TOPIC 2
LAPLACE TRANSFORMS
2.1 Definition of the Laplace transform
L { f (t )}  F (s )   f (t )e  st dt
s0
Find the Laplace transform of f (t )  1
Example 1
Solution
 e  st 
1
1
L {1}   1e dt  
  (0  1) 
s
s
  s 0
0
 st
Example 2
Find the Laplace transform of t.
Solution
 e  st
L {t}   te dt   td 
 s
0
0
 st
1  st
te
s
1  st
e dt
s 0
1
1  e  st 
  [0  0]  
s
s   s  0
1
1
(0  1)  2
2
s
s
Find the Laplace transform of e  at .
Example 3
Solution
L {e }   e e dt   e ( a  s )t dt
 at
 at
 st
 e ( s  a ) t 
1
1
(0  1) 
sa
sa
  ( s  a)  0
2.2 Properties of the Laplace transform
2.2.1 Linearity
L { f (t )   g (t )}   L { f (t )}   L ( g (t )}   F ( s)   G ( s)
Example 1
Find the Laplace transform of
 3  7e 3t  6 sin 2t
(a)
(b)
2t  5 cos 3t
Solution
L {3  7e 3t  6 sin 2t}  3 L {1}  7 L {e 3t }  6 L {sin 2t}
(a)
1
2
1
 3   7
6 2
s3
s 4
s
3
7
12
 
 2
s s3 s  4
L {2t  5 cos 3t}  2L {t}  5 L {cos 3t}
(b)
2
5s
 2
2
s
s 9
2.2.2 First shift theorem
If L { f (t )}  F ( s), then L {e  at f (t )}  F (s  a )
Example 1
Use the first shift theorem to find the Laplace transform of
(a)
e 4t t 2
(b)
e 2t t 3
(c)
e 5t sin 3t
(d)
e t cosh 4t
Solution
(a)
Here
a  4 and
f (t )  t 2
Therefore
F ( s) 
2
s3
Hence
L {e 3t t 2 }  F ( s  4) 
2
( s  4) 3
(b)
Here
and f (t )  t 3
a  2
Therefore
F ( s) 
6
s4
Hence
L {e 2t t}  F ( s  2) 
(c)
6
( s  2) 4
Here
and f (t )  sin 3t
a5
Therefore
F ( s) 
3
s 9
2
Hence L {e 5t sin 2t}  F ( s  5) 
(d)
3
( s  5) 2  9
Here
and f (t )  cosh 4t
a  1
Therefore
F ( s) 
s
s  16
2
Hence L {e t cosh 4t}  F ( s  1) 
s 1
( s  1) 2  16
2.3
Laplace transform of derivatives
Let f (t ) be a function of t, and f ' and f " the first and second derivatives of f. The
Laplace trans form of f (t ) is F (s) . Then
L  f '  sF ( s )  f (0)
L  f "  s 2 F (s )  sf (0)  f ' (0)
Generally,
L f
Example 1
(n)
F ( s )  s n1 f (0)  s n 2 f ' (0)  ...  f
( 0)
If L x (t )  X (s ) and x(0)  2, x' (0)  1, write the expressions for
(a)
2 x"3x ' x
(b)
 x"2 x ' x
Solution
( n 1)
L x '  sX ( s )  x (0)  sX ( s )  2
L x"  s 2 X ( s )  sx (0)  x' (0)  s 2 X (s )  2s  1
(a)
(b)
 2 s
L {2 x"3x ' x}  2 s 2 X (s )  2 s  1  3sX (s )  2  X (s )
2
 3s  1 X ( s )  4 s  8
L  x"2 x' x  ( s 2 X ( s )  2s  1)  2( sX ( s )  2)  X ( s )
 (  s 2  2 s  1) X ( s )  2 s  5
2.4
Inverse Laplace transform
Since L { f (t )}  F ( s), we use the symbol L 1 to denote the inverse Laplace transfrom
and we write
f (t )  L 1 F (s )
Therefore, from the Table 3.1, we have
1 
 n! 
 s 
L 1    1, L 1  n1   t n , L 1  2
 cos at ,
2
s
s 
s  a 
and so on. Like L, the operator L 1 can be shown to be a linear operator.
Example 1
Find the inverse Laplace transform of
2
s3
(a)
(b)
16
s3
(c)
7
s4
Solution
(a)
Since
2
2!
 21 ,
3
s
s
we have
2
L 1  3   L 1
s 
(b)
 2!  2
 21   t
s 
Since
16
2!
 8  21 ,
3
s
s
we have
16 
 2! 
L 1  3   8L 1  21   8t 2
s 
s 
(c)
Since
7
7 3!
  31
4
3! s
s
we have
7 1  3!  7 3
7
L 1  4  
L  31   t
3!
s 
s  6
Example 2
Find the inverse Laplace transform of
(a)
3s
s 4
(b)
4
s 9
(c)
s 3
s2  9
(d)
2s  7
s 2  16
Solution
(a)
3s
s
3 2
s 4
s  22
Since
we have
s 
 3s 
1 
L 1  2
 3 cos 2t
  3L  2
2 
s  4
s  2 
(b)
4
4
3
  2
s  9 3 s  32
Since
we have
 4  4 1  3  4
L 1  2
 sin 3t
 L  2
2 
s  9 3
s  3  3
(c)
Since
s3
s
3
 2
 2
2
2
s 9 s 3
s  32
we have
s
3 
 s3 
1 
L 1  2
 2
 L  2
  cos 3t  sin 3t
2
s  32 
s  9
s  3
(d)
Since
2s  7
s
7
4
 2 2
  2
2
2
4 s  43
s  16
s 4
we have
 2s  7 
1
L 1  2
2 L
s
16
 s  7 1
 L
 2
2 
s  4  4
 4 
 2
2 
s  4 
7
 2 cos 2t  sin 2t
4
Example 3
Use the first shift theorem to find the inverse Laplace transform of the
following functions.
(a)
10
( s  2) 4
(b)
7
( s  3) 5
(c)
s 1
( s  1) 2  4
(d)
s2
( s  1) 2  9
(e)
s3
s  6s  13
(f)
2s  3
s  6s  13
Solution
From the first shift theorem, since L {e  at f (t )}  F (s  a ) , then
L 1 {F ( s  a)}  e  at f (t ).
(a)
Note that
10
10
3!
5
3!
5
 
 
 F (s  2) .
4
31
31
( s  2)
3! ( s  2)
3 (s  2)
3
This shows that
a  2 and
F ( s) 
3!
s 31
7
Then
 3! 
f (t )  L 1{F ( s )} =L 1  31   t 3
s 
Therefore
 10  5 1
L 1 
 L
4 
 ( s  2)  3
3!
31 
 ( s  2) 
5
 e  2t t 3
3
(b)
Note that
7
7
4!
7
 
F (s  3)
5
4 1
( s  3)
4! (s  3)
24
This shows that
a  3 and
F ( s) 
4!
s 41
Then
 4! 
f (t )  L 1{F ( s )} =L 1  41   t 4
s 
Therefore
 7  7
4! 
L 1 
L 1 
5
4 1 
 ( s  3)  24
 ( s  3) 
(c)
7 3t 4
e t
24
Note that
s 1
s 1
 F ( s  1)
2
( s  1)  4 (s  1) 2  2 2
This shows that
a 1
and
F ( s) 
s
s  22
2
Then
 s 
f (t )  L 1{F ( s )} =L 1  2
 cos 2t
2 
s  2 
Therefore
 s 1 
1
L 1 
 L
2
 ( s  1)  4 
(d)
s 1
 e t cos 2t
2
2
(
s
1
)
Note that
s2
(s  1)  3
s 1
3
2
2
2
2
2
( s  1)  9 ( s  1)  3
( s  1)  3
( s  1) 2  32
Since
 s2 
s 1
3
1 
L 1 
 L 1 
 L 
2
2
2
2
2 
 ( s  1)  9 
 ( s  1)  3 
 ( s  1)  3 
we need to find the two inverses separately.
For the first inverse,
s 1
 F1 ( s  1)
( s  1) 2  3 2
a  1 ,
and hence
F1 ( s ) 
s
s  32
2
Then,
 s 
f1 (t )  L 1{F1 ( s )} =L 1  2
 cos 3t
2
s  3 
Therefore
s 1
L 1 
 e t cos 3t
2
2 
 ( s  1)  3 
(1)
For the second inverse,
a  1 ,
3
 F2 ( s  1)
( s  1) 2  3 2
and hence
F2 ( s ) 
3
s  32
2
Then
 3 
f 2 (t )  L 1{F2 ( s )} =L 1  2
 sin 3t
2 
s  3 
Therefore
3
L 1 
 e t sin 3t
2
2
 ( s  1)  3 
(2)
Finally, combining the two results (1) and (2), we obtain
 s2 
1
L 1 
 L
2
(
s
1
)
s 1
 L 1
2
2
(
s
1
)
2
2 
 ( s  1)  3 
 e t cos 3t  e t sin 3t
(e)
Completing the square of the denominator,
s3
s3
 F ( s  3)
s  6s  13 (s  3) 2  2 2
2
This shows that
a  3 and
F ( s) 
s
s  22
2
and hence
 s 
f (t )  L 1{F ( s )} =L 1  2
 cos 2t
2 
s  2 
s 3 
s3
1 
L 1  2
 e 3t cos 2t
 L 
2
2 
 s  6s  13 
 ( s  3)  2 
(f)
Since
2s  3
2s  6  3
s3
3
2
 2
 
2
2
2
2
s  6s  13 (s  3)  2
( s  3)  2
2 ( s  3) 2  2 2
2
we have
10
 2s  3 
1
L 1  2
2 L
s
6
s
13
 3 1
s 3
 L
2
2 
 ( s  3)  2  2
2
2 
 ( s  3)  2 
3
 2e 3t cos 2t  e 3t sin 2t
2
2.5 Using partial fractions to find the inverse Laplace transform
Example 1
(a)
Find the inverse Laplace transform of the following expressions.
4s  1
s2  s
(b)
3s  4
s  3s  2
2
Solution
(a)
We express the given expression as partial fractions:
4s  1
4s  1
A
B
 
2
s  s s ( s  1) s s  1
4s  1  A( s  1)  Bs
Taking s  0 : A  1
Taking s  1 : B  3
Hence
4s  1 1
3
 
2
s  s s s 1
and therefore
 4s  1 
t
L 1  2
  1  3e
s  s
(b)
We express the given expression as partial fractions:
3s  4
3s  4
A
B
s  3s  2 (s  1)(s  2) s  1 s  2
2
3s  4  A( s  2)  B( s  1)
Taking s  1 :
A 1
11
B2
Taking s  2 :
Hence
3s  4
1
2
( s  1)(s  2) s  1 s  2
and therefore
 3s  4 
t
2 t
L 1 
  e  2e
 ( s  1)(s  2) 
2.6 Solving linear constant coefficient differential equations using the Laplace
transform
Example 1
Solve the differential equation
dx
 3x  0
dt
x(0)  2
Solution
Taking the Laplace transform of the equation, we have
 dx
L   3 x   L 0
 dt
 dx 
L    3 L x  0
 dt 
sX ( s)  2  3 X ( s)  0
X (s ) 
2
s3
Taking the inverse Laplace transform, we obtain
 2 
L 1 X ( s )  L 1 
 s  3
x ( t )  2e 3 t
12
Example 2
Solve the differential equation
dx
 2 x  4e 2 t
dt
x(0)  1
Solution
Taking Laplace transforms and incorporating the initial condition x(0)  1
leads to
sX ( s )  1  2 X ( s ) 
X (s) 
4
s2
s2
( s  2) 2
Resolving this rational term into partial fractions gives
s2
1
4
2
( s  2)
s  2 (s  2) 2
That is
X (s) 
1
4
s  2 (s  2) 2
Taking the inverse Laplace transform, we obtain
4 
 1 
1 
L 1 X ( s )  L 1 
 L 
2
s  2
 ( s  2) 
The first inverse Laplace transform on the right-hand side,
L
 1 
2t
e
 s  2
(1)
We use the first shift theorem to obtain the inverse Laplace transform of
the second expression:
L
 4 
 4te 2t
2 
 ( s  2) 
(2)
Combining the inverses (1) and (2), the desired solution is
x(t )  (1  4t )e 2t
13
Example 3
Solve
y" y  t 2
y (0)  2
y ' (0)  0
Using the Laplace transform.
Solution
Taking Laplace transforms and incorporating the initial conditions leads to
s 2 Y ( s )  2s  Y (s )  
2
s3
Rearranging for Y (s),
( s 2  1)Y ( s )  
Y ( s) 
2
 2s
s3
2( s 4  1) 2( s 2  1)(s 2  1)
s3
s3
2( s 2  1)
s3
2 2
s s3
Taking the inverse Laplace transform gives
y (t )  2  t 2
Example 4
Solve the differential equation
d 2x
dx
 5  6 x  2e t
2
dt
dt
subject to the initial conditions x  1 and x'  0 at t  0.
Solution
Taking Laplace transforms
[s 2 X (s )  sx (0)  x' (0)]  5[ sX (s )  x(0)]  6 X ( s ) 
2
s 1
which on incorporating initial conditions and rearrangement gives
( s 2  5 s  6) X ( s ) 
2
s5
s 1
That is
14
X (s) 
2
s5
( s  1)( s  2)( s  3) (s  2)(s  3)
Resolving the rational terms into partial fractions gives
X (s) 
1
1
1
s 1 s  2 s  3
Taking inverse transform gives the desired solution
x ( t )  e  t  e 2 t  e 3 t
2.7 Sample problems related to engineering applications using Laplace transforms:
Problem 1
A first order differential equation involving current i in a series R-L circuit is given by:
di
E
 5i 
and i  0 at time t  0 . Use Laplace transforms to solve for i(t ) when:
dt
2
a) E = 20
b) E = 40e 3t
c) E  50 sin 5t
Answers:
a) i (t )  2  2e 5t
b) i (t )  10e 3t  10e 5t
c) i (t ) 
5  5t 5
5
e  cos 5t  sin 5t
2
2
2
Problem 2
The equation
d 2 i R di
1
i  0 represents a current i flowing in an electrical circuit
dt 2 L dt LC
containing resistance R, inductance L and capacitance C connected in series. Let R = 200
ohms, L = 0.20 henry and C = 20x10-6 farads. Use Laplace transforms to solve the
equation for i given the boundary conditions that when t = 0, i = 0 and
di
 100 .
dt
Answer: 100te 500 t
15