g u r e s 1 and 2)
<g~l(x)
and
such
1966
(2. 17)
[h(t) + h _1 (t)] dt -J
j
0
11
[g(t) + g _1 (t)] dt
0
x
=f
[h(t) - g(t)] dt - j
[g _1 (s) - h _1 ( S )] ds
g~V)
- f [h(t) - g(t)] dt - f
0
0
g
=r
(x)
h_1(x)
g _ 1 (x)
with equality if and only if h (x) = g" (x) and h(t) = g(t) for
g" (x) < t < x. But t h e s e l a s t two conditions t o g e t h e r a r e equivalent
to ( 2 . 1 4 ) .
F i g u r e 1:
0
g such that h > g > I and h(x) > g(x).
12
Feb.
-1
-1
(2.9)
if, and only if,
(2.18)
g(x) = e i t h e r h(x) or h
Proof:
(2.19).
Define
fj = ( h U h ' ^ U g U g " 1 )
f 2 = (huh'^nfgug" 1 ) .
Then ( 1 . 9) i m p l i e s that
(2.20).
fn > f_ > I .
and
1966
(2.21)
+ ~zl = h + h " 1
(2.22)
and f
proves
(2.23)
and h a r e both h o m e o m o r p h i s m s ,
h - I nor
e v e r h(x) = g(x) = x.
Corollary:
Given any h o m e o m o r p h i s m
T h e o r e m 7:
Let h be any h o m e o m o r p h i s m .
x > 0,
x
(2.24)
h(x) = x .
Proof:
(2.26)
h, t h e r e e x i s t s one
L e m m a 2 i m p l i e s that
hUh" 1 + ( h U i r V 1 = h + h" 1
14
Feb.
hUh
and I
T h e r e f o r e , (2. 24) is e s t a b l i s h e d ,
(2.27)
for all
f and
g, let e i t h e r
f jg
or
be defined to m e a n that
(2.28)
for all
t,
and
on the domains of
> t .
then this is
equivalent to
(2. 29)
for a l l t .
a h o m e o m o r p h i s m and f
J^a
I.
T h e o r e m 8:
Let a > 2 and P f a l .
Define the sequence of
h o m e o m o r p h i s m s j h | inductively by h = I and
(2. 30)
-= P - h""1
n > 1 .
n+1
n
Then the sequence | h } c o n v e r g e s to a h o m e o m o r p h i s m
h
such
that
h + h"1 = P
(2.2)
and
(2.31)
ht
| a + Va 2 + 4 |
1
n+1
n
h, I r , I and by induction,
Then
1966
15
h'Ur"1 I
(2.32)
and
(2.33)
and the h
n
Also,
h ,, = P - h ' 1 f a I - r " 1 I = r 1 I
n+1
n '
n
n+1
a r e all h o m e o m o r pr h i s m s ,
(2.34)
h 2 = P - I > I = hx
and so by induction,
(2. 35)
n+2
n+1
n
n+1
Since for each x > 0, h (x) is a monotonic n o n - d e c r e a s i n g sequence
of n u m b e r s bounded above by P(x), the sequence j h
J is pointwise
h.
} is i n c r e a s i n g but bounded by a, it m u s t converge to
By continuity,
r = a - r
p is some r e a l n u m b e r > a.
Then
(2.36)
a(jL^)
I ;
Define
v, = 1 and by induction
V U ' P - ^
16
Feb.
T h e n by i n d u c t i o n
(2.38)
Therefore, h ^ v I, w h e r e
(2.39)
v=
Corollary:
I i
Let P = a L
(2.40)
n =
( P
+ V
f ^ - )
Then
^/aWTTlV m
L e m m a 4:
Let
h + h"1 = P
(2.2)
and let
and
be t w o p o s i t i v e r e a l n u m b e r s s u c h t h a t
(2.41)
xQ < h(xQ) = x _ r
Then the s e q u e n c e j x
( 2 . 1)
N
'
} d e f i n e d i n d u c t i v e l y by
, 1 .= P ( x ) - x
n+1
n
n-1
will c o n v e r g e m o n o t o n i c a l l y to
y, w h e r e
y is the l a r g e s t r e a l n u m b e r
such that
(2.42)
h(y) =? y ^ x Q
However,
for no
Proof:
h
is defined as
(2.43)
n > 0 is
= y.
For
n = -|/ or
0,
I.
Therefore,
by i n d u c t i o n , f o r
we have that
= h
n > 0,
,. = P ( x ) - x
..
n+1
n
n-1
'= h (xx ) + h ' ^ xx ) - x
.
n'
n'
n-1
,-n+l,
, ,-n-l,
.
,-n+l. x
= h
(x Q )v + h
( X() ) - h
(x Q )
= h
(x Q )
(x n )> w h e r e
1966
Since h
scribed.
gers
(2.44)
hUh'^p) = q > p .
L e m m a 2 i m p l i e s that
h U h ' 1 + (hUh" 1 )"" 1 = h + h " 1
(2.45)
Define x n as p and x .
} induc-
tively by
(v 2 . 4 6 )
x ^
'
n+1
= h(x ) + h _ 1 ( x ) - x
Then applying L e m m a 4 to
hUh
n-1
However, this c o n t r a -
I c o n s i s t s of i n t e g e r s .
T h e o r e m 11:
x ,
Let P f 2 I
Let x Q and
be two positive r e a l n u m b e r s .
Then a n e c e s s a r y and sufficient condition that the sequence d e -
fined inductively by
(2. 1)
x ,, = P(x ) - x ,
x
'
n+1
n'
n-1
c o n v e r g e s is that h(x ) = x , w h e r e h is the unique h o m e o m o r p h i s m
such that h_> I and
(2. 2)
h + h"1 = P
18
(2-47)
lim x
Feb.
= + oo .
n* oo
Proof:
8 and the c o r o l l a r y to T h e o r e m 6.
c o n v e r g e s monotonically
to z e r o .
Let x , y , x ,
and y
and y , - x , = > 0.
Define j x
<2-48>
= y
yn+i = p^n> - v i
If n = - 1 , then
(2. 49)
- y
y
> n e
and
(2.50)
(x
,. - y
,_) - (x
- y ) > .
s
n+1 ; n + r
n
T h e r e f o r e , by induction, for n > 0,
(2.50)
n' -
(x ,. - y , . ) - (x - y )
n+1
'n+1
n
n
= P(x
) - P(y
) - (x - Jy ) - (x . - y7 . )
x
w
n'
n
n
n'
n~1
n-l
> (x
- y y - (x
, - y
,) >
n-1
n-l
- y
and
x
- y
= (x
x
- y
) -
(x
n 3n'
n-1
> + v(xn - 1, - y' n - l, )'
>e+(n-i)e=ne
If y
= h(y ),
) + (x
n-1
i - y
n-1
i)
n-l'
1966
frl
as the i n t e g e r p a r t of
r,
(3.2)
or equivalently
(3.3)
[ r j * = -1 - [ - r ]
A r e s u l t of S. Beatty,
see R e f e r e n c e [ l J is e s s e n t i a l l y that
m and n, e i t h e r
a(m) - m < n
<f - I) (g - I) = I .
C o n v e r s e l y , let h be any h o m e o m o r p h i s m .
(3.6)
Then
(I + h ) _ 1 + (I + 1 T 1 ) " 1 = I .
20
Feb.
Proof:
f - I = (I - f " 1 ) f = g " 1 f
(3.7)
g - I = (I - g" ) g = f"
But
f and
and
g a r e h o m e o m o r p h i s m s w h i c h a r e i n v e r s e s of e a c h
other.
(I + h ) " 1 + (I + h " 1 ) " 1
(3.8)
h (I 4 - h ) " 1
Let
f and
f"1
(3.4)
.
g be two h o m e o m o r p h i s m s s u c h t h a t
+ g"1 = I
T h e n t h e t w o s e q u e n c e s { [~f(n)l J- a n d { [ " g ( n ) ] * | a r e
Proof:
m,
let
complementary.
n]
be t h e n u m -
b e r of e l e m e n t s of j [ f ( n ) l } w h i c h a r e l e s s t h a n o r e q u a l t o
n
m, and let
b e t h e n u m b e r of s u c h e l e m e n t s of {["gin)"]*.} T h e n
( 3 . 9)
f (n ) < m + 1 <_f (n
+ 1)
g ; ( n 2 ) < m + 1 < g ( n 2 + 1)
Applying
( 3 . 10)
and
n L = f"1
= g
-1
to ( 3 . 9) y i e l d s
f ( n x ) < f"1
and
(m + 1) < f"
-1
(m
+ X
f ( i ^ + 1) = i ^ + 1
-1
) < g
g ( n 2 + 1) = n 2 + 1
A d d i n g t h e t w o p a r t s of ( 3 . 10) t o g e t h e r y i e l d s
(.3. 11)
+ n , <; m + 1 < n
+ n
+ 2
1966
n, 4- n
Therefore,
21
= m
Let
n + [h
Proof:
(n)]*
be any h o m e o m o r p h i s m .
and
n + [ h (n)]
Then the s e -
are complementary.
Apply L e m m a 5 to the t h e o r e m .
b(n) = a(n) + n .
b(n) = a(n) + (k + 1) n ,
k. is some non-negative
integer
a(n)
b(n) =
k+ V(k+1) +4
sh
and
3+k+ V(k+1) +4
) -
T h e o r e m 13 m a y be thought of as a g e n e r a l i z a t i o n of this r e s u l t .
T h e o r e m 13:
Let P m a p i n t e g e r s into i n t e g e r s .
a(l) = 1
(3.17)
n >0
a(n+l) = s m a l l e s t i n t e g e r not
r e p r e s e n t e d by e i t h e r
a(i)
(3.18)
22
'Feb.
Then
a(n) = n + [h" 1 (n)"|
(3.19)
b(n) = n + [h(n)"]
and
,.
( i . io)
Proof:
T h e o r e m . 5 i m p l i e s that
(3.20)
[h(n)J* = [h(n)] .
, (3. 18)
Equation
(3.17) follows from (1.10) and (3.19) and the fact that the P(n)
are
integers.
In R e f e r e n c e (~4J is p r e s e n t e d the following r e s u l t :
i n t e g e r g r e a t e r than 4.
(3.21)
<
-4k
\I7.
2
'k-
a(
b(n) =
Let k be an
and
-4k
n any positive i n t e g e r ,
Let P m a p i n t e g e r s into i n t e g e r s .
exist a homeomorphism
(2.2)
satisfying
h + h" 1 = P .
Let t h e r e
1966
b(n) = P(n) + 2 n - l - a ( n )
a(n) = n + [ h ' ^ n ) ] *
and
b(n) - n + [h(n)] ,
w h e r e h is the unique h o m e o m o r p h i s m such that h > I and (2.2) is
valid.
Pjrjoof:
imply
(3. 25)
Proof:
T h e o r e m 13.
Let x
the sequence j x
(1.4)
x
'
(n)~]*=[~h
sequences
of
Let
I be inductively defined by
x
. - P(x )
xl = x
n+1
n-1
n
Then the f i r s t e l e m e n t of this sequence of i n t e g e r s to be non-
xQ a f x ^ ) - x ^
which in t u r n is equivalent to
(3.27)
(n)"| .
Then
T h e o r e m 10 i m p l i e s that [ h
T h e o r e m 15:
n > 0.
x _ 1 > b(x Q ) - x Q
24
T h e o r e m 5 i m p l i e s that h(x ) ^ x
Feb.
Hence (3.19) i m -
> h(x ).
The
Let x
xn
and x ,
a(n)
and
b(n)
be the s e q u e n c e s of T h e o r e m
be inductivelyJ defined by
J
(2.1)
= P(x ) - x
.
n+1
n
n-1
Then the following four s t a t e m e n t s a r e logically equivalent;
(3.26)
x Q < a(x_ 1 ) - x 1
(3.27)
x _ x > b(xQ) - xQ
(3.28)
|x
\ contains a n o n - p o s i t i v e e l e m e n t
jx
{-is monotonic d e c r e a s i n g
Proof:
T h e o r e m 10 i m p l i e s that h(x ) / x
The
such
that
(4. 1)
a + p - I P ( l ) > 0.
Example 1:
F be defined a s
(4. 3)
F(x) = ( Va 2 +1 - a) x - (3 + ( V a ^ f l - 1) (3/a .
The i n v e r s e of this function is
1966
(4. 4)
25
Define
(4.5)
For
h~ X (x) = x F ( l )
0 < x <1
h _ 1 ( x ) - F(x)
x > 1
to be a h o m e o m o r p h i s m , it is n e c e s s a r y that F ( l ) > 0.
(a + 2p)(l-p)>: ap
or
(1) < 1.
Therefore,
h(x) = F _ 1 ( x )
(4. 7)
and so for
x > 1
n a positive i n t e g e r ,
h(n) = 2an + 2p + h _ 1 ( n )
(4.8)
a(n) = n + [ F ( n ) ]
and
b(n) = n + [ F _ 1 ( n ) ]
a r e c o m p l e m e n t a r y and satisfy
(4.10)
unless
p > 1.
needed.
In the c a s e w h e r e
p > 1, other r e p r e s e n t a t i o n s a r e
However,
h > I is sought
n a positive i n t e g e r
h(n) + h ' V ) = 2an + 2p .
in some c a s e s of E x a m p l e 3, a h o m e o m o r p h i s m is found
26
Feb.
In t h e s e c a s e s , a r e -
p r e s e n t a t i o n of t h e s e s e q u e n c e s is obtained.
T h e o r e m 7 i m p l i e s that a > 1.
positive i n t e g e r s is at l e a s t t h r e e , T h e o r e m 14 i m p l i e s that
a + p = ([h(l)] + [ h _ 1 ( l ) ] * + l)/2 > 1
(4. 12)
E x a m p l e 2:
F o r this e x a m p l e ,
F be defined a s
F(x) = (a V a 2 - 1 ) x + (3 - (3 V a 2 - l / ( a - l )
(4.13)
F 4 ( x ) = (a + V - l ) x + p + P V - l / ( a - l )
(4.14)
Let h
of the
F being u s e d i n s t e a d
(4. 15)
x > 1
n.
If a = 1
a(n) = 2n - 1
and
b(n) = 2n .
E x a m p l e 3:
F o r this e x a m p l e , let P > 1/2
F be defined for x > 1 as
F(x) = ax + P - ^ ( a x + p ) 2 - ( x - p ) 2 -
(4. 17)
= ax + p - y ( a + l ) ( a x 2 - x 2 + 2|3x) -
where
is a constant to be a p p r o p r i a t e l y chosen.
The i n v e r s e to this
1966.
(4. 18)
F ' ^ x ) = a x +..(3 + ^ ( a x + ( 3 ) 2 - ( x - P ) 2 -
It m a y b e . s h o w n t h a t
d F ( x ) / d x > 0 if a n d o n l y if
(x+p) i ( a - l ) x + p a + p j > a 2 / ( a + l )
(4.19)
Furthermore,
if
the c a s e w h e r e
27
= 0, t h e n
p = =-, s e t
F(x)
is p o s i t i v e for all
= 0 and define
.
x > p.
with this
So f o r
F
ac-
c o r d i n g t o (4. 5 ) .
F o r t h i s c a s e , 0 < F ( l ) < 1.
Therefore
h(x) = F _ 1 ( x )
(4. 20)
x > 1 .
A p p l i c a t i o n of T h e o r e m 1 4 a n d i t s c o r o l l a r y i m p l y t h a t t h e s e q u e n c e s
defined by :
a(n) - [ ( a + l ) n + i- - \ ( a 2 - l ) n 2 + ( a + l ) n ]
(4. 21)
and
b(n) = [ ( a + l ) n + \ + f ( a 2 - l ) n 2 + ( a + l ) n ]
2
a r e c o m p l e m e n t a r y and that
(4.22)
In t h e p a p e r t h a t w i l l g e n e r a l i z e W y t h o f f ' s g a m e , r e l a t e d g a m e s w i l l
be p r e s e n t e d w h o s e a n a l y s i s u t i l i z e s t h e s e two c o m p l e m e n t a r y s e quences,
For
p = 1, c h o o s e > 0 b u t s u f f i c i e n t l y s m a l l t h a t
(4.23)
a n d t h a t , ( 4 . 19) i s s a t i s f i e d f o r
x > 2.
Define
(4.24)
h - 1 ( x ) = xF(x)
0 ^ x < l
h(x) = F
for this c a s e .
(x)
for
x > 1,
1 < x < 2
x > 2 .
C o n s e q u e n t l y , h w i l l s a t i s f y (4. 11)
28
< ((3-1) .
Feb.
It m a y be
Consequently,
F for positive
integers.
However,
for c e r t a i n c a s e s , h o m e o m o r p h i s m s will be d e -
and
h(n) = F ' V ) .
So in t h e s e c a s e s ,
and satisfy
(4.26)
i m p l i e s that 8 > - l / 4 .
F(P y) be positive
F(p)
2(CL+1)
- (p-2)2 > 8 .
If 2p is odd, then the left side of (4.28) equals 3/4 modulo one, but
if 2p is even,
Therefore, a necessary
2(a+l) > ( p - 2 ) 2
F u r t h e r m o r e , to a t -
0 <<i
F(p+1) < 1 .
1966
29
Define
' h " 1 ^ ) = xF([P+l])/[p+l]
(4.32)
0<x<[p+l]
h _ 1 (x) = F(x)
Then h '
x>
[p+ll
(4.33)
it follows that
h(x) = F _ 1 (x)
(4. 34)
x > 1
n.
For any
Therefore,
first section.
straightforward generalizations of the techniques of Section I plus applications of Theorem 17. In this section, jtf always refers to a positive real number and Al
Theorem 17:
Let
to its reciprocal.
/I < 1 and let h and g be two homeomor-
(5.1)
Let
h(x) 4 g ( x )
Proof:
(5.2)
f o r
some x > 0.
Similarly, h(t) < g(t) implies (5.3) with the inequality reversed.
30
Feb.
either
(5.4)
h(x) <_x
or e l s e
(5.5)
Define x
as e i t h e r
x or h(x), whichever s a t i s -
fies
(5.6)
For
h ( X l ) < g(Xl)
n > 1, define x
as h
(x, ).
h x
and
( 2n-l> < ^ Z n - l *
h ( x 2 n ) > g(x2n)
n > 0,
y n + 1 = h(y n ) = g t y j
z
n+l=.h(zn)
= g(z
n)
and
'
(5.9)
x
, , <
'
n+1
and when (5.5) holds, then
(5. 10)
<x
< z
< x
< z
< y
1966
(5.11)
(-ju)
n + 1
g(t) - h(t)
dt
^n+1
Z
(-^
y*
y
which r e p l a c i n g
n+1
jtdg(t) - tdh(t) j
n+l
z
n
(-Uf if
y
= (-/u)
h'^vjdv !
z
n_1
g~V)du - f
j g (t) - h(t) j dt
which by induction on n
Z
*1
'
In c a s e of (5.4), define
x 0 as
}"\
(5. 12)
J
0
z] .
Then for e i t h e r c a s e ,
i
hUg - hHg
'
z
oo
(t) dt
'
>ZJ
hUg hng
"
(t) dt
n=ly
n=l
/i1_n
f
y
31
32
Feb.
which i s i m p o s s i b l e .
Corollary:
Then
Replace
by h
, g by g
and
/j by JJ
and
apply the t h e o r e m .
T h e o r e m 18:
(5.13)
Then h = g.
Proof:
T h e o r e m 19:
Let h,
be a h o m e o m o r p h i s m such that h ] P .
n > 0,
h ,. = P +/i h " 1 .
n+1
n
00
Then on each bounded subset of fO, ), <h
(5. 14)
uniformly to h o m e o m o r p h i s m s
'
. [ and { h 0
I 2n-l )
h and g r e s p e c t i v e l y .
> converge
2n I
&
Furthermore,
h < g and
h = P + fj g" 1
(5. 15)
and
g = P + Vh~l
Proof:
,
m-1
is r e p l a c e d by /Lf h
and
is r e p l a c e d by Mo h
T h e o r e m 20:
..
m-1
Let M 1
an(
be a positive n u m b e r .
x ,
Then
defined inductively by
x , . = ~lx
. - nlP(yi
n+1
/* n-1
**
Let y n , x . ,
yQ = x Q and y ^ - x ^ = 8 .
and y
)
n
1966
yn+i = ^ ^ n - i -
33
tf'lp<yn>
Yl
Xj
=M_1e
and
(5
" 19)
and
(5- 20)
^Zn '
2n
<
>
So at m o s t one of the s e q u e n c e s m a y c o n v e r g e ,
T h e o r e m 21:
Let h and g b e t w o h o m e o m o r p h i s m s s u c h t h a t
h = P +/j- h." 1
(5.21)
and
(5.22)
g= P +/lg"1
Then h = g.
Proof:
Identities (5. 21) and (5. 22) imply (5. 1). If /I > 1, then
(x)i a r e both c o n v e r g e n t .
(x) }
But t h e s e s e q u e n c e s satisfy
Since x = y = x, T h e o r e m 20 i m p l i e s that
h(x) = x_ x = y ^ = g(x) .
T h e o r e m 22:
homeomorphism.
inductively by
I > I.
Let g
be any
defined
34
(5.24)
Feb.
gn+1 = P + * g ^
h such that
h = P + Mh""1 .
(5.21)
Proof:
Choose
(5.25)
hx = ^ g l n g 2 ( M i ) n p
Then T h e o r e m 19 is a p p l i c a b l e .
(5.26)
Therefore,
hg = (P +/i g" X )g = Pg + / l l > P +/i I > I .
(5.27)
{ x j be dlefined
inductively by ( 5 0 l 6 ) .
Then a r g u m e n t s analogous to
Since
(5.28)
the sequence y x \ c o n v e r g e s to z e r o .
is defined a s
By s i m i l a r a r g u m e n t s , if x ,
Theorem
g. , i n s e r t
Let
Then h
and
1966
23:
Let
/l 4 1
and
P +JJ I > I.
Then a sequence
g e n e r a t e d b y ( 5 . 16) w i l l c o n v e r g e if a n d o n l y if x
h
is the h o m e o m o r p h i s m
of T h e o r e m 2 2 .
35
= h(x )
Furthermore,
where
if i t d o e s
c o n v e r g e , it will c o n v e r g e to z e r o .
If h ( x ) > x , , t h e n a l l of t h e e v e n l y s u b s c r i p t e d e l e m e n t s of t h e
sequence a r e positive,
b u t a l l b u t a f i n i t e n u m b e r of t h e e l e m e n t s
w i t h odd s u b s c r i p t s a r e n e g a t i v e .
If h ( x ) < x . , t h e n a l l of t h e odd s u b s c r i p t e d
elements are
p o s i t i v e a n d a l l b u t a f i n i t e n u m b e r of t h e e v e n s u b s c r i p t e d e l e m e n t s
are negative.
Proof:
then < x
P +u I > I a n d ( 5 . 21) i m p l y t h a t
\ = sh
h > I. If h ( x Q ) = x
h ( x ) / x , , t h e n ( 5 . 19) a n d ( 5 . 20) m a y r e p l a c e
o r d e r to continue the a r g u m e n t s
When
( 1 . 33) a n d ( 1 . 34) i n
of t h e p a r a g r a p h s c o n t a i n i n g ( 1 . 33)
t h r o u g h ( 1 . 36).
T h e o r e m 24:
L e t /*
be an i n t e g e r ,
i n t o i n t e g e r m u l t i p l e s of \X a n d l e t
let
P +/I I > I.
map integers
Then the
satis-
fying
h = P +/I h " 1
( 5 . 21)
U s e t h e p r o o f p r e s e n t e d i n t h e l a s t p a r a g r a p h of S e c -
t i o n I.
B I B L I O G R A P H Y ON C O M P L E M E N T A R Y S E Q U E N C E S *
1.
Problem
(1926),
3177 ( o r i g . # 3 1 7 3 ) ,
Amer.
Mathe
Monthly,
p . 159 b y S a m u e l B e a t t y ; S o l n s . , v o l .
v o l . 33
34(1927), pp.
159-160.
2.
R. S p r a g u e , E l n Satz u b e r Teilfolgen d e r R e i h e d e r n a t u r l i c h e n
Zahlen.
3.
M a t h e m a t i s c h e A n n a l e n , v o l . 115 ( 1 9 3 8 ) , p p . 1 5 3 - 1 5 6 .
C o u r t e s y of H . W. G o u l d
Problem
36
Feb.
4.
5.
6.
Lambek and M o s e r ,
Dan G. Connell,
Howard D. G r o s s m a n ,
Amer.
E. N. Gilbert,
Myer Angel,
xxxxxxxxxxxxxxx
NOTICE TO A L L SUBSCRIBERS! I I
P l e a s e notify the Managing E d i t o r AT ONCE of any a d d r e s s change.
The P o s t Office D e p a r t m e n t , r a t h e r than forwarding m a g a z i n e s - m a i l e d
third c l a s s , sends them d i r e c t l y to the d e a d - l e t t e r office.
Unless the
(This
and
a p a r t i c u l a r extension.
L a t e r we will c o n s i d e r a l t e r n a t e e x t e n s i o n s .
and (3 = (1 - V ? ) / 2
(3 = e
(-P).
F(z) = 1 / i/5~ (a Z - p Z )
Mz) =
+P
is p e r i o d i c with period
z + pa
a
Jru
z
= a
Ziri
e
pz
Proof.
F(z) and
Deny!
implies a ^ = p
Thus F ( z + 0 ) ) =
Hence
F(0) = 0 = F(co)
.
1//?Q
(Q
- PZ) .
Then p w / 1 u n l e s s a> = 0.
L(z) is s i m i l a r ,
Z e r o e s of F(z) and
T h e o r e m 4.
PP = p z e 2 7 r i = pZ .
a w = 1, so Re(co) = 0.
?
2
2 7T/(ln a + ?r )( 7T - i l n a ) = p .
Assume
w
.= a .
T h e o r e m 2.
p is p e r i o d i c with period
Proof.
Since - l n a = l n ( - p ) , we have
T h e o r e m 3.
Z?Ti/lna = p
L(z).
The z e r o e s of F(z)
are
38
Proof.
Feb.
N o t e t h a t t h i s t h e o r e m i m p l i e s t h e o n l y r e a l z e r o of
F(z)
i s 0.
F ( z ) = 0 i m p l i e s (a/(3)
Setting
= 1= e
, k an integer.
|Zk|7r/v/41n a + V
T h e z e r o e s of L ( z ) a r e
2 ( 2 k + 1) l n a / ( 4 1 n 2 a + 7T 2 )( - 7 r / 2 1 n a + i) = z^,
where
Proof.
k is an integer.
zeroes0
T h e m o d u l i of t h e z e r o e s a r e | 2 k + l | TT/
O b s e r v e t h a t a l l of t h e z e r o e s of L ( z ) a n d F ( z ) a r e o n t h e r a y
= A r c t a n ((-21na)/7r) ~ - 2 0 .
III
Theorem 6.
are at z = n (an
integer),
\
to
/> that is, Fn
_.
r
Proofo
and
F(z) and
L(z)
Ln .
.
_
z
x Qz
-xlna + TTxi
Since y = 0, a = a , p = e
;
Im F(z) = Im L(z) = 0 yields
i / /T -xlna .
- 1/ y5 e
sm TT x = 0 or
-xlna
e
.
~
sm 7Tx = 0.
Hence x = k, k an integer.
(It is not too difficult to show that the only lattice points with real images for
IV
L(z).
L(z).
and
carry over to
F(z) and
a.
c.
b.
d.
L2(z) - 5 F 2 (z) = 4e ? r i Z
1966
e.
F(-z) = -eWlZ
f.
F(z)L(z) = F(2z)
g.
F(z+w) = F ( z - l ) F ( w ) + F(z)F(w+l)
h.
F(3z) = F 3 (z+1) + F 3 ( z ) - F 3 ( z - 1 )
i.
LimF(x)/F(x+l) =
39
F(z)
X > 00
LimF(iy)/F(iy+l) = - p
y->oo
In g e n e r a l , (-1)
in an identity for F
and L c a r r i e s over to
7T iz
e
. The i d e n t i t i e s which do not c a r r y over to F(z) and L(z) a r e
those which only m a k e s e n s e for i n t e g r a l a r g u m e n t . That i s , those
which involve binomial coefficients, e t c .
V
Analytic P r o p e r t i e s of F(z) and L(z).
Note that our convention for
is thus i m m e d i a t e that
F(z) and
(3 i m p l i e s
ln(3.= Wi 4- ln(-(3).
It
(entire functions).
F r o m the Taylor formula, we have for any finite
F(z) = 1 / / 5
L(z)' = I
z,
oo
2 j [ ( l n k a ) a W - (lnkp)pW] / k l j (z-w)k
k=0
and
k=0
Note the r e s u l t s when t h e s e a r e used with w = 0 and z = n or with
w = n-1
and z = n.
Fn= IA/5
X [ ( l n k a ) a n - 1 - ( I n ^ P ^ 1 ] /k!
k=0
F . The H a d a m a r d
n
F a c t o r i z a t i o n t h e o r e m can be used to e x p r e s s L(z) as a canonical
producto As in t h e o r e m 5, let z, r e p r e s e n t a z e r o of L(z). R e n u m b e r z, a s follows:
k
40
Feb.
k = - 1 , 0, - 2 , 1, - 3 , 2, . . .
n = 1, 2, 3, 4, 5, 6, . . .
Now 1z
< z ,,
and
z
= 0(n). It is e a s y to see that
n ' ~" ' n+1 '
' n'
of o r d e r and genus 1 and we have
L(z) = e
fl
(1 -
/z )
n ,
L(z)
is
where
n=l
oo
l~ ln d - l /' z n ) + l / z n 1J
c =- 2
n=l
We s h a l l now d i s c u s s e x c e p t i o n a l v a l u e s of
and
L(z)
a r e entire functions
F(z)
with essential
and L(z).
Since
F(z)
s i n g u l a r i t i e s a t oo,
by
P i c a r d ' s t h e o r e m , t h e y m u s t t a k e on e v e r y v a l u e , e x c e p t p o s s i b l y o n e ,
a n d i n f i n i t e n u m b e r of t i m e s .
Lim L(x-ix) = Lim F(x-ix) = 0
x -> oo
Thus
' x '-> oo
0 is a n a s y m p t o t i c value for
F(z)
and
L(z).
L i m L(x) = L i m F ( x ) =ooand oo
X->00
X - > 00
P have at m o s t
F u r t h e r , if an i n t e g r a l function has
F(z) or
L(z); P a r t II,
Hence
z as
Now 0 is
F(z)
and
bution of p r i m e i m a g e s might yield a r e s o l u t i o n of this c o n j e c t u r e , a l though this p r o b l e m is probably m o r e difficult than the conjecture itself.
P o i s s o n ' s formulae for r e a l and i m a g i n a r y p a r t s of F(z) m i g h t be
useful, but the i n t e g r a l s a r e h o r r i b l e F r e s n e l type i n t e g r a l s ("3] .
A c h a r a c t e r i z a t i o n of the point set c o r r e s p o n d i n g to Im F(z) = 0
should p r e s e n t an i n t e r e s t i n g problerru
Graphs of | z | R e F ( z ) = 0. |. ,
1966
41
Alternate Extensions.
T h e r e a r e an infinite n u m b e r of extensions of F
and
to
n
Consider, for e x a m p l e ,
F x ( z ) = 1/ \ / 5 [ a Z - s i n ( ^ i 7 r ) (-P)2]
n an i n t e g e r .
could be ex-
F 3 (0) = 0
b.
F 3 ( - l + i y ) + F 3 (iy) = F 3 ( l + i y ) ; . y e [ 0 , l ]
c.
F 3 (x) = F 3 (x+i); x e [ - 1 , 1 ]
d.
F 3 ( - l ) = F3(l) = 1
e.
F^(z), analytic on R .
Consider
42
Extend
F3( )
Feb.
F~(n) = F , n an i n t e g e r .
REMARKS
Selection of a p r o p e r extension for
F(n)
REFERENCES
1.
2.
Ibid, p . 284a.
3.
Ibid, pp 0 124-125*
xxxxxxxxxxxxxxx
CORRECTIONS
"Binomial Coefficients, the B r a c k e t Function,
Fibonacci Q u a r t e r l y ,
"Indeed this r e s u l t is
(1 - x ) P = 1 - x P ( m o d p )
! I
Page 245.
In T h e o r e m 3 it is n e c e s s a r y to r e q u i r e
P a g e 257.
P a g e 251o
a. > 0.
1.
We c o n s i d e r polynomials
f (x)
n
such that
(1)
(n = 0, 1, 2, . . . ),
where
(2)
fQ(x) = 0, f ^ x ) = 1 .
The p a r a m e t e r s
(4)
(3)
a, p a r e d i s t i n c t and
a+P = p,
ap = q .
(6)
F(t) = F(t,x) = 2
n(
f (x):
x tn
) /ni
n=0
It is e a s i l y verified that (1), (2) and (6) imply
(7)
A = ( l - t ) 2 D 2 - (p+l)D + q
(D = d/dt)
Thus (7) b e c o m e s
(9)
for
A F(t) = x F ' ( t )
44
Feb.
Consider
A(l-t)~a~k=
M a k i n g u s e of (4) w e find t h a t t h i s r e d u c e s t o
/\(l-tfa~k = k(2a-p+k)(l-t)-a"k
(10)
T h u s , if w e p u t
00
H
< >
(aKxk
ki(2a-P + n
V-*
where
(a), = a ( a + l ) . . . ( a + k - 1 )
we get
oo
xk+1
(a)
A*.(t.a)= 2 -
kKZa-p + lK
k=0
(1 t}
We h a v e t h e r e f o r e
(12)
A <t> ( t , p) = x <&'(t, P) .
It f o l l o w s f r o m (11) t h a t
oo ^
(t a)
'
= E'
xk
(a)
(a+k)n
kTTZa^TT)- E
-HT^
k=0
00
n=0
jc
V^
nT
Z-f k ! ( 2 a - p + l )
k=0
^
n=0
If w e p u t
(14)
, v
k
(a) M x
v ;
n+k
^n
t
*n(x.a) =
k=o
.i
k ! ( 2 an-+pk+ l ) ,
tR
1966
TO FIBONACCI NUMBERS
45
then we have
(15)
$n(x, a)tn/n:
* (t, a) =
n=0
Note that (14) i m p l i e s
(16)
0 n ( x , a) = ( a ) n
where
2.
F,
j F j l a + n ; 2 a - p + l ; x) ,
0 n+2 ( X s
a) =
C l e a r l y $ (x, p) s a t i s f i e s the s a m e r e c u r r e n c e .
combination
q, (x) = A $ (x, a) + B ^ (x, p) ,
w h e r e A, B, a r e independent of n but m a y depend on x, a, p, will
a l s o satisfy (17).
We choose A, B so that
(18)
ip Q (x) = 0,
^(x) = 1
This r e q u i r e s
AC = 0 Q ( x , P),
BC - - $ 0 ( x , a) ,
where
(19)
= f
n(x)
( n = 0, 1, 2, . . . )
We have t h e r e f o r e
A (x, a ) (x, p) - A (x, P)* n (x, a)
(20)
yx) =
T-B
46
Feb.
F(t) = C " 1 U ( t ,
Q)^0(X,
(3) - c D ( t , P ) ^ 0 ( x , a) J ,
f (x).
g ( ) (x)
- 1,
g x (x) = x+p + 1 .
g (x) is a polynomial in x of d e g r e e n.
By exactly the s a m e
(24)
tn
A!
it follows that
# ( t , ^ ( x , P) - <D(t, P)</) 1 (x,a)
(25)
G(t) = -2
x+p U ( t , a)* (x, P) - cj>(t,p)^ (x, a) 1
Q
0
C
2
If the coefficient n'+pn+q o c c u r r i n g in (1) is positive for all
It would be of i n t e r e s t
(26)
(n = 0, 1, 2,
1966
TO FIBONACCI NUMBERS
We n o w p u t
00
+k
*n(x) = -<^>n
ITET
(27)
k=0
00
(28)
(a) x
00
<&(t)= *n
(x)t / n i =
n=0
E ~k^T~ t1"1)"
k=0
It i s e a s i l y v e r i f i e d t h a t
(29)
4> , , ( x ) = ( x + 2 n + 2 a + l ) 0
(x) - ( n + a ) 2 0 (x)
n+c.
n+1
n
(n = 0, 1
and that
A * ( t ) = x4) l (t)
(30)
A s a s e c o n d s o l u t i o n of (26) w e t a k e
* n W=f; T ^ ( W a > - 2 k ) x
(31)
where
(32)
cr x/Q) = 1 + 1 + . . . # +
k
'
a+1
""
a+k-1
<r = cr' (U 1 1 + + . . o + .
k
k* '
2 * k "
We o m i t t h e p r o o f t h a t $ (x) d o e s i n d e e d s a t i s f y ( 2 6 ) .
It i s c o n v e n i e n t t o p u t
(33)
V(t) - ^
n=0
It c a n b e v e r i f i e d t h a t ^ ( t )
^n(x)
a l s o s a t i s f i e s (30).
If w e n o w p u t
(34)
then we have
(n = 0, 1, 2, . . . )
48
(35)
fQ(x) =.0,
f x (x) = 1
Feb.
g (x) = 2
+ ( x +2a+l)f (x)
then
(37)
g Q (x) = 2,
gl
( x ) = x + 2a+l
can
Comptes r e n d u s
1.
The r e c u r r e n c e
INTRODUCTION
r e l a t i o n for
orthogonal
polynomials
q (x)
f(x)
over
is
q (x) a r e even or
RESULTS
F(x)
with
= I x f(x)dx
exist for r = 0, 1, 2, o e e
It is well known, see S z e g o f l ] , that t h e r e e x i s t s a sequence
of polynomials
oee
uniquely d e t e r m i n e d by the
following conditions:
(a) p (x) is a polynomial of p r e c i s e d e g r e e
coefficient of x
(b) the s y s t e m
n in which the
is positive.
p (x) is o r t h o n o r m a l , that is
1 for m = n
P m (x)p n (x)f(x)dx =
0 for m -f
F(x) has only N points of i n c r e a s e , then
F(x)
n = 0, 1, . . . , N - 1 ;
say
ro71
or
50
r r u , in e x i s t , t h e n t h e
Zk+1
n = 0, 1, . . . , k.
The p o l y n o m i a l s
p (x)
n
p (x)
Feb.
of t h e f o r m
(i)
. D
ii-1
mQ
mx
mz
m1
mz
m3,
n+l
2n-l
,
n-1
n+l
where
mQ
n^
m2
m,
m~
m~
n+l
D
,
n-1
m
n
a n d w h e r e t h e l e a d i n g c o e f f i c i e n t s of
p (x)
q (x)
n
t h e n the
q (x)
are
Dn - 1
If w e n o w d e f i n e t h e p o l y n o m i a l s
(2)
.,
n+l
,, . . . . m n
,
n+l
Zn-1
m .0 . . . . mn
n+Z
Zn
q (x)
as
pw
coefficients
a r e always one.
A c c o r d i n g t o S z e g "o |r_ l T] ,
the
following
r e l a t i o n holds for
any
1966
(3)
51
P n (x) = (A n x + B n )p n _ l ( x) - C n p n _ 2 (x), n = 2, 3, . . .
where
n ~
k =\l^
J 3 - 17 " ,
Since k
5_
n-1
TT~T
n ~ An-1
;
C > 0,
n
If the
k k ^
n n-2
k ,
72
n-1
we shall have
n n-2
The relation (3) then becomes
4,> p M =
i+
p w
n- 1
B , let us suppose
that k! is the coefficient of x "
r r
n
n
p ( x ) , w h i l e k i s t h e c o e f f i c i e n t of x
i n p (x) e B y e q u a t i n g
To find
in
t h e c o e f f i c i e n t s of x
o n b o t h s i d e s of (3), w e g e t
k' = A k'
+B k .
n
n n- 1
n n- 1
which gives
k1 ,
(6)
B =
n
*
n-l
*tl
n-l
52
Feb.
But
A =
n
n-1
(7)
n-1
n- 1
n-1
Then
D*
n
kfn = -
JlDD
^
Substituting for
Jyj
<U >
n-1
D D
n
+ -ill
D
n-1
n-
n-2
(9)
n n-1
(8)
(n+l)th
D* ,
n-J.
, I
n-Z
n-l
(x)
n-1
D
n-3
V2(X)
n-2
Thus (9) gives the r e c u r r e n c e r e l a t i o n for orthogonal polynomi a l s a s s o c i a t e d with the density function
m o m e n t s of f(x).
if we set DJT = 0, D ,
1 and D
n =1
= 0.
"1 "
3 '
i i A 2r+l
' *
If the odd o r d e r m o m e n t s a r e all z e r o , we shall prove below in
T h e o r e m 1 that D* v a n i s h e s for n = 1, 2, . . . which will imply that
B = 0 for n = 1, 2, . . . .
n
We shall a l s o p r o v e below in T h e o r e m 2 that, in this c a s e , the
polynomials
or odd.
1966
53
q (x) = xq
(x) ^n
n-1
(10)
D
D n-1 n - i
D
V2(X)
n-2
In p a r t i c u l a r , for n = 0, 1, 2, 3, and 4, the orthogonal polyn o m i a l s a s s o c i a t e d with the s y m m e t r i c a l density function f(x) a r e
obtained as foLlows:
q 0 (x) = 1
q x (x) = x
q 2 (x) = x'
q 3 (x) = x~
2m6'm4
x +
z_
m
4"'m2
m4-m2
We now p r o v e the following two T h e o r e m s :
d.. b e a n (n x n) m a t r i x w h e r e
T h e o r e m 1. Let D
d.. = 0 for
q 4 (x) = x
6'mZm4
2_
Let D* b e a n
Then the d e t e r m i n a n t of D* is z e r o .
(2) n odd.
Case 1
n = 2k (even)
D** =
A.
A.
54
where
D## is a m a t r i x of (2k- l ) x ( 2 k - l )
Feb.
e l e m e n t s and
A, = k x k m a t r i x with z e r o e l e m e n t s
A ? = k x (k-1) m a t r i x with a r b i t r a r y e l e m e n t s
A~ = (k-1) x k m a t r i x with a r b i t r a r y e l e m e n t s
A . = (k-1) x (k-1) m a t r i x with z e r o e l e m e n t s .
If we now take the Laplace expansion of D#* by (k x k) m i n o r s ,
then it can be e a s i l y s e e n that the d e t e r m i n a n t of D## is z e r o , which
will imply that the d e t e r m i n a n t of D* is z e r o .
The r e s u l t a l s o follows if we take
n = 2k+l
(odd)
In this c a s e , we obtain
B
D## =
L
where
Laplace
expansion of D** by (k x k) m i n o r s ,
f(x)
s y m m e t r i c a l about x = 0.
1966
Proof
55
Zr+1
1.
This a d d r e s s is sufficient,
office. )
Fibonacci D i s c o v e r y
$1.50
Fibonacci E n t r y Points I
$1.00
Fibonacci E n t r y Points II
$1.50
$5.00
$5.00
This d e p a r t m e n t e s p e c i a l l y
Pro-
California
00
(i)
show
11
where
(n)
(m,)xm,
>
x;
( n > 1)
m=0
(ii)
Show
^~ =
1-x-x
[ Xia ]
xm
m=0
x
23
l - 2 x - 2 x +x_
' r 1 ^!
[?]
m=0
00
^ ,
X
l - 3 x - 6 x +3x +x
where
ion
^
m=0
rm-i
Let
x m
y>
( _ 1 } h(h+i)/2
j-k. ^h
1966
57
then show
k-1
x
=
f(
xT
r m -i
'm
[kmiJ x ^>
<k^ D
m=0
H-79
Show
4
H-80
4
4
. - 2
n^>
_,, + F + F
. = 2 f2F
+ (-1)1
J
n+1
n
n-1
*- n
Proposed by J.A.H. Hunter, Toronto, Ontario, Canada and Max Rumney, London,
England
Show
L o *? - E <";'' t
r2
J
2r+5
r=0
H-81
'
r=0
nth
t e r m of the sequence
1 , 1 , 3 , 1 , 5 , 3 , 7 , 1 , 9 , 5 , 1 1 , 3, 1 3 , 7 , 1 5 , 1 , 17, 9, 1 9 , 5 , . . .
H-82
Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose,
If
fn(x) = 0 and
0
Tan
H-83
f. (x) = 1,
1
I = V Tan'1 (f
* ..)
Show
i - m + I -i
L ~2"J
\"^
ixt-l
.m-t,
m+l-2t
t=i
where
[xj
California
then show
58
Feb.
SOLUTIONS
T H E L O S T IS F O U N D
H-42
Pa.
Starting with
1, and annexing at each step the s m a l l e s t positive i n t e g e r which p r o duces a set with the stated p r o p e r t y yields the set 1, 2, 3, 5, 8, 13, 21,
30, 39 with sum 122
Is this the b e s t r e s u l t ?
Ohio
ceived to d a t e .
A BETTER P R O B L E M SOLUTION
H-74
of Virginia, Charlottesville,
Va.
n.
f(ii) = [ K l n ( n A + j ]
where
j xl
'
California
1966
59
T h e s o l u t i o n by W i l l i a m D* J a c k s o n a l l u d e d t o s h o w s :
The n u m b e r
of F i b o n a c c i n u m b e r s n o t g r e a t e r t h a n
log[(N + ~ ) / 3 ]
I
i
/ i + VST
log ( )
xxxxxxxxxxxxxxx
A FIBONACCI CROSSWORD PUZZLE
H.W. Gould
West Virginia University
N is the
60
Feb.
ACROSS
2
A k i n d of n u m b e r d i s c o v e r e d by 1 7 D o w n of 22 Down w h i l e s t u d y i n g 50 A c r o s s .
Series (French).
A r i v e r in K a n s a s and M i s s o u r i .
12
S m a l l e s t n u m b e r i n t o w h i c h e a c h of t w o n u m b e r s w i l l d i v i d e .
14
The s m a l l e s t n a t u r a l n u m b e r ( F r e n c h ) .
15
One m o r e t h a n a p e r f e c t
16
O c c u r r e n c e of F i b o n a c c i n u m b e r s i n n a t u r e .
20
lim
square.
(1 + l / n ) n .
21
n*- oo
Device s o m e t i m e s u s e d to g e n e r a t e r a n d o m n u m b e r s .
23
C o m b i n i n g f o r m of " C h i n e s e " .
26
L e t t e r u s e d to d e n o t e a f a m o u s n u m b e r
27
S i g n of d i f f e r e n t i a t i o n .
28
B r o t h e r of A b e l .
29
Iron.
31
32
Girl's name.
33
M e a s u r e of i n t e l l i g e n c e ( t h e y s a y ) .
35
Chemical element.
36
39
41
,, = F + F
is an e x a m p l e .
n+1
n
n-1
Roman emperor.
(eX + e " x ) / 2 .
43
Amateur.
44
Latin connective.
45
Utilizes.
46
S q u a r e r o o t of m i n u s o n e .
47
If n
is a natural n u m b e r ,
then
numbero
49
Bitter Vetch0
50
S t u d i e d i n 1202 A D b y 2 A c r o s s .
51
T h r o w s out.
n+1
sequence.
numbers.
is the
natural
1966
61
DOWN
1
The first d e g r e e .
Battle.
F a m o u s m a t h e m a t i c i a n w h o w r o t e n o v e l s u n d e r the n o m de p l u m e
John Taine.
Definite a r t i c l e ( A r a b i c ) .
Cone-shaped.
A f o r m of t h e c o p u l a .
B a s e of t h e d e c i m a l s y s t e m .
10
Preposition.
11
13
2-1
The function x(l - x - x )
"
" the
In f a c t , a F i b o n a c c i n u m b e r i s t h e
2-1
s e r i e s e x p a n s i o n of x ( l - x - x )
16
Discovered a famous
Fibonacci numbers.
of x
in the p o w e r
Known e a r l i e r
to t h e C h i n e s e .
17
A n o t h e r n a m e of 2 A c r o s s .
18
One of t h e s i m p l e s t w a y s to c o m b i n e n u m b e r s .
19
T h e n u m b e r s 1, 1, 2, 3, 5, 8, . . .
22
A town in Italy.
24
An adjectival
25
A f a m o u s g a m e w h o s e t h e o r y i s b a s e d on t h e b i n a r y s y s t e m .
30
W h a t o n e u s u a l l y d o e s w i t h 13 D o w n i n o r d e r to d i s c o v e r a r e l a -
form a
suffix.
tion.
34
City in ancient S u m e r .
37
C h e m i c a l e l e m e n t d i s c o v e r e d in Y t t e r b y ,
38
A b b r e v i a t i o n f o r a t r i g o n o m e t r i c a l f u n c t i o n ; c o u n t e r p a r t of 41
Sweden.
Across,
39
Man's nickname0
40
A p e r s o n w h o m i g h t l i v e n e a r 40 E . L o n g . , 22 N .
42
To m a k e a s h a r p s i b i l a n t s o u n d .
43
45
A n I n d i a n of t h e S h o s h o n e a n t r i b e s D
48
T h e U n k n o w n Quantity.,
XXXXXXXXXXXXXXX
Lat.
62
Feb.
CORRECTIONS
n n+b+1
Right-hand member should read
(~l)n(K
K - KnK , J
' x a b
0 a+b
K . ,, .
n+a+b
. -c
+ (mq(4r-q-l)/2)
r / ) (4c-d2)
q-r
+4 should read
should read
(-5) q " r
-4.
XXXXXXXXXXXXXXX
(1)
?
2
?
X + Y = 2T ,
2
2
2
2
X = 2ab, Y = a - b , Z = a + b s and a > b.
Since no other
restrictions are placed on a and b this solution of (2) is not necessarily primitive.
When 4x
is added to both sides of (1) we obtain
(3)
9xZ6x+l = y 2 +4x 2
(4)
(3xl) 2 = y 2 +(2x) 2
(5a)
3xl = Z = a 2 + b 2 ,
(5b)
y= Y = a 2 - b 2
and
(5c)
2x = X = 2ab
or
(5d)
x = ab.
or
.
Now let
or
a 2 - 3ab + (b 2 1) = 0 .
(6)
(7)
2
+b
a =
a > b we have
3b + / 9 b 2 - 4(b 2 l)
3b + V 5 b 2 4
*
L =
2
2
63
64
2
If the values of b a r e such that 5b
ways even and t h e r e f o r e
Feb.
/
2
4 = Q then 3b + * 5b 4 is a l -
a is always i n t e g r a l .
to
2
2a = 3b + V5b 4
(8)
number's, L.
Table I
'
n+2'
y=a2-b2
x=ab;
n,
a,
0,
1,
1,
2,
2,
3,
4=3+1
6=3+3
10
21
0
2
3,
5,
10 = 6 + 4
4,
8,
16=9 + 7
24
55
5,
13,
26 = 15 + 11;
65
144
6,
21,
42 = 24 + 18;
168
377
n;
2F
>"= F n F n + 2 ;
!+2"Fn=
2n+2
<Ln+l-Fn+l)/4;=Ln+lFn+l
Note that x +x ,. = F 9 ,~ = F 2
+F2
n n+1
2n+3
n+1
n+2
The solution to equation (1) is
(9)
(10)
,~ = 2(x , +x 9 ) - x
= F 2 , , - ( - l ) n = F n *.
Fn+2
n-1 n - 2 '
n-3
n+1
=
?~F
4-9
4.1F
4.1
i-y
7
n
n+2 n
2n+2
n+1 n+1
n-l
F r o m (9) we have the i n t e r e s t i n g r e c u r r e n t equation
= 2(x
n
+x
n-1
) - x
n-2
,
n-3
n-2
2
1966
5x
2
6x + 1 = y
65
w h i c h c a n be e x p r e s s e d w i t h F i b o n a c c i t e r m s a s :
(ID
F2
The
(-1)
+ 1
-(-l)n=2[F2-(-l)n-
+ F
2_
r (
1 )
n-2].
[ F
2^_(_
or
F2
- F 2 , = ( F 2 - F 2 9) + ( F 2 + F 2 .)
x
n+1
n-1
n
n-27
n
n-17
F9 = F9
- + F0
,
Zn
Zn-Z
Zn-1
F
2n
= F
or
E q u a t i o n (12) c a n b e w r i t t e n a s
2 ( F 2 + F 2 .) = F 2 _ u l + F 2 9
x
n
n-1
n+1
n-2
2F9
. = F2,.+F2 ?
2n-1
n+1
n-2
(13)
interesting
Fibonacci
identity-
t u t e d i n e q u a t i o n (8), 2 a = 3b + ^ 5 b 4 .
2F
or
Another interesting
(14)
and
We h a v e
3F
t o e a c h s i d e of t h e i d e n t i t y
, + F ,, = L
as follows:
n-1
n+1
n
.+F , , =
n-1
n+1
L
n
F +F +F = 3F
n
n
n
n
F +(F +F
, ) + ( F , . + F ) = 3 F +L
n
n
n-1
n+1
n
n
n
(F +F
Fibonacci
,- = 3 F +L
n+Z
n
n
or
2n
a n d t h u s w e h a v e p r o v e d (11) a n d (1 2 ) .
n-3
t e r m s d i s a p p e a r so that
(12)
an
1 )
)+F
1 7
n+1
n+29
= 3F
F ^.,+F ^ = 3 F +L
n+2
n+2
n
n
2 F ^ 9 = 3 F +L
n+Z
n
n
+L
66
Feb.
(14)
v
'
comes
5F F
+ 6(-l)nF F
+1= F
K
n n+2
'
n n+2
2n+2
(15)
K D)
5F2 , F 2 , - 6(-l)nF
.F x l + 1 = F2
n-1 n+1
n-1 n+1
2n
(17)
1
5Lr F 2 + ( - lJ) n l
n
n
-6(l)
fF 2 + ( - l ) n 1
l ,
L n x / J
or
+ 1 = F2 = L2F2
2n
n n
-6(-l)nrF2+(-l)nl
.
' L n * ' -J
+ 1 = L2F2
n *n
+ 1 = L2F2
n n
and b's
is
X = 2ab = 2F F I O
n n+2
Y = a2-b2 = F2
- F 2 = F9 , 9
n+2
n
Lxi-rL
Z = a 2 +b 2 = F 2
+F 2 = 3 F 2 X 1 - 2 ( - l ) n
n+2
n
n+1
'
2
1966
5x
2
6x + 1 = y AND SOME R E L A T E D OBSERVATIONS
Table II
X = 2ab, Y = a 2 - b 2 , Z = a 2 + b 2 , a = F , 0 , and b = F
a,
b,
o,
1,
2,
3,
20
4,
5,
13
6,
21
n+2
-a 2 -b 2 =Y,
2ab=X,
n,
n, F
a +b = z,
a-b,
a+b
1
10
21
29
48
55
73
11
130
144
194
18
336
377
505
13
29
2F F
n n +2'
,F ,
n
[ Fln-^
F2-F2 ,
n n+2
F
Li+l-Fn+l)/2''
2n+2'
n+lFn+r
2 2
F ^ + F ^ +2 5 F n + 1 '
n n
n+1
n+1)A
^ I v
but
F . 1 F . 1 = F2+(-l)n
n+1 n - 1
n
and
F , = 2F2+2(-l)n
n+1 n~1
n
tl
and t h e r e f o r e
F 2 +F2 . = 2F , . F . + F 2
n+1 n-1
n+1 n-1
n
or
F2
-2F , . F ,+F2
= F2
n+1
n+1 n-1
n-1
n
or
(F , . - F , ) 2 = F 2
n+1 n-1
n
F
-F , = F
n+1 n-1
n
F ,. = F +F .
n+1
n
n-1
n-
= 3 F ,, - 2 ( - l ) , is equivalent to
F 2 +F2 , = 3F2+2(-l)n
n+1 n-1
n
2F
(19)
67
or
or
68
+ Y
= Z
Feb.
Z in (18c).
is the following F i b -
onacci identity:
<2o>
c^+i-<"Mn]2
+F
L+2 = i^+i-^nz
_4(_i)nF2
= F 2
l
}
^n+1
2n+2
or
5F4+4(-l)nF2 = F2 = L2F2
'n
n
2n
n n
or
5 F 2 + 4 N( - l ) n = L 2
n
n
a n d t h u s we h a v e p r o v e d the F i b o n a c c i i d e n t i t y e x p r e s s e d by e q u a t i o n
(20).
The following equations r e p r e s e n t f u r t h e r
observations.
(21)
x
'
Z+X = a 2 + 2 a b + b 2 = ( a + b ) 2 = x( F , - + F ) 2 = L 2 ,
'
n+2
n
n+1
(22)
x
'
Z - X = a 2 - 2 a b + b 2 = ( a - b ) 2 = ( F ^-F
'
n+2
Adding t h e s e e q u a t i o n s and dividing by
(23)
v
'
2 we have
Z = v( L 2
+F2
)/2
n+1
n+1"
2 we get
(24)
X=
(L^-F ,,)/^
n+1
n+1 '
a n d m u l t i p l y i n g (21) by (22) w e o b t a i n
(25)
Z2-X2=L^+1F2+1
< 26 >
Y = L
T h e a r e a , A, of t h e
(27)
)2 = F 2
n+1
Py
'
triangle is
A = ab(a2-b2)
Y2
and
..
2
6x + 1 = y AND SOME R E L A T E D OBSERVATIONS 69
2 2
In g e n e r a l , the module, ab(a - b ), is divisible by 6, consequently
when the a p p r o p r i a t e F a n d / o r L t e r m s a r e substituted in the m o d ule the r e s u l t i n g e x p r e s s i o n m u s t likewise be divisible by 6. Thus
the following e x p r e s s i o n s a r e all divisible by 6:
1966
5x
F F , ,%( F 2 - F ? ) ;
n n+2 n+2 n
L[
F 2 - ( - l ) n Jl L["F2 - F 2 T
;
n+1
n+2
nJ
F F
F
L
F F
F
C F n + r<-^ n ] F 2n + 2
0 ^ + 1 - ( - l ) n ] F n + l L n+1
( L 2 - F 2 ) L , . F ,,
n+1 n+1 n+1 n+1
and
(Ln+l-Fn+l)F2n+2
(Ln+rFn+l^Fn+2-Fn)
a r e all divisible byy 24 since ab = s(Ln+1
,, - F n+1
. ,, )' / 4 ;
In the foregoing c o n s i d e r a t i o n s the values of a and b w e r e
r e s t r i c t e d by equation (1) to a = F
~, b = F .
a and b any a r b i t r a r y
STAR GEOMETRY
Pythagoras, Fibonacci and Beard
R.S. Beard
K is the r a t i o of the
i = 0.618034
and that K n = K n + 1 + K n + 2 .
Since each power of K is the sum of its next two higher p o w e r s ,
t h e s e powers form a Fibonacci s e r i e s when a r r a n g e d in t h e i r d e s c e n d ing o r d e r .
The r a d i u s is m a d e the unit of length in the upper right c i r c l e .
2
S i m i l a r t r i a n g l e s divide r a d i u s O - l into s e g m e n t s K and K . This
c o n s t r u c t i o n d e m o n s t r a t e s that each side of a r e g u l a r decagon has the
golden section r a t i o to the r a d i u s of its c i r c u m s c r i b i n g c i r c l e .
The right t r i a n g l e in the lower c i r c l e has sides of 1, 1/2 and
1 / 2 V 5 7 The d i m e n s i o n K with the value of 1 / 2 V 5 - 1 / 2 is the length
of the side of the i n s c r i b e d decagon.
The leaf shaped figure shows one simple way to c o n s t r u c t a five
pointed s t a r of a given width.
The Fibonacci s t a r of s t a r s is proportioned in the ten s u c c e s s i v e
0
9
powers of the golden section from K to K .
70
1966
STAR GEOMETRY.
PYTHAGORAS,
71
72
Feb.
of each r a y of the m a s t e r s t a r is K
long.
3
The bounding pentagon of the c e n t r a l s t a r h a s sides of K length.
Since one diagonal of each of the s m a l l e r s t a r s is a side of the
bounding pentagon of the next l a r g e r s t a r all of the c o r r e s p o n d i n g d i m e n s i o n s of these s u c c e s s i v e s t a r s a r e in golden section r a t i o .
The bounding pentagons of the s u c c e s s i v e s t a r s have s i d e s of
K , K , K
and K
respectively.
8
The r a y s of the s m a l l e s t s t a r s have K edges and base widths
of K 9 .
This figure can be used to d e m o n s t r a t e that any power of the
golden section K , is the sum of a i l of its higher powers from
to K.
The lines connecting the tips of the c e n t r a l s t a r and the c e n t e r s
of the five next s m a l l e r s t a r s form a decagon.
XXXXXXXXXXXXXXX
1.
Introduction
(n > 1)
(2)
B n (x) = (x + 1)
( n > 1)
Bn-1(x) + bn-1(x)
with,
b Q (x) = B Q (x) = 1
(3)
These polynomials
J
and B have a n u m b e r of v e r Jy f a s c i n
n
nating and i n t e r e s t i n g p r o p e r t i e s , and is the subject m a t t e r of this
article.
= B
.
n~l
(5)
and,
x B = b ,, - b
n
n+1
n
Substituting (4)'in (1) we have that B s a t i s f i e s the difference equan
- B
tion,
B n (x) = (x + 2)
B n _ x (x) - B n _ 2 (x)
(n > 2)
with
(6)
B Q (x) = 1,
and B ^ x ) = x + 2
, (x) - b ? (x)
n-1
n-2
with
(7)
b (x) = 1,
and b ^ x ) = x + 1
73
(n > 2)
P R O P E R T I E S OF THE POLYNOMIALS
74
The difference
Feb.
e q u a t i o n (6) m a y be e x p r e s s e d a s t h e c o n t i n u a n t ,
x+2
x+2
x+2
0
0
B (x)
n
(8)
0
1
0
and h e n c e we m a y study the p r o p e r t i e s
continuants.
of
x+2
(n > 1)
by u s i n g t h o s e of t h e
We s h a l l l i s t b e l o w o n l y s u c h of t h o s e p r o p e r t i e s of
w h i c h we w i l l u s e in studying
t h e sr
p o l yj n o m i a l s
b n (x)
(9)
and
b (x)
and in d e r i v i n g r e l a t i o n s b e t w e e n
B n (x):
B
, = B
m+n
m
- B
,
m-1
n-1
B, = B2 - B2 .
2n
n
n-1
(10)
(11)
(12)
(x
+ 2)
v
'
(13)
,
n-1
x(B
- B
)
n - 27 '
B9
, = B~
3 2 - B" 9
2n-l
n
n-2
n
B
2n-1
,xl
r-h+1
(14)
B
B
n-1
n-h+1
,, - B
n+1
n
h-2
n-r- 1
n-1
(15)
2.
dx
B (x) =
(B
n -i l - r )'
(16)
Also we have,
B (x)
(x + 1) b
- b
n-1
1966
DEFINED BY MORGAN-VOYCE
(17)
B ,. - B . = b \ _ + b
n+1
n-1
n+1
n
75
- b
= x (B + B _)
n+1
n-1
n
n-1
By s u c c e s s i v e l y substituting 0, 1, 2, . . . for
in (5) and
adding we have,
n
19
< >
Br=bn+l - 1
0
(20)
V
b = B
LJ r
n
0
Now,
b
,_ = B , - B , 1 = (B B - B
,B , ) - ( B B . -B
, B J)
m+n
m+n m+n~l
m n
m - 1 n-1
m n-1
m - 1 n-Z
= B
(B
m
- B
n
J - (B , - B 9 )
n-1
n-1
n-2
,
m-1
Hence,
(21a)
= B b - B
.b m+n
m n
m - 1 n-1
Interchanging m and n we have,
(21b)
, =b B - b
.B .
m+n
m n
m-1 n-i
Hence,
(22)
x
'
b B - B b = b
,B , - B
,b ,
m n
m n
m - I n-1
m - 1 n-1
b^ = b B - b ..B ,
Zn
n n
n-1 n-1
76
P R O P E R T I E S OF THE POLYNOMIALS
(24a)
x
'
Feb.
b9 xl = b X1B - b B '
2n+l
n+1 n
n n-1
(24b)
= B
..b - B b
.
n+1 n
n n-1
F r o m (7) w e h a v e
(x + 2) b 9 ,, = b 9 , 9 + b 9
2n+l
2n+2
2n
b ^ B L1 - b B + b B
-b
_B
,
n+1 n+1
n n
n n
n-1 n-1
Hence,
(24c)
x
'
(x + 2) b 9 ,. = b , _ B ,. - b
B
,
' 2n+l
n+1 n+1
n-1 n-1
A l s o f r o m (12),
(x + 2) B 9 ,, = B 2 ,, - B 2 ,
'
2n+l
n+1
n-1
Hence,
(x + 2 ) ( B ? , 1 - b 9 ,, ) = B ,, (B , . - b ,, ) - B
, (B
, - b )
'
2n+l
2n+l
n+1 n+1
n+1
n-1
n-1
n-1
Hence,
(25)
'
(x + 2) B 0 = B . _ L 1 B - B
.B
2n
n+1 n
n-1 n-2
F r o m (23) a n d (24) w e d e d u c e t h a t ,
b9 - b9
. = b2 - b2
2n
2n-l
n
n-1
(26)
S u b t r a c t i n g (12) f r o m (25),
(x
+ 2 /)v( B 9 - B 9
J = B (B ,, - B ) - B 9 ( B
. - B
)
v
2n
2n-l
n n+1
n
n - 2 ' n-1
n - 29 '
Hence,
(27a)
(x + 2) b 0 = B b _,__ - B 9 b
.
2n
n n+1
n-2 n-1
(27b)
= b B
- b
_B
n n+1
n-2 n-1
We w i l l n o w d e r i v e a r e l a t i o n s h i p b e t w e e n t h e p o l y n o m i a l s
and
B (x), c o r r e s p o n d i n g to t h e r e l a t i o n (13) f o r
Consider the e x p r e s s i o n ,
B :
b (x)
1966
DEFINED BY MORGAN-VOYCE
77
B - B, 9 b
n-h+1 r
h-Z n - r - 1
(B , x l - B . )B - (B
,
n ~ r - 2 ' h-2
x
x
n-h+1
n-h' r
n-r-1
(B , , , B - B
B, 9 )
(B
B - B
B, 9 )
n-h+1 r
n - r - 1 h-2
n-h r
n - r - Z h-Z
from (13)
B B
n r-h+l ' Bn-lBr-h+l
= (B n - Bn - 1, )'B r-h+1
, , . = bn B r-h+1
, xl
Hence,
b B , ,. = b , , , B - B, 9 b
n r-h+1
n-h+1 r
h-2 n - r - 1
(28a)
Similarly,
(28b)
b B , x l = B , , . b - b, 9 B
,
n r-h+1
n-h+1 r
h-Z n - r - 1
Hence from (28a) and (28b) we get the r e l a t i o n ,
Changing
B r b n-h+1
,
n ,, - B, 0 b
h-2 n - r -n1 = b B , .- - b, 0 B
r n-h+1
h-Z n - r - 1
r to m, h - 2 to m - 4 , and n to m + n + l - r in the above
relation,
(29a)
B b - B
b
= b B - b
B
m n
m-r n-r
m n
m-r n-r
Using the r e l a t i o n (4) in (29a) we d e r i v e the c o r r e s p o n d i n g r e l a t i o n
for B (x) a s ,
n
(30a)
,
n-1
B
B
B
T = B B
,
1
n-r m-r-1
m-r n-r-1
n m-1
These r e l a t i o n s m a y be w r i t t e n n e a t l y in the form of d e t e r m i n a n t s :
m
m-r
b
m-r
m-1
Bm - r
(29b)
and
B
(30b)
n-r
n-r
m- 1 -r
B
n-r
n-1-r!
n- 1
Now putting h = 2, and n = r+1 in equation (28) we get,
(31)
b r B r - b r+1
, . B r - .i = 1
78
P R O P E R T I E S OF THE POLYNOMIALS
,Feb.
B b . - b B , =1
n n-1
n n-1
F r o m (31) and (32) we see that b (x) is p r i m e to b , (x), B (x)
n
^
n-1
n
and B , (x) for i n t e g r a l value's of x. Also, for i n t e g r a l values of x,
B x(x)' is ^p r i m e to B n - l, x(x),
.-.(x).
' bnx(x)' and b n+1
n
By s u c c e s s i v e l y substituting 1, 2, 3, . . for n in (10) and adding, we have
n
V B
L-J
2r
1
Hence,
(33)
E B 2r
B2
n
0
Simi .larly, , using ( 1 1 ) , (23), (24) and (26) we d e r i v e :
n-1
(34)
2r+1
= Bn B n-1.
= b B
n n
0
n
E
(35)
2r
0
n-1
(36)
2r+l
= b B ,
n n-1
0
2n
2
("l)rbr = b
n
(37)
b ' ( x ) = B 1 - B'
n
n
n-
n-2
B :
n- 1i - r
r
.i-L
At
B B
n-Z-r
n-2
n-2 B
*E
y
0
0
= Bn B
-1 0
b (x):
n
(B
r
.
, -B
o) = B , b n + Y^ B b
-r-1
n-r-2'
n-1 0 L*t r n - r - 1
0
1966
D E F I N E D BY M O R G A N - V O Y C E
79
Hence,
n-1
,w = E B
(38)
3.
E x p l i c i t p o l y n o m i a l e x p r e s s i o n s f o r B (x) a n d b (x):
We c a n e s t a b l i s h b y i n d u c t i o n t h a t ,
n
B (x) = V
(ck xk)
n
-*^
n
k=0
where,
(39)
k
n
,n+k+l,
n - ki )'
Now
b x(x) = B v(x) - B
, (x) = V
n
n
n-1
LJ
(39)
n+k,
- z a>
,n+k+l.
* n+k .
n-k ' ' *n-k-l'
0
Therefore we have
bn (x) = V
L-J
(dknk
k,
x )
k=0
where,
d
(40)
k
/n+k
= ( , x)
n
n-k *
T h e e q u a t i o n s (39) a n d (40 a r e e x p l i c i t p o l y n o m i a l e x p r e s s i o n s
for
and
B , a n d s h o w t h a t t h e yJ a r e of d e g r e e
n
We s h a l l n o w d e r i v e a f o r m u l a
for
B (x)
dx
n.
P R O P E R T I E S OF THE POLYNOMIALS
80
Feb.
F r o m (39),
n
/ >\l3n(x)
k+ k+1
dx = ^2 <ckn x k+1
V ) +c
J_i
"
n+1
k+1
i
n-1
k+1
for the e x p r e s s i o n
r
,n+k+3.
(
,n+k+L
"
n-k
->)
(n
B ,, - B , i s ,
n+1
n-1
, ,x k
l
n-k-2
- (n + 1)(coefficient of x
k+1
in j B (x) dx . )
Hence,
(41)
/ /B(x) dx =
n+
i ^1n"1
+c
B (x)
n
and b (x) a r e orthogonal polynomials with r e s p e c t to the weight func-
tions
V 4 - <x + 2>2
and
V { x + 4)/-x
respectively
B (x) = S (x+2)
n
n
and hence,
(42b)
where
4.
Conclusions:
The a r t i c l e deals with the p r o p e r t i e s of a set of polynomials
b (x)
and B (x) defined by (1), (2) and (3) Even though they a r e r e l a t e d to
the Chebyshev p o l y n o m i a l s , the author believes that B (x) and b (x)
a r e of use in the study of ladder n e t w o r k s and hence d e s e r v e a study of
this n a t u r e .
REFERENCES
1.
1966
2.
DEFINED BY MORGAN-VOYCE
S. L. Basin,
81
Math. Magazine,
5.
6.
T. R. O ' M e a r a ,
fer functions,
IEEE.
Trans,
on C i r c u i t Theory, Vol. C T - 1 0 ,
ACKNOWLEDGEMENTS
This w o r k was supported by the National R e s e a r c h Council of Canada,
under Grant No. A - 2 8 7 5 .
2 -V-l).
The mod 100, by a c t u a l calculation for s u c c e s s i v e values of n
(n > 1), we see that 2
- 2
the r e m a i n d e r s . Hence, the "6, 28, 0, 6" sequence of endings for the
product
(2
Number.
So, for all e v e n P e r f e c t N u m b e r s we m u s t have 6 or 28 as "ending. "
xxxxxxxxxxxxxxx
82
2n
Fibonacci n u m b e r s :
Theorem
Give any set of . n + 1 F i b o n a c c i n u m b e r s s e l e c t e d from the set
F , , F~, . . . , F~ , it is always p o s s i b l e to choose two e l e m e n t s from
the n + 1 Fibonacci n u m b e r s such that one divides the o t h e r .
This t h e o r e m will be proved using the following two t h e o r e m s :
T h e o r e m 1:
Give any set of n + 1 i n t e g e r s s e l e c t e d from the set 1, 2, . . . ,
2n, it is always possible to choose two e l e m e n t s from the n..+ 1 i n t e g e r s such that one divides the o t h e r .
Proof:
We shall u s e induction.
c a s e n = 1.
A s s u m e it t r u e for n = k.
If n = k+1, we m u s t prove
If the k+2 i n -
the t h e o r e m is t r u e .
Similarly,
if k+1 of the i n t e g e r s
If only k of
the i n t e g e r s belong to the set 1, 2, . . . , 2k, then the other two i n t e g e r s m u s t be the n u m b e r s
numbers
2k+l
and 2(k+l).
k+1.
By the
e l e m e n t of the s e t .
2(k+l).
divides
2k | and the e l e m e n t
b e r divides the o t h e r .
84
set
1, 2, . . . , 2k
, plus the n u m b e r s
2k+l
Feb.
is the n
Fibonacci number
(F, = 1 , F
l
= 1), then
3.1
REFERENCES
1.
xxxxxxxxxxxxxxx
formation to:
F i b o n a c c i Bibliographical R e s e a r c h Center,
Mathematics Department,
San J o s e State College,
San J o s e , California
whenever
p = 3 (mod 10).
Our p r o b l e m is to d e t e r m i n e ,
which
Z(p)
p = 1 (mod
if p o s s i b l e , the p r i m e s
k > 1.
p for
We conjecture the
following solutions.
k=2:
p=4n+l.
k=3:
k=4:
2
+135y
2
+ 80y
p r i m i t i v e root of k.
A l s o let
(3 = ( k - l ) / 2 .
1 J
C(k,x, y) = n
_i=l
i=l
Ec
Zrx
26-2r
is a
"E Pbip(k' yJ 1
2r
r=0
k > 4:
mp = C(k, 1, \s5)
where
c^g = 0 (mod k ).
The n a t u r e of m is un|3
xi
or
= 1 (mod
86
Feb.
A L E T T E R TO THE EDITOR
It is a s s u m e d that
x=y=l.
Type 1 m e a n s that
P
mp =
.r
L c2r51
r=0
E C2r5
P-r
r=0
47
61
89
107
109
113
139
149
151
199
211
233
263
269
281
307
331
347
353
389
401
421
3
4
4
8
3
4
3
3
4
3
3
5
3
9
3
4
5
7
3
3
3
4
4
4
type
cQ
c2
1
1
2
2
1
1
1
2
1
2
2
2
2
1
1
1
1
2
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
64
16
1
64
1
1
16
64
1
1
1
1
1
1
16
4
9
9
1
16
9
1
4
1
16
64
361
1
25
1
4
25
121
1
196
64
49
49
81
81
361
27
16
16
12
27
64
108
27
144
27
27
585
50
108
153
243
144
250
581
27
27
108
144
64
16
650
c4
c&-
243
125
27
2187
27
125
931
343
125
1966
A L E T T E R TO THE EDITOR
ktype
461
521
541
557
563
619
661
677
691
701
709
743
761
769
797
809
811
821
829
859
881
911
919
953
5
4
5
3
3
9
3
3
3
4
3
5
4
3
3
4
8
4
8
7
4
3
4
3
4
11
5
13
3
9
3
9
967 11
977
3
991 5
2
16
2
1
16
2
2
1
1
64
1
2
2
1
1
2
16
1
2
1
2
2
2
1
1
64
2
2
1
2
1
1
1024
16
2
1 102400
2
1
2
64
1
1
1
1
2
87
10
1
441
961
1
25
1
64
484
121
81
49
125
15 3
4779
1681
1250
25
169
100
441
1
49
289
169
729
576
108
243
64
96
144
76
917
16
27
576
108
784
319
67 6
49
289
9
1
1450
3721
1
784
1
125
850
16
850
108
432
243
27
108
256
432
'12
78.03
125
256
4
1323
343
3146
9438
9317
1331
125
1 169 108
64 361 585
243
27
32768
1 1551 105754 642510 286165 1331
1
1 972
16 3481 1850
125
C o m m e n t s on Table:
1) As can be seen whenever k is an odd prime c,
2) If k is an odd p r i m e
divisible by k~
is divisible by
A L E T T E R TO THE EDITOR
88
Feb.
If anyone is i n t e r -
proper representation.
Since
F 0 ,. = F + F ,_ , and ( F , F , . ) = 1, F - ,. always
J
2n+l
n
n+1
n n+1
2n+l
has a p r o p e r r e p r e s e n t a t i o n .
T h e r e f o r e , by the above t h e o r e m , no
pc r i m e of the form 4k + 3 can divide F - ,, .
2n+l
XXXXXXXXXXXXXXX
If the l o g a r i t h m of the F i b o n a c c i n u m b e r
is plotted a g a i n s t
Thus
(i)
B i n e t ' s formula
(2)
=l-
V"
(^)" - i^J
-^M' i-m)
a(^r
log F n
D e p a r t m e n t of M a t h e m a t i c s
publication.
B-82
D e s c r i b e a function
N.M.
n | I 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
g(n)| | 0 1 1 2 1 2 2 3 1 2
B-83
Show that
B-84
2 .. .
College, Halifax,
+ F _,_. = F , + F
+ 4F
n+4
n+1
n+3
n+2
Canada
College, Halifax,
Canada
B-85
n> 1 .
= f (x) + f (y),
show that z
satisfies
r
r J
r
z , A - (x+y)z l o + (xy-2)z l 0 + (x+y)z
+z = 0 .
3
J
n+4 v y' n+3
n+2
n+1
n
Proposed by Douglas Lind, University
of Virginia, Charlottesville,
Find c o m p a c t e x p r e s s i o n s for:
(a)
FZ2+rZ4
Tl+...
(b)
F^
F2
+ r
F2
90
...
F*n
2n_
Va.
1966
E L E M E N T A R Y P R O B L E M S AND SOLUTIONS
B - 8 6 , Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose,
91
California
yn+3B-87
yn+2
+ 17
Vu
= 0
-yn
N.M.
P r o v e the identity in
n
r[^r-
k=0
j=0
k)
V ]
_^
v<n2+1> +
Xj
j=0
SOLUTIONS
AN N- T U P L E I N T E G R A L
B-70
Denote x
by ex(a).
of Virginia, Charlottesville,
Va.
taining n i n t e g r a l s ,
1
equals
n
ex ( I
ex(
F , , / F 1OJ w h e r e
n + 1 ' n+2
ex(. o .
0
n
ex( /
x dx)dx). . . dx)dx)dx
is the n - t h F i b o n a c c i n u m b e r .
Let I
denote the n - t h
Ir =
such i n t e g r a l .
Then
J x dx = 1/2 '.
0
Let us a s s u m e that I
, = F / F L 1 , in which c a s e
n-1
n n+1
In=/xF/F+1dx={(Fn/Fn+1,+l}-1
0
=
|(F
IP
{ n
which was to be shown.
4- FTT
\ /XT
4-1 ) / F
n+1"
4-1
\ ~
f
n+1;
TT
/T,
_L7/F
n+2'
n+1 *
r
Also solved by R.J. Hursey, Jr; M.N.S. Swamy; Howard L. Walton; David Zeitlin;
92
B-71
E L E M E N T A R Y P R O B L E M S AND SOLUTIONS
Proposed by Douglas hind, University
Find
-2
' -3
+a
+a
- 4
of Virginia, Charlottesville,
+ ...,
where
a = (1 -
Va.
5)/2 .
If S = a
-3
+ a,
-4
+a
Feb.
Penna.
-1
- 2
+ . . . , then a S - 1 + a
+a
+ ...-.
S= l/[a(a - 1)] .
Using a - (1 +V5T/2, we find that S = 1.
If you u s e a = (1 + 5)/2 =
ADDING RABBITS?
B-72
Proposed by J.AM.
California
By the seventh
That i s , Jl = 2 or
4.
By the fourth column, 3B + .1 = R, so B is odd.
1966
93
1 9
Thus
4 9 115 6 8
1 29 4
4 9 115 6 8
9 8
9 8 2 4 5 2 8
D O U B L E SUMS
B-73
P r o v e that
n n
2n+r-2
m=0
p=0
k=0 j=0
where
( ) = 0 for
of Virginia, Charlottesville,
Va.
n < r
Minneapolis,
Minnesota
[n/2]
F n _! = 2 f'ih.
j=0
r < n '+ 1.
Since
n
n
F k = F n + 2 - 1, and ) F k + m = F 2 n + m .
k=0
k=0
we have
2n+r-2
i +
2n+r-2
m=0
p=0
rri=0
94
while for
Feb.
r <_ n + 1, we have
k=0
j=0
k=0
FIBONACCI POLYNOMIALS
B-74
of Saskatchewan,
Regina,
Canada
x Y
f (x) = f
+f
- 1 .
r=l
(b)
, , . = f ,. f ,. + f f .
m+n+1
m+1 n+1
m n
[(n-l)/2]
n-j-l^xn-2j-l
j=o.
where
the n - t h
[(n-l)/2]
j=0
Solution by David Zeitlin,
(a)
Minneapolis,
Minnesota
n = n, we have
n+1
x J ] f" L (x)
(f n+1
,, +' fx - 1)
r w =" xf
^ n +,.1 +' Vi
n
r=l
W ^ n - f l "
1966
(b)
95
"On s u m m a t i o n f o r m u l a s for
/, v
(1)
{2)
1
- xy - y
f
T
-xy-y
f
(3)
,
y
2LJ_
oo
v^
= E
n ^o
= E
n =o
m+n+i y >
m+i
n+1
y >
= E f f y11
M
m n
" y "
n=0
n
Since (1) = (2) + (3), the r e s u l t follows by equating coefficients of y
(c)
We note that
oo
Ux
11
- v
/^w
2 - E 4y*>y
y-y
n =o
and r e c a l l that
1
1-2tz+z
U (t)z n ,
~
n=0
U (t) is the C h e b y s h e v p o l y n o m i a l of the second kind defined by
where
[n/2]
U n (t) =
(-1) J ( y ) ( 2 t )
j=o
(4)
with i
oo
- y-y
n =o
x x
and thus f
(x) = i
oo
.n
TT
,x . n
96
Feb.
= f (1), we obtain
n
|>-l)/2l
*n =
("t1).
of Saskatchewan,
Regina,
Canada
(x) = Y\ f (x) f
(x) for n > 1.
"
r
n-r
r=l
Minneapolis,
Minnesota
-2 = E
l x
- ?-y
n (-)y
n =o
we obtain
52 ^ = 1 - ^ ) ^ 1 1 : yx)yn)
n=0
1-xy-y
n=Q
r=0
f (x) = L
n
A-
(x)f
(x)
' r
n-r
r=0
n-1
= Z f r (x)f n _ r (x)
r=l
XXXXXXXXXXXXXXXX
(since fQ(x)
= 0) .