Codeware, Inc.
Sarasota, FL, USA
www.codeware.com
COMPRESS Pressure Vessel Design Calculations
Item:
Split Stream Dearator
Vessel No:
V-1234
Customer:
Magaladon Oil Venture
Contract:
C-45490-R56
Designer:
John Doe
Date:
April 1, 2001
You can edit this page by selecting Cover Page settings... in the report menu.
Table of Contents
General Arrangement Drawing..............................................................................................................................1/142
Deficiencies Summary............................................................................................................................................2/142
Nozzle Schedule......................................................................................................................................................3/142
Nozzle Summary.....................................................................................................................................................4/142
Pressure Summary.................................................................................................................................................5/142
Revision History......................................................................................................................................................6/142
Settings Summary...................................................................................................................................................7/142
Radiography Summary...........................................................................................................................................9/142
Thickness Summary.............................................................................................................................................10/142
Weight Summary...................................................................................................................................................11/142
Long Seam Summary...........................................................................................................................................12/142
Hydrostatic Test....................................................................................................................................................14/142
Vacuum Summary.................................................................................................................................................15/142
Liquid Level bounded by Welded Cover #1........................................................................................................16/142
F&D Head #1..........................................................................................................................................................17/142
Straight Flange on F&D Head #1..........................................................................................................................24/142
Cylinder #1.............................................................................................................................................................36/142
Cylinder #2.............................................................................................................................................................49/142
Cylinder #3.............................................................................................................................................................62/142
Cylinder #4.............................................................................................................................................................75/142
Nozzle #1 (N1)........................................................................................................................................................97/142
Support Skirt #1..................................................................................................................................................113/142
Skirt Base Ring #1...............................................................................................................................................119/142
Welded Cover #1.................................................................................................................................................131/142
Seismic Code.......................................................................................................................................................133/142
Wind Code...........................................................................................................................................................138/142
General Arrangement Drawing
1/142
Deficiencies Summary
Deficiencies for Welded Cover #1
UW-11(a): Full radiography required on longitudinal seam.
Warnings Summary
Warnings for Cylinder #1
Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)
Warnings for Cylinder #2
Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)
Warnings for Cylinder #3
Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)
Warnings for Cylinder #4
Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)
Warnings for Nozzle #1 (N1)
Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)
The limits of reinforcement of Nozzle #1 (N1) fall off of Cylinder #4 on to Welded Cover #1. You may address this
issue by relocating the nozzle or specifying a user defined radial limit of reinforcement by clicking on the Calculation
Options button in the Detailed Nozzle Design dialog. (warning)
Warnings for Straight Flange on F&D Head #1
Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)
ASME B16.5 / B16.47 Flange Warnings Summary
Applicable
Warnings
Flange
Nozzle #1 (N1)
No.
1
Warning
For Class 150 flanges, ASME B16.5 para. 5.4.3 recommends gaskets to be in accordance with Nonmandatory
Appendix B, Table B1, Group No. I.
2/142
Nozzle Schedule
Specifications
Nozzle
mark
Identifier
Size
N1
Nozzle #1
24 OD x 0,375
Materials
Impact
Tested
Normalized
Fine Grain
Nozzle
SA-240 316L
No
No
No
Pad
SA-240 316L
No
No
No
Flange
Blind
NPS 24 Class 150
WN A105
NPS 24
Class 150
A105
3/142
Nozzle Summary
Dimensions
Nozzle
mark
OD
(in)
tn
(in)
N1
24
0,375
Req tn
(in)
0,0625
Reinforcement
Pad
Shell
A1?
Yes
A2?
Yes
Nom t
(in)
Design t
(in)
0,105
0,0577
User t
(in)
Width
(in)
tpad
(in)
0,125
0,105
Corr
(in)
Aa/Ar
(%)
100,0
Definitions
tn
Nozzle thickness
Req tn
Nozzle thickness required per UG-45/UG-16
Nom t
Vessel wall thickness
Design t
User t
Required vessel wall thickness due to pressure + corrosion allowance per UG-37
Local vessel wall thickness (near opening)
Aa
Area available per UG-37, governing condition
Ar
Area required per UG-37, governing condition
Corr
Corrosion allowance on nozzle wall
4/142
Pressure Summary
Component Summary
P
Design
(psi)
Design
(F)
F&D Head #1
0,01
Straight Flange on F&D Head #1
MAWP
(psi)
MAP
(psi)
MAEP
(psi)
100
10,12
11,34
1,34
0,01
100
19,17
20,44
Cylinder #1
0,01
100
16,41
Cylinder #2
0,01
100
Cylinder #3
0,01
100
Cylinder #4
0,01
Welded Cover #1
0,01
Identifier
Nozzle #1 (N1)
0,01
MDMT
(F)
MDMT
Exemption
Impact
Tested
100
-320
Note 1
No
0,32
100
-320
Note 2
No
20,44
0,32
100
-320
Note 3
No
13,81
20,44
0,32
100
-320
Note 4
No
11,21
20,44
0,32
100
-320
Note 5
No
100
8,61
20,44
0,32
100
-320
Note 5
No
100
0,56
12,61
12,61
100
-320
Note 5
No
100
4,58
16,06
0,15
external
(F)
100
-55
Nozzle
Note 6
No
Pad
Note 5
No
Chamber Summary
Design MDMT
-20 F
Rated MDMT
-55 F @ 0,56
psi
MAWP hot & corroded
0,56 psi @ 100
F
MAP cold & new
11,34 psi @ 70
F
MAEP
0,15 psi @ 100
F
Notes for MDMT Rating
Note #
Exemption
1.
Impact test exempt per UHA-51(g) (coincident ratio = 0,3144)
2.
Impact test exempt per UHA-51(g) (coincident ratio = 0,0715)
3.
Impact test exempt per UHA-51(g) (coincident ratio = 0,1795)
4.
Impact test exempt per UHA-51(g) (coincident ratio = 0,2812)
5.
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320F
6.
Flange rating governs:
Flange rated MDMT per UCS-66(b)(3) = -155F (Coincident ratio = 0,04)
Bolts rated MDMT per Fig UCS-66 note (c) = -55F
Details
5/142
Revision History
Revisions
No.
Date
9/22/2015
Operator
Notes
mnmeil New vessel created ASME Section VIII Division 1 [COMPRESS 2015 Build 7500]
6/142
Settings Summary
COMPRESS 2015 Build 7500
ASME Section VIII Division 1, 2013 Edition
Units
U.S. Customary
Datum Line Location
0,00" from bottom seam
Vessel Design Mode
Get Thickness from Pressure
Minimum thickness
0,0625" per UG-16(b)
Design for cold shut down only
No
Design for lethal service (full radiography required)
No
Design nozzles for
Design P, find nozzle MAWP and
MAP
Corrosion weight loss
100% of theoretical loss
UG-23 Stress Increase
1,20
Skirt/legs stress increase
1,0
Minimum nozzle projection
6"
Juncture calculations for > 30 only
Yes
Preheat P-No 1 Materials > 1,25" and <= 1,50" thick
No
UG-37(a) shell tr calculation considers longitudinal stress
No
Cylindrical shells made from pipe are entered as minimum thickness
No
Nozzles made from pipe are entered as minimum thickness
No
Pipe caps are entered as minimum thickness
No
Butt welds
Tapered per Figure UCS-66.3(a)
Disallow Appendix 1-5, 1-8 calculations under 15 psi
No
Hydro/Pneumatic Test
Shop Hydrotest Pressure
1,3 times vessel MAWP
Test liquid specific gravity
1,50
Maximum stress during test
90% of yield
Required Marking - UG-116
UG-116(e) Radiography
RT4
UG-116(f) Postweld heat treatment
None
Code Cases\Interpretations
Use Code Case 2547
No
Use Code Case 2695
No
Apply interpretation VIII-1-83-66
Yes
Apply interpretation VIII-1-86-175
Yes
7/142
Apply interpretation VIII-1-01-37
Yes
Apply interpretation VIII-1-01-150
Yes
Apply interpretation VIII-1-07-50
Yes
No UCS-66.1 MDMT reduction
No
No UCS-68(c) MDMT reduction
No
Disallow UG-20(f) exemptions
No
UG-22 Loadings
UG-22(a) Internal or External Design Pressure
Yes
UG-22(b) Weight of the vessel and normal contents under operating or test
conditions
Yes
UG-22(c) Superimposed static reactions from weight of attached equipment
(external loads)
No
UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs
Yes
UG-22(f) Wind reactions
Yes
UG-22(f) Seismic reactions
Yes
UG-22(j) Test pressure and coincident static head acting during the test:
No
Note: UG-22(b),(c) and (f) loads only considered when supports are present.
8/142
Radiography Summary
UG-116 Radiography
Longitudinal Seam
Component
Top Circumferential Seam
Bottom Circumferential Seam
Mark
Radiography / Joint
Type
Category
(Fig
UW-3)
Radiography / Joint
Type
N/A
N/A
None UW-11(c) / Type
1
None
None UW-11(c) / Type
1
None UW-11(c) / Type
1
None UW-11(c) / Type
1
None
None UW-11(c) / Type
1
None UW-11(c) / Type
1
None UW-11(c) / Type
1
None
Cylinder #3
None UW-11(c) / Type
1
None UW-11(c) / Type
1
None UW-11(c) / Type
1
None
Cylinder #4
None UW-11(c) / Type
1
None UW-11(c) / Type
1
None UW-11(c) / Type
1
None
Welded Cover #1
None UW-11(c) / Type
1
None UW-11(c) / Type
1
N/A
N/A
None
Radiography / Joint
Type
Category
(Fig
UW-3)
None UW-11(c) / Type
1
Cylinder #1
Cylinder #2
Category
(Fig
UW-3)
F&D Head #1
Nozzle
Nozzle #1 (N1)
Longitudinal Seam
A
Nozzle Flange
ASME B16.5/16.47 flange attached to
Nozzle #1 (N1)
User Defined (E =
1,00)
Nozzle to Vessel Circumferential
Seam
D
Longitudinal Seam
N/A
Seamless No RT
N/A / Type 7
Flange Face
N/A
UG-116(e) Required Marking:
N/A / Gasketed
Nozzle free end Circumferential
Seam
C
Full UW-11(a) / Type 1
RT1
Nozzle to Flange Circumferential
Seam
C
Full UW-11(a) / Type 1
RT1
RT4
9/142
Thickness Summary
Component Data
Component
Identifier
Material
Diameter
(in)
Length
(in)
Nominal t
(in)
Design t
(in)
Total Corrosion
(in)
Joint
E
Load
F&D Head #1
SA-240 316L
120 ID
21,5149
0,105*
0,0335
0,70
Internal
Straight Flange on F&D Head #1
SA-240 316L
120 ID
0,105
0,0264
0,70
External
Cylinder #1
SA-240 316L
120 ID
51
0,105
0,0264
0,70
External
Cylinder #2
SA-240 316L
120 ID
48
0,105
0,0341
0,70
Internal
Cylinder #3
SA-240 316L
120 ID
48
0,105
0,0475
0,70
Internal
Cylinder #4
SA-240 316L
120 ID
48
0,105
0,0608
0,70
Internal
Welded Cover #1
SA-240 316L
120 ID
5,75
1,625*
1,5891
0,70
Internal
Support Skirt #1
SA-240 304L
120,21 ID
40
0,25
0,0668
0,55
Seismic
*Head minimum thickness after forming
Definitions
Nominal t
Vessel wall nominal thickness
Design t
Required vessel thickness due to governing loading + corrosion
Joint E
Longitudinal seam joint efficiency
Load
Internal
Circumferential stress due to internal pressure governs
External
External pressure governs
Wind
Combined longitudinal stress of pressure + weight + wind
governs
Seismic
Combined longitudinal stress of pressure + weight + seismic
governs
10/142
Weight Summary
Weight (lb) Contributed by Vessel Elements
Metal
New*
Component
F&D Head #1
Operating Liquid
Piping
Insulation
Metal
Lining
Insulation
+ Liquid
Supports
Corroded
New
Corroded
Test Liquid
New
Corroded
Surface Area
ft2
441,8
441,8
9 435
9 435
9 435
9 435
104
586
586
31 231
31 231
31 231
31 231
134
Cylinder #1
Cylinder #2
551,5
551,5
29 393,9
29 393,9
29 393,9
29 393,9
126
Cylinder #3
551,5
551,5
29 393,9
29 393,9
29 393,9
29 393,9
126
123
537,7
537,7
29 401,1
29 401,1
29 401,1
29 401,1
Welded Cover #1
Cylinder #4
5 093,2
5 093,2
2 452,6
2 452,6
2 452,6
2 452,6
94
Support Skirt #1
1 083,7
1 083,7
211
Skirt Base Ring #1
TOTAL:
348
348
9 193,4
9 193,4
131 307,5 131 307,5 131 307,6 131 307,6
37
954
*Shells with attached nozzles have weight reduced by material cut out for opening.
Weight (lb) Contributed by Attachments
Component
Nozzles &
Flanges
Body Flanges
New Corroded
Packed Ladders &
Beds
Platforms
Trays
Tray
Supports
Rings & Vertical Surface Area
Clips
Loads
ft2
New
Corroded
F&D Head #1
Cylinder #1
Cylinder #2
Cylinder #3
Cylinder #4
753,4
753,4
14
Welded Cover #1
Support Skirt #1
TOTAL:
753,4
753,4
14
Vessel Totals
Operating Weight (lb)
Empty Weight (lb)
Test Weight (lb)
Surface Area (ft 2)
Capacity** (US gal)
New
Corroded
141 254
141 254
9 947
9 947
141 254
141 254
969
10 498
10 498
**The vessel capacity does not include
volume of nozzle, piping or other
attachments.
Vessel Lift Condition
Vessel Lift Weight, New (lb)
Center of Gravity from Datum (in)
9 947
26,9749
11/142
Long Seam Summary
Shell Long Seam Angles
Component
Seam 1
Seam 2
Cylinder #1
228,9828
Cylinder #2
30
258,9828
Cylinder #3
228,9828
Cylinder #4
30
258,9828
Support Skirt #1
228,3079
Shell Plate Lengths
Component
Starting
Plate 1
Angle
Plate 2
Cylinder #1
240"
137,321"
Cylinder #2
30
240"
137,321"
Cylinder #3
240"
137,321"
Cylinder #4
30
240"
137,321"
Support Skirt #1
240"
138,4362"
Notes
1) Plate Lengths use the circumference of the vessel based on the mid diameter of the components.
2) North is located at 0
12/142
Shell Rollout
13/142
Hydrostatic Test
Horizontal shop hydrostatic test based on MAWP per UG-99(b)
Gauge pressure at 70F
=
1,3*MAWP*LSR
= 1,3*0,56*1
= 0,73 psi
Horizontal shop hydrostatic test
Identifier
Local test Test liquid UG-99(b) UG-99(b)
pressure static head
stress
pressure
(psi)
(psi)
ratio
factor
F&D Head #1 (1)
7,574
6,845
1,30
Straight Flange on F&D Head #1
7,574
6,845
1,30
Cylinder #1
7,574
6,845
1,30
Cylinder #2
7,574
6,845
1,30
Cylinder #3
7,574
6,845
1,30
Cylinder #4
7,574
6,845
1,30
Welded Cover #1
7,574
6,845
1,30
Nozzle #1 (N1)
1,071
0,342
1,30
(1) F&D Head #1 limits the UG-99(b) stress ratio.
(2) The zero degree angular position is assumed to be up, and the test
liquid height is assumed to the top-most flange.
The field test condition has not been investigated.
14/142
Vacuum Summary
Largest Unsupported Length Le
Elevation
Component
Line of Support
above Datum
(in)
Length Le
(in)
F&D Head #1
218,5149
N/A
1/3 depth of F&D Head #1
204,1366
N/A
Straight Flange on F&D Head #1 Top
197
208,2616
Straight Flange on F&D Head #1 Bottom
195
208,2616
Cylinder #1 Top
195
208,2616
Cylinder #1 Bottom
144
208,2616
Cylinder #2 Top
144
208,2616
Cylinder #2 Bottom
96
208,2616
Cylinder #3 Top
96
208,2616
Cylinder #3 Bottom
48
208,2616
Cylinder #4 Top
48
208,2616
Cylinder #4 Bottom
208,2616
Welded Cover #1
-4,125
N/A
Welded Cover #1
-5,75
N/A
15/142
Liquid Level bounded by Welded Cover #1
ASME Section VIII Division 1, 2013 Edition
Location from Datum (in)
Operating Liquid Specific Gravity
218,4099
1,5
16/142
F&D Head #1
ASME Section VIII Division 1, 2013 Edition
Component
F&D Head
Material
SA-240 316L (II-D p. 74, ln. 9)
Attached To
Cylinder #1
Impact
Tested
Normalized
Fine Grain
Practice
PWHT
Optimize MDMT/
Find MAWP
No
No
No
No
No
Design
Design
Pressure (psi) Temperature (F)
Internal
0,01
100
External
0,01
100
Design
MDMT (F)
-20
Static Liquid Head
Condition
Ps (psi)
Hs (in)
SG
Operating
1,16
21,4099
1,5
Test horizontal
6,85
126,4175
1,5
Dimensions
Inner Diameter
120"
Crown Radius L
120"
Knuckle Radius r
9"
Minimum Thickness
0,105"
Corrosion
Inner
0"
Outer
0"
Length Lsf
2"
Nominal Thickness tsf
0,105"
Weight and Capacity
Weight (lb)1
Capacity (US gal)1
New
441,77
754,34
Corroded
441,77
754,34
Radiography
Category A joints
None UW-11(c) Type 1
Head to shell seam
None UW-11(c) Type 1
includes straight flange
17/142
Results Summary
Governing condition
UG-16
Minimum thickness per UG-16
0,0625" + 0" = 0,0625"
Design thickness due to internal pressure (t)
0,0335"
Design thickness due to external pressure (te)
0,0091"
Maximum allowable working pressure (MAWP)
10,12 psi
Maximum allowable pressure (MAP)
11,34 psi
Maximum allowable external pressure (MAEP)
1,34 psi
Rated MDMT
-320F
UHA-51 Material Toughness Requirements
Stress ratio = tr*E* / (tn - c) = 0,0413*0,8 / (0,105 - 0) =
0,3144
Impact test exempt per UHA-51(g) (coincident ratio = 0,3144)
Rated MDMT =
-320F
Material is exempt from impact testing at the Design MDMT of -20F.
Factor M
M = 1/4*[3 + (L / r)1/2]
Corroded M = 1/4*[3 + (120 / 9)1/2]
1,6629
M = 1/4*[3 + (120 / 9)1/2]
1,6629
New
Design thickness for internal pressure, (Corroded at 100 F) Appendix 1-4(d)
t
=
=
=
P*L*M / (2*S*E - 0,2*P) + Corrosion
1,17*120*1,6629 / (2*16 700*0,7 - 0,2*1,17) + 0
0,01"
Design thickness for internal pressure, (Corroded at 100 F) Appendix 1-4(f)(1)
0,0005 (tmin head - Corrosion) / L = 0,105 / 120 = 0,0009 < 0,002
r/D=
0,075 0,08
C1
=
=
=
9,31*r / D - 0,086
9,31*0,075 - 0,086
0,6123
Se
=
=
=
C1*ET*(t / r)
0,6123*28,12E+06*(0,0335 / 9)
64 045 psi
C2
1,25
(L*t)0,5 / r
18/142
=
=
(120*0,0335)0,5 / 9
0,222729 radians
=
=
=
0,5*D - r
0,5*120 -9
51"
=
=
=
L-r
120 - 9
111"
=
=
=
arc cos(a / b)
arc cos(51 / 111)
1,09341 radians
= 0,2227 < = 1,0934
c
=
=
=
a / (cos( - ))
51 / (cos(1,0934 - 0,2227))
79,154971"
Re
=
=
=
c+r
79,155 + 9
88,154971"
Pe
=
=
=
Se*t / (C2*Re*[(0,5*Re / r) - 1])
64 045*0,0335 / (1,25*88,155*[(0,5*88,155 / 9) - 1])
4,99 psi
Py
=
=
=
Sy*t / (C2*Re*[(0,5*Re / r) - 1])
25 000*0,0335 / (1,25*88,155*[(0,5*88,155 / 9) - 1])
1,95 psi
1 Pe / Py = 4,99 / 1,95 = 2,56 8,29
Pck =
=
=
0,408*Py + 0,192*Pe
0,408*1,95 + 0,192*4,99
1,75 psi
Pck / 1,5 = 1,17 psi Internal design pressure P = 1,17 psi
t
=
=
=
tr + Corrosion
0,033485 + 0
0,033485"
Design thickness is acceptable per Appendix 1-4(f) for a design pressure of 0,01 psi.
The head internal pressure design thickness is 0,0335".
Maximum allowable working pressure, (Corroded at 100 F) Appendix 1-4(d)
P
=
=
=
2*S*E*t / (L*M + 0,2*t) - Ps
2*16 700*0,7*0,105 / (120*1,6629 + 0,2*0,105) - 1,16
11,14 psi
19/142
Maximum allowable working pressure, (Corroded at 100 F) Appendix 1-4(f)(1)
0,0005 (tmin head - Corrosion) / L = 0,105 / 120 = 0,0009 < 0,002
r/D=
0,075 0,08
C1
=
=
=
9,31*r / D - 0,086
9,31*0,075 - 0,086
0,6123
Se
=
=
=
C1*ET*(t / r)
0,6123*28,12E+06*(0,105 / 9)
200 826 psi
C2
1,25
=
=
=
(L*t)0,5 / r
(120*0,105)0,5 / 9
0,394405 radians
=
=
=
0,5*D - r
0,5*120 -9
51"
=
=
=
L-r
120 - 9
111"
=
=
=
arc cos(a / b)
arc cos(51 / 111)
1,09341 radians
= 0,3944 < = 1,0934
c
=
=
=
a / (cos( - ))
51 / (cos(1,0934 - 0,3944))
66,62459"
Re
=
=
=
c+r
66,6246 + 9
75,62459"
Pe
=
=
=
Se*t / (C2*Re*[(0,5*Re / r) - 1])
200 826*0,105 / (1,25*75,6246*[(0,5*75,6246 / 9) - 1])
69,68 psi
Py
=
=
=
Sy*t / (C2*Re*[(0,5*Re / r) - 1])
25 000*0,105 / (1,25*75,6246*[(0,5*75,6246 / 9) - 1])
8,67 psi
1 Pe / Py = 69,68 / 8,67 = 8,03 8,29
Pck =
=
=
0,408*Py + 0,192*Pe
0,408*8,67 + 0,192*69,68
16,92 psi
20/142
Pck / 1,5 = 11,28 psi
P
=
=
=
Pck / 1,5 - Ps
16,92 / 1,5 - 1,16
10,12 psi
The maximum allowable working pressure (MAWP) is 10,12 psi.
Maximum allowable pressure, (New at 70 F) Appendix 1-4(d)
P
=
=
=
2*S*E*t / (L*M + 0,2*t) - Ps
2*16 700*0,7*0,105 / (120*1,6629 + 0,2*0,105) - 0
12,3 psi
Maximum allowable pressure, (New at 70 F) Appendix 1-4(f)(1)
0,0005 (tmin head - Corrosion) / L = 0,105 / 120 = 0,0009 < 0,002
r/D=
0,075 0,08
C1
=
=
=
9,31*r / D - 0,086
9,31*0,075 - 0,086
0,6123
Se
=
=
=
C1*ET*(t / r)
0,6123*28,3E+06*(0,105 / 9)
202 145 psi
C2
1,25
=
=
=
(L*t)0,5 / r
(120*0,105)0,5 / 9
0,394405 radians
=
=
=
0,5*D - r
0,5*120 -9
51"
=
=
=
L-r
120 - 9
111"
=
=
=
arc cos(a / b)
arc cos(51 / 111)
1,09341 radians
= 0,3944 < = 1,0934
c
=
=
=
a / (cos( - ))
51 / (cos(1,0934 - 0,3944))
66,62459"
Re
=
=
=
c+r
66,6246 + 9
75,62459"
21/142
Pe
=
=
=
Se*t / (C2*Re*[(0,5*Re / r) - 1])
202 145*0,105 / (1,25*75,6246*[(0,5*75,6246 / 9) - 1])
70,14 psi
Py
=
=
=
Sy*t / (C2*Re*[(0,5*Re / r) - 1])
25 000*0,105 / (1,25*75,6246*[(0,5*75,6246 / 9) - 1])
8,67 psi
1 Pe / Py = 70,14 / 8,67 = 8,09 8,29
Pck =
=
=
0,408*Py + 0,192*Pe
0,408*8,67 + 0,192*70,14
17,01 psi
Pck / 1,5 = 11,34 psi
P
=
=
=
Pck / 1,5 - Ps
17,01 / 1,5 - 0
11,34 psi
The maximum allowable pressure (MAP) is 11,34 psi.
Design thickness for external pressure, (Corroded at 100 F) UG-33(e)
Equivalent outside spherical radius (Ro)
=
Outside crown radius
=
120,105 in
A
=
=
=
0,125 / (Ro / t)
0,125 / (120,105 / 0,009076)
0,000009
Pa
=
=
=
0,0625*E / (Ro / t)2
0,0625*2,8E+07 / (120,105 / 0,0091)2
0,01 psi
t
=
0,0091" + Corrosion = 0,0091" + 0" = 0,0091"
Check the external pressure per UG-33(a)(1) Appendix 1-4(d)
t
=
=
=
1,67*Pe*L*M / (2*S*E - 0,2*1,67*Pe) + Corrosion
1,67*0,01*120*1,6629 / (2*16 700*1 - 0,2*1,67*0,01) + 0
0,0001"
The head external pressure design thickness (te) is 0,0091".
Maximum Allowable External Pressure, (Corroded at 100 F) UG-33(e)
Equivalent outside spherical radius (Ro)
=
Outside crown radius
=
120,105 in
A
=
=
0,125 / (Ro / t)
0,125 / (120,105 / 0,105)
22/142
0,000109
From Table
HA-4:
Pa
=
=
=
B =
1 529,2145
psi
B / (Ro / t)
1 529,2145 / (120,105 / 0,105)
1,3369 psi
Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(d)
P
=
=
=
2*S*E*t / ((L*M + 0,2*t)*1,67)
2*16 700*1*0,105 / ((120*1,6629 + 0,2*0,105)*1,67)
10,52 psi
The maximum allowable external pressure (MAEP) is 1,34 psi.
% Forming strain - UHA-44(a)(2)
EFE =
=
=
(75*t / Rf)*(1 - Rf / Ro)
(75*0,105 / 9,0525)*(1 - 9,0525 / infinity)
0,8699%
23/142
Straight Flange on F&D Head #1
ASME Section VIII Division 1, 2013 Edition
Component
Cylinder
Material
SA-240 316L (II-D p. 74, ln. 9)
Impact
Tested
Normalized
Fine Grain
Practice
PWHT
Optimize MDMT/
Find MAWP
No
No
No
No
No
Design
Design
Pressure (psi) Temperature (F)
Internal
0,01
100
External
0,01
100
Design
MDMT (F)
-20
Static Liquid Head
Condition
Ps (psi)
Hs (in)
SG
Operating
1,27
23,4099
1,5
Test horizontal
6,85
126,4175
1,5
Dimensions
Inner Diameter
120"
Length
2"
Nominal Thickness
0,105"
Corrosion
Inner
0"
Outer
0"
Weight and Capacity
Weight (lb)
Capacity (US gal)
New
22,98
97,92
Corroded
22,98
97,92
Radiography
Longitudinal seam
None UW-11(c) Type 1
Bottom Circumferential
seam
None UW-11(c) Type 1
24/142
Results Summary
Governing condition
UG-16
Minimum thickness per UG-16
0,0625" + 0" = 0,0625"
Design thickness due to internal pressure (t)
0,0066"
Design thickness due to external pressure (te)
0,0264"
Design thickness due to combined loadings + corrosion
0,0006"
Maximum allowable working pressure (MAWP)
19,17 psi
Maximum allowable pressure (MAP)
20,44 psi
Maximum allowable external pressure (MAEP)
0,32 psi
Rated MDMT
-320 F
UHA-51 Material Toughness Requirements
tr = 1,83*60 / (16 700*0,7 - 0.6*1,83) =
0,0094"
Stress ratio = tr*E* / (tn - c) = 0,0094*0,8 / (0,105 - 0) =
0,0715
Impact test exempt per UHA-51(g) (coincident ratio = 0,0715)
Rated MDMT =
-320F
Material is exempt from impact testing at the Design MDMT of -20F.
Design thickness, (at 100 F) UG-27(c)(1)
t
= P*R / (S*E - 0,60*P) + Corrosion
= 1,28*60 / (16 700*0,70 - 0,60*1,28) + 0
= 0,0066"
Maximum allowable working pressure, (at 100 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t) - Ps
= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 1,27
= 19,17 psi
Maximum allowable pressure, (at 70 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t)
= 16 700*0,70*0,105 / (60 + 0,60*0,105)
= 20,44 psi
External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,0264
Experimental basin formula
= 1,7325
= 4547,1948
Pa = [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3
= 0,01 psi
25/142
Design thickness for external pressure Pa = 0,01 psi
ta
= t + Corrosion = 0,0264 + 0 = 0,0264"
Maximum Allowable External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,105
Experimental basin formula
Pa
= 1,7325
= 1144,8571
= [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3
= 0,32 psi
% Forming strain - UHA-44(a)(2)
EFE =
=
=
(50*t / Rf)*(1 - Rf / Ro)
(50*0,105 / 60,0525)*(1 - 60,0525 / infinity)
0,0874%
26/142
Thickness Required Due to Pressure + External Loads
Condition
Operating, Hot & Corroded
Pressure P (
psi)
0,01
Allowable
Stress Before
UG-23 Stress
Increase ( psi)
St
Sc
16 700
3 056
Temperature (
F)
Corrosion C
(in)
100
Load
Req'd Thk Due to
Tension (in)
Req'd Thk Due
to
Compression
(in)
Wind
0,0001
0,0003
0,0004
0,0001
0,0003
Seismic
Operating, Hot & New
0,01
16 700
3 056
100
Wind
Seismic
Hot Shut Down, Corroded
16 700
3 056
100
Wind
Seismic
Hot Shut Down, New
16 700
3 056
100
Wind
Empty, New
Vacuum
-0,01
Hot Shut Down, Corroded, Weight &
Eccentric Moments Only
16 700
16 700
16 700
16 700
3 056
3 056
3 056
3 056
70
70
100
100
0,0004
0,0004
0,0005
0,0002
0,0004
0,0005
Wind
0,0002
0,0004
Seismic
0,0002
0,0003
Seismic
Empty, Corroded
0
0,0002
Wind
0,0002
0,0004
Seismic
0,0002
0,0003
Wind
0,0002
0,0004
Seismic
0,0001
0,0006
Weight
0,0004
0,0004
Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScHC
min(B, S) = 3 056 psi
Allowable Compressive Stress, Hot and New- ScHN
ScHN
= ScHC
= 3 056 psi
Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScCN
min(B, S) = 3 056 psi
Allowable Compressive Stress, Cold and Corroded- ScCC
ScCC
= ScCN
= 3 056 psi
27/142
Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table
HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScVC
min(B, S) = 3 056 psi
Operating, Hot & Corroded, Wind, Bottom Seam
tp = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tm = M / (*Rm2*Sc*Ks)
= 1 426 / (*60,05252*3 056,32*1,20)
= 0"
(bending)
tw = 0,6*W / (2**Rm*Sc*Ks)
(Weight)
= 0,60*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
tt
= |tp + tm - tw|
= |0,0001 + 0 - (0,0002)|
= 0,0001"
(total, net compressive)
twc = W / (2**Rm*Sc*Ks)
= 441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc = tmc + twc - tpc
= 0 + (0,0003) - (0,0001)
= 0,0003"
(total required, compressive)
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0 + (0,0001)) / (60 - 0,40*(0,105 - 0 + (0,0001)))
= 49,15 psi
Operating, Hot & New, Wind, Bottom Seam
tp = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tm = M / (*Rm2*Sc*Ks)
= 1 426 / (*60,05252*3 056,32*1,20)
= 0"
(bending)
tw = 0,6*W / (2**Rm*Sc*Ks)
(Weight)
= 0,60*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
28/142
tt
= |tp + tm - tw|
= |0,0001 + 0 - (0,0002)|
= 0,0001"
(total, net compressive)
twc = W / (2**Rm*Sc*Ks)
= 441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc = tmc + twc - tpc
= 0 + (0,0003) - (0,0001)
= 0,0003"
(total required, compressive)
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0 + (0,0001)) / (60 - 0,40*(0,105 - 0 + (0,0001)))
= 49,15 psi
Hot Shut Down, Corroded, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 1 426 / (*60,05252*3 056,32*1,20)
= 0"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*Sc*Ks)
(Weight)
= 0,60*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
tt
= |tp + tm - tw|
= |0 + 0 - (0,0002)|
= 0,0002"
(total, net compressive)
twc = W / (2**Rm*Sc*Ks)
= 441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc = tmc + twc - tpc
= 0 + (0,0003) - (0)
= 0,0004"
(total required, compressive)
Hot Shut Down, New, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 1 426 / (*60,05252*3 056,32*1,20)
= 0"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*Sc*Ks)
(Weight)
= 0,60*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
tt
= |tp + tm - tw|
= |0 + 0 - (0,0002)|
= 0,0002"
(total, net compressive)
29/142
twc = W / (2**Rm*Sc*Ks)
= 441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc = tmc + twc - tpc
= 0 + (0,0003) - (0)
= 0,0004"
(total required, compressive)
Empty, Corroded, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 1 426 / (*60,05252*3 056,32*1,20)
= 0"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*Sc*Ks)
(Weight)
= 0,60*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
tt
= |tp + tm - tw|
= |0 + 0 - (0,0002)|
= 0,0002"
(total, net compressive)
twc = W / (2**Rm*Sc*Ks)
= 441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc = tmc + twc - tpc
= 0 + (0,0003) - (0)
= 0,0004"
(total required, compressive)
Empty, New, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 1 426 / (*60,05252*3 056,32*1,20)
= 0"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*Sc*Ks)
(Weight)
= 0,60*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
tt
= |tp + tm - tw|
= |0 + 0 - (0,0002)|
= 0,0002"
(total, net compressive)
twc = W / (2**Rm*Sc*Ks)
= 441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc = tmc + twc - tpc
= 0 + (0,0003) - (0)
= 0,0004"
(total required, compressive)
30/142
Vacuum, Wind, Bottom Seam
tp = P*R / (2*Sc*Ks + 0,40*|P|)
(Pressure)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
tm = M / (*Rm2*Sc*Ks)
= 1 426 / (*60,05252*3 056,32*1,20)
= 0"
(bending)
tw = 0,6*W / (2**Rm*Sc*Ks)
(Weight)
= 0,60*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
tt
= |tp + tm - tw|
= |-0,0001 + 0 - (0,0002)|
= 0,0002"
(total, net compressive)
twc = W / (2**Rm*Sc*Ks)
= 441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc = tmc + twc - tpc
= 0 + (0,0003) - (-0,0001)
= 0,0004"
(total required, compressive)
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0 - 0,0003) / (60 - 0,40*(0,105 - 0 - 0,0003))
= 12,8 psi
Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 0 / (*60,05252*3 056,32*1,00)
= 0"
(Pressure)
(bending)
tw = W / (2**Rm*Sc*Ks)
(Weight)
= 441,8 / (2**60,0525*3 056,32*1,00)
= 0,0004"
tt = |tp + tm - tw|
= |0 + 0 - (0,0004)|
= 0,0004"
(total, net compressive)
tc = tmc + twc - tpc
= 0 + (0,0004) - (0)
= 0,0004"
(total required, compressive)
Operating, Hot & Corroded, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
(Pressure)
31/142
tm = M / (*Rm2*St*Ks*Ec)
= 7 426 / (*60,05252*16 700*1,20*0,70)
= 0"
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*441,8 / (2**60,0525*16 700*1,20*0,70)
= 0"
tt
= tp + tm - tw
= 0 + 0 - (0)
= 0"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 7 426 / (*60,05252*3 056,32*1,20)
= 0,0002"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0002 + (0,0003) - (0,0001)
= 0,0004"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0 + (0)) / (60 - 0,40*(0,105 - 0 + (0)))
= 49,13 psi
Operating, Hot & New, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 7 426 / (*60,05252*16 700*1,20*0,70)
= 0"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*441,8 / (2**60,0525*16 700*1,20*0,70)
= 0"
tt
= tp + tm - tw
= 0 + 0 - (0)
= 0"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
(bending)
32/142
= 7 426 / (*60,05252*3 056,32*1,20)
= 0,0002"
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0002 + (0,0003) - (0,0001)
= 0,0004"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0 + (0)) / (60 - 0,40*(0,105 - 0 + (0)))
= 49,13 psi
Hot Shut Down, Corroded, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 7 426 / (*60,05252*16 700*1,20*0,70)
= 0"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*441,8 / (2**60,0525*16 700*1,20*0,70)
= 0"
tt
= tp + tm - tw
= 0 + 0 - (0)
= 0"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 7 426 / (*60,05252*3 056,32*1,20)
= 0,0002"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0002 + (0,0003) - (0)
= 0,0005"
Hot Shut Down, New, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 7 426 / (*60,05252*16 700*1,20*0,70)
= 0"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*441,8 / (2**60,0525*16 700*1,20*0,70)
= 0"
tt
= tp + tm - tw
(total required, tensile)
33/142
= 0 + 0 - (0)
= 0"
tmc = M / (*Rm2*Sc*Ks)
= 7 426 / (*60,05252*3 056,32*1,20)
= 0,0002"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0002 + (0,0003) - (0)
= 0,0005"
Empty, Corroded, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 803 / (*60,05252*3 056,32*1,20)
= 0"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 0,57*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
tt
= |tp + tm - tw|
= |0 + 0 - (0,0002)|
= 0,0002"
(total, net compressive)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 1,03*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
tc = tmc + twc - tpc
= 0 + (0,0003) - (0)
= 0,0003"
(total required, compressive)
Empty, New, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 803 / (*60,05252*3 056,32*1,20)
= 0"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 0,57*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
tt
= |tp + tm - tw|
= |0 + 0 - (0,0002)|
= 0,0002"
(total, net compressive)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 1,03*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
34/142
tc = tmc + twc - tpc
= 0 + (0,0003) - (0)
= 0,0003"
(total required, compressive)
Vacuum, Seismic, Bottom Seam
tp = P*R / (2*Sc*Ks + 0,40*|P|)
(Pressure)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
tm = M / (*Rm2*Sc*Ks)
= 7 426 / (*60,05252*3 056,32*1,20)
= 0,0002"
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 0,57*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0002"
tt
= |tp + tm - tw|
= |-0,0001 + 0,0002 - (0,0002)|
= 0,0001"
(total, net compressive)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 1,03*441,8 / (2**60,0525*3 056,32*1,20)
= 0,0003"
tc = tmc + twc - tpc
= 0,0002 + (0,0003) - (-0,0001)
= 0,0006"
(total required, compressive)
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0,0002 - 0,0003) / (60 - 0,40*(0,105 - 0,0002 - 0,0003))
= 12,78 psi
35/142
Cylinder #1
ASME Section VIII Division 1, 2013 Edition
Component
Cylinder
Material
SA-240 316L (II-D p. 74, ln. 9)
Impact
Tested
Normalized
Fine Grain
Practice
PWHT
Optimize MDMT/
Find MAWP
No
No
No
No
No
Design
Design
Pressure (psi) Temperature (F)
Internal
0,01
100
External
0,01
100
Design
MDMT (F)
-20
Static Liquid Head
Condition
Ps (psi)
Hs (in)
SG
Operating
4,03
74,4099
1,5
Test horizontal
6,85
126,4175
1,5
Dimensions
Inner Diameter
120"
Length
51"
Nominal Thickness
0,105"
Corrosion
Inner
0"
Outer
0"
Weight and Capacity
Weight (lb)
Capacity (US gal)
New
585,96
2 496,95
Corroded
585,96
2 496,95
Radiography
Longitudinal seam
None UW-11(c) Type 1
Top Circumferential
seam
None UW-11(c) Type 1
Bottom Circumferential
seam
None UW-11(c) Type 1
36/142
Results Summary
Governing condition
UG-16
Minimum thickness per UG-16
0,0625" + 0" = 0,0625"
Design thickness due to internal pressure (t)
0,0208"
Design thickness due to external pressure (te)
0,0264"
Design thickness due to combined loadings + corrosion
0,0036"
Maximum allowable working pressure (MAWP)
16,41 psi
Maximum allowable pressure (MAP)
20,44 psi
Maximum allowable external pressure (MAEP)
0,32 psi
Rated MDMT
-320 F
UHA-51 Material Toughness Requirements
tr = 4,59*60 / (16 700*0,7 - 0.6*4,59) =
0,0236"
Stress ratio = tr*E* / (tn - c) = 0,0236*0,8 / (0,105 - 0) =
0,1795
Impact test exempt per UHA-51(g) (coincident ratio = 0,1795)
Rated MDMT =
-320F
Material is exempt from impact testing at the Design MDMT of -20F.
Design thickness, (at 100 F) UG-27(c)(1)
t
= P*R / (S*E - 0,60*P) + Corrosion
= 4,04*60 / (16 700*0,70 - 0,60*4,04) + 0
= 0,0208"
Maximum allowable working pressure, (at 100 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t) - Ps
= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 4,03
= 16,41 psi
Maximum allowable pressure, (at 70 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t)
= 16 700*0,70*0,105 / (60 + 0,60*0,105)
= 20,44 psi
External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,0264
Experimental basin formula
= 1,7325
= 4547,1948
Pa = [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3
= 0,01 psi
37/142
Design thickness for external pressure Pa = 0,01 psi
ta
= t + Corrosion = 0,0264 + 0 = 0,0264"
Maximum Allowable External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,105
Experimental basin formula
Pa
= 1,7325
= 1144,8571
= [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3
= 0,32 psi
% Forming strain - UHA-44(a)(2)
EFE =
=
=
(50*t / Rf)*(1 - Rf / Ro)
(50*0,105 / 60,0525)*(1 - 60,0525 / infinity)
0,0874%
External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)
Pv = W / (2**Rm) + M / (*Rm2)
= 1 027,7 / (2**60,0525) + 19 291 / (*60,05252)
= 4,4264 lb/in
= Pv / (Pe*Do)
= 4,4264 / (0,01*120,21)
= 3,6823
n = 7
m = 1,23 / (L / Do)2
= 1,23 / (208,2616 / 120,21)2
= 0,4098
Ratio Pe = (n2 - 1 + m + m*) / (n2 - 1 + m)
= (72 - 1 + 0,4098 + 0,4098*3,6823) / (72 - 1 + 0,4098)
= 1,0312
Ratio Pe * Pe MAEP
(1,0312 * 0,01 = 0,01) 0,32
Cylinder design thickness is satisfactory.
External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)
Pv =
=
=
=
=
=
n =
m =
=
=
Ratio Pe =
=
(1 + 0,14*SDS)*W / (2**Rm) + M / (*Rm2)
1,03*1 027,7 / (2**60,0525) + 112 852 / (*60,05252)
12,7639 lb/in
Pv / (Pe*Do)
12,7639 / (0,01*120,21)
10,618
7
1,23 / (L / Do)2
1,23 / (208,2616 / 120,21)2
0,4098
(n2 - 1 + m + m*) / (n2 - 1 + m)
(72 - 1 + 0,4098 + 0,4098*10,618) / (72 - 1 + 0,4098)
38/142
= 1,0899
Ratio Pe * Pe MAEP
(1,0899 * 0,01 = 0,01) 0,32
Cylinder design thickness is satisfactory.
Thickness Required Due to Pressure + External Loads
Condition
Operating, Hot & Corroded
Pressure P (
psi)
0,01
Allowable
Stress Before
UG-23 Stress
Increase ( psi)
St
Sc
16 700
3 056
Temperature (
F)
Corrosion C
(in)
100
Load
Wind
Seismic
Operating, Hot & New
0,01
16 700
3 056
100
Wind
Seismic
Hot Shut Down, Corroded
16 700
3 056
100
Wind
Seismic
Hot Shut Down, New
16 700
3 056
100
Wind
Seismic
Empty, Corroded
16 700
3 056
70
Wind
Seismic
Empty, New
Vacuum
-0,01
Hot Shut Down, Corroded, Weight &
Eccentric Moments Only
16 700
16 700
16 700
3 056
3 056
3 056
70
100
100
Wind
Req'd Thk Due to
Tension (in)
Req'd Thk Due
to
Compression
(in)
0,0011
0,0006
0,0034
0,0011
0,0006
0,0034
0,0012
0,0006
0,0035
0,0012
0,0006
0,0035
0,0012
0,0003
0,0009
0,0012
Seismic
0,0003
0,0009
Wind
0,0001
0,0013
Seismic
0,0006
0,0036
Weight
0,0009
0,0009
Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScHC
min(B, S) = 3 056 psi
Allowable Compressive Stress, Hot and New- ScHN
ScHN
= ScHC
= 3 056 psi
Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScCN
min(B, S) = 3 056 psi
39/142
Allowable Compressive Stress, Cold and Corroded- ScCC
ScCC
= ScCN
= 3 056 psi
Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table
HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScVC
min(B, S) = 3 056 psi
Operating, Hot & Corroded, Wind, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 19 291 / (*60,05252*16 700*1,20*0,70)
= 0,0001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0001 - (0,0001)
= 0"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 19 291 / (*60,05252*3 056,32*1,20)
= 0,0005"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0007"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0005 + (0,0007) - (0,0001)
= 0,0011"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0001 + (0,0001)) / (60 - 0,40*(0,105 - 0,0001 + (0,0001)))
= 49,13 psi
40/142
Operating, Hot & New, Wind, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 19 291 / (*60,05252*16 700*1,20*0,70)
= 0,0001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0001 - (0,0001)
= 0"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 19 291 / (*60,05252*3 056,32*1,20)
= 0,0005"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0007"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0005 + (0,0007) - (0,0001)
= 0,0011"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0001 + (0,0001)) / (60 - 0,40*(0,105 - 0,0001 + (0,0001)))
= 49,13 psi
Hot Shut Down, Corroded, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 19 291 / (*60,05252*16 700*1,20*0,70)
= 0,0001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0001 - (0,0001)
= 0"
tmc = M / (*Rm2*Sc*Ks)
= 19 291 / (*60,05252*3 056,32*1,20)
(total required, tensile)
(bending)
41/142
= 0,0005"
twc = W / (2**Rm*Sc*Ks)
= 1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0007"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0005 + (0,0007) - (0)
= 0,0012"
Hot Shut Down, New, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 19 291 / (*60,05252*16 700*1,20*0,70)
= 0,0001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0001 - (0,0001)
= 0"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 19 291 / (*60,05252*3 056,32*1,20)
= 0,0005"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0007"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0005 + (0,0007) - (0)
= 0,0012"
Empty, Corroded, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 19 291 / (*60,05252*16 700*1,20*0,70)
= 0,0001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0001 - (0,0001)
= 0"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 19 291 / (*60,05252*3 056,32*1,20)
= 0,0005"
(bending)
twc = W / (2**Rm*Sc*Ks)
(Weight)
42/142
= 1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0007"
tc
= tmc + twc - tpc
= 0,0005 + (0,0007) - (0)
= 0,0012"
(total required, compressive)
Empty, New, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 19 291 / (*60,05252*16 700*1,20*0,70)
= 0,0001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0001 - (0,0001)
= 0"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 19 291 / (*60,05252*3 056,32*1,20)
= 0,0005"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0007"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0005 + (0,0007) - (0)
= 0,0012"
Vacuum, Wind, Bottom Seam
tp = P*R / (2*Sc*Ks + 0,40*|P|)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
(Pressure)
tm = M / (*Rm2*Sc*Ks)
= 19 291 / (*60,05252*3 056,32*1,20)
= 0,0005"
(bending)
tw = 0,6*W / (2**Rm*Sc*Ks)
(Weight)
= 0,60*1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0004"
tt
= |tp + tm - tw|
= |-0,0001 + 0,0005 - (0,0004)|
= 0,0001"
(total, net compressive)
twc = W / (2**Rm*Sc*Ks)
= 1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0007"
(Weight)
tc = tmc + twc - tpc
(total required, compressive)
43/142
= 0,0005 + (0,0007) - (-0,0001)
= 0,0013"
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0,0005 - 0,0007) / (60 - 0,40*(0,105 - 0,0005 - 0,0007))
= 12,7 psi
Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 0 / (*60,05252*3 056,32*1,00)
= 0"
(Pressure)
(bending)
tw = W / (2**Rm*Sc*Ks)
(Weight)
= 1 027,7 / (2**60,0525*3 056,32*1,00)
= 0,0009"
tt = |tp + tm - tw|
= |0 + 0 - (0,0009)|
= 0,0009"
(total, net compressive)
tc = tmc + twc - tpc
= 0 + (0,0009) - (0)
= 0,0009"
(total required, compressive)
Operating, Hot & Corroded, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 112 852 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0001)
= 0,0006"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 112 852 / (*60,05252*3 056,32*1,20)
= 0,0027"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 027,7 / (2**60,0525*3 056,32*1,20)
(Weight)
44/142
= 0,0008"
tc
= tmc + twc - tpc
= 0,0027 + (0,0008) - (0,0001)
= 0,0034"
(total required, compressive)
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0007 + (0,0001)) / (60 - 0,40*(0,105 - 0,0007 + (0,0001)))
= 48,85 psi
Operating, Hot & New, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 112 852 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0001)
= 0,0006"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 112 852 / (*60,05252*3 056,32*1,20)
= 0,0027"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0008"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0027 + (0,0008) - (0,0001)
= 0,0034"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0007 + (0,0001)) / (60 - 0,40*(0,105 - 0,0007 + (0,0001)))
= 48,85 psi
Hot Shut Down, Corroded, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
(Pressure)
(bending)
45/142
= 112 852 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0001)
= 0,0006"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 112 852 / (*60,05252*3 056,32*1,20)
= 0,0027"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0008"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0027 + (0,0008) - (0)
= 0,0035"
Hot Shut Down, New, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 112 852 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0001)
= 0,0006"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 112 852 / (*60,05252*3 056,32*1,20)
= 0,0027"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0008"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0027 + (0,0008) - (0)
= 0,0035"
Empty, Corroded, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 6 239 / (*60,05252*3 056,32*1,20)
= 0,0002"
(Pressure)
(bending)
46/142
tw = (0,6 - 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 0,57*1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0004"
tt
= |tp + tm - tw|
= |0 + 0,0002 - (0,0004)|
= 0,0003"
(total, net compressive)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 1,03*1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0008"
tc = tmc + twc - tpc
= 0,0002 + (0,0008) - (0)
= 0,0009"
(total required, compressive)
Empty, New, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 6 239 / (*60,05252*3 056,32*1,20)
= 0,0002"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 0,57*1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0004"
tt
= |tp + tm - tw|
= |0 + 0,0002 - (0,0004)|
= 0,0003"
(total, net compressive)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 1,03*1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0008"
tc = tmc + twc - tpc
= 0,0002 + (0,0008) - (0)
= 0,0009"
(total required, compressive)
Vacuum, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 112 852 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 027,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0001"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0001)
= 0,0006"
(total required, tensile)
47/142
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 112 852 / (*60,05252*3 056,32*1,20)
= 0,0027"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 027,7 / (2**60,0525*3 056,32*1,20)
= 0,0008"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0027 + (0,0008) - (-0,0001)
= 0,0036"
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0,0027 - 0,0008) / (60 - 0,40*(0,105 - 0,0027 - 0,0008))
= 12,42 psi
48/142
Cylinder #2
ASME Section VIII Division 1, 2013 Edition
Component
Cylinder
Material
SA-240 316L (II-D p. 74, ln. 9)
Impact
Tested
Normalized
Fine Grain
Practice
PWHT
Optimize MDMT/
Find MAWP
No
No
No
No
No
Design
Design
Pressure (psi) Temperature (F)
Internal
0,01
100
External
0,01
100
Design
MDMT (F)
-20
Static Liquid Head
Condition
Ps (psi)
Hs (in)
SG
Operating
6,63
122,4099
1,5
Test horizontal
6,85
126,4175
1,5
Dimensions
Inner Diameter
120"
Length
48"
Nominal Thickness
0,105"
Corrosion
Inner
0"
Outer
0"
Weight and Capacity
Weight (lb)
Capacity (US gal)
New
551,49
2 350,07
Corroded
551,49
2 350,07
Radiography
Longitudinal seam
None UW-11(c) Type 1
Top Circumferential
seam
None UW-11(c) Type 1
Bottom Circumferential
seam
None UW-11(c) Type 1
49/142
Results Summary
Governing condition
UG-16
Minimum thickness per UG-16
0,0625" + 0" = 0,0625"
Design thickness due to internal pressure (t)
0,0341"
Design thickness due to external pressure (te)
0,0264"
Design thickness due to combined loadings + corrosion
0,0087"
Maximum allowable working pressure (MAWP)
13,81 psi
Maximum allowable pressure (MAP)
20,44 psi
Maximum allowable external pressure (MAEP)
0,32 psi
Rated MDMT
-320 F
UHA-51 Material Toughness Requirements
tr = 7,19*60 / (16 700*0,7 - 0.6*7,19) =
0,0369"
Stress ratio = tr*E* / (tn - c) = 0,0369*0,8 / (0,105 - 0) =
0,2812
Impact test exempt per UHA-51(g) (coincident ratio = 0,2812)
Rated MDMT =
-320F
Material is exempt from impact testing at the Design MDMT of -20F.
Design thickness, (at 100 F) UG-27(c)(1)
t
= P*R / (S*E - 0,60*P) + Corrosion
= 6,64*60 / (16 700*0,70 - 0,60*6,64) + 0
= 0,0341"
Maximum allowable working pressure, (at 100 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t) - Ps
= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 6,63
= 13,81 psi
Maximum allowable pressure, (at 70 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t)
= 16 700*0,70*0,105 / (60 + 0,60*0,105)
= 20,44 psi
External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,0264
Experimental basin formula
= 1,7325
= 4547,1948
Pa = [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3
= 0,01 psi
50/142
Design thickness for external pressure Pa = 0,01 psi
ta
= t + Corrosion = 0,0264 + 0 = 0,0264"
Maximum Allowable External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,105
Experimental basin formula
Pa
= 1,7325
= 1144,8571
= [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3
= 0,32 psi
% Forming strain - UHA-44(a)(2)
EFE =
=
=
(50*t / Rf)*(1 - Rf / Ro)
(50*0,105 / 60,0525)*(1 - 60,0525 / infinity)
0,0874%
External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)
Pv = W / (2**Rm) + M / (*Rm2)
= 1 579,2 / (2**60,0525) + 55 145 / (*60,05252)
= 9,0527 lb/in
= Pv / (Pe*Do)
= 9,0527 / (0,01*120,21)
= 7,5308
n = 7
m = 1,23 / (L / Do)2
= 1,23 / (208,2616 / 120,21)2
= 0,4098
Ratio Pe = (n2 - 1 + m + m*) / (n2 - 1 + m)
= (72 - 1 + 0,4098 + 0,4098*7,5308) / (72 - 1 + 0,4098)
= 1,0637
Ratio Pe * Pe MAEP
(1,0637 * 0,01 = 0,01) 0,32
Cylinder design thickness is satisfactory.
External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)
Pv =
=
=
=
=
=
n =
m =
=
=
Ratio Pe =
=
(1 + 0,14*SDS)*W / (2**Rm) + M / (*Rm2)
1,03*1 579,2 / (2**60,0525) + 308 476 / (*60,05252)
31,5349 lb/in
Pv / (Pe*Do)
31,5349 / (0,01*120,21)
26,2331
7
1,23 / (L / Do)2
1,23 / (208,2616 / 120,21)2
0,4098
(n2 - 1 + m + m*) / (n2 - 1 + m)
(72 - 1 + 0,4098 + 0,4098*26,2331) / (72 - 1 + 0,4098)
51/142
= 1,2221
Ratio Pe * Pe MAEP
(1,2221 * 0,01 = 0,01) 0,32
Cylinder design thickness is satisfactory.
Thickness Required Due to Pressure + External Loads
Condition
Operating, Hot & Corroded
Operating, Hot & New
Hot Shut Down, Corroded
Hot Shut Down, New
Pressure P (
psi)
0,01
0,01
Empty, Corroded
Empty, New
Vacuum
-0,01
Hot Shut Down, Corroded, Weight &
Eccentric Moments Only
Allowable
Stress Before
UG-23 Stress
Increase ( psi)
St
Sc
16 700
3 056
16 700
16 700
16 700
16 700
16 700
16 700
16 700
3 056
3 056
3 056
3 056
3 056
3 056
3 056
Temperature (
F)
Corrosion C
(in)
100
100
100
100
70
70
100
100
Load
Req'd Thk Due to
Tension (in)
Req'd Thk Due
to
Compression
(in)
Wind
0,0002
0,0024
Seismic
0,0018
0,0085
Wind
0,0002
0,0024
Seismic
0,0018
0,0085
Wind
0,0002
0,0025
Seismic
0,0018
0,0086
Wind
0,0002
0,0025
Seismic
0,0018
0,0086
Wind
0,0002
0,0025
Seismic
0,0003
0,0015
Wind
0,0002
0,0025
Seismic
0,0003
0,0015
Wind
0,0001
0,0026
Seismic
0,0017
0,0087
Weight
0,0014
0,0014
Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScHC
min(B, S) = 3 056 psi
Allowable Compressive Stress, Hot and New- ScHN
ScHN
= ScHC
= 3 056 psi
Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScCN
min(B, S) = 3 056 psi
52/142
Allowable Compressive Stress, Cold and Corroded- ScCC
ScCC
= ScCN
= 3 056 psi
Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table
HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScVC
min(B, S) = 3 056 psi
Operating, Hot & Corroded, Wind, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 55 145 / (*60,05252*16 700*1,20*0,70)
= 0,0003"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0003 - (0,0002)
= 0,0002"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 55 145 / (*60,05252*3 056,32*1,20)
= 0,0013"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0011"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0013 + (0,0011) - (0,0001)
= 0,0024"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0003 + (0,0002)) / (60 - 0,40*(0,105 - 0,0003 + (0,0002)))
= 49,05 psi
53/142
Operating, Hot & New, Wind, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 55 145 / (*60,05252*16 700*1,20*0,70)
= 0,0003"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0003 - (0,0002)
= 0,0002"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 55 145 / (*60,05252*3 056,32*1,20)
= 0,0013"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0011"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0013 + (0,0011) - (0,0001)
= 0,0024"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0003 + (0,0002)) / (60 - 0,40*(0,105 - 0,0003 + (0,0002)))
= 49,05 psi
Hot Shut Down, Corroded, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 55 145 / (*60,05252*16 700*1,20*0,70)
= 0,0003"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0003 - (0,0002)
= 0,0002"
tmc = M / (*Rm2*Sc*Ks)
= 55 145 / (*60,05252*3 056,32*1,20)
(total required, tensile)
(bending)
54/142
= 0,0013"
twc = W / (2**Rm*Sc*Ks)
= 1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0011"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0013 + (0,0011) - (0)
= 0,0025"
Hot Shut Down, New, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 55 145 / (*60,05252*16 700*1,20*0,70)
= 0,0003"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0003 - (0,0002)
= 0,0002"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 55 145 / (*60,05252*3 056,32*1,20)
= 0,0013"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0011"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0013 + (0,0011) - (0)
= 0,0025"
Empty, Corroded, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 55 145 / (*60,05252*16 700*1,20*0,70)
= 0,0003"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0003 - (0,0002)
= 0,0002"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 55 145 / (*60,05252*3 056,32*1,20)
= 0,0013"
(bending)
twc = W / (2**Rm*Sc*Ks)
(Weight)
55/142
= 1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0011"
tc
= tmc + twc - tpc
= 0,0013 + (0,0011) - (0)
= 0,0025"
(total required, compressive)
Empty, New, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 55 145 / (*60,05252*16 700*1,20*0,70)
= 0,0003"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0003 - (0,0002)
= 0,0002"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 55 145 / (*60,05252*3 056,32*1,20)
= 0,0013"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0011"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0013 + (0,0011) - (0)
= 0,0025"
Vacuum, Wind, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 55 145 / (*60,05252*16 700*1,20*0,70)
= 0,0003"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0003 - (0,0002)
= 0,0001"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
(bending)
56/142
= 55 145 / (*60,05252*3 056,32*1,20)
= 0,0013"
twc = W / (2**Rm*Sc*Ks)
= 1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0011"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0013 + (0,0011) - (-0,0001)
= 0,0026"
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0,0013 - 0,0011) / (60 - 0,40*(0,105 - 0,0013 - 0,0011))
= 12,54 psi
Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 0 / (*60,05252*3 056,32*1,00)
= 0"
(Pressure)
(bending)
tw = W / (2**Rm*Sc*Ks)
(Weight)
= 1 579,2 / (2**60,0525*3 056,32*1,00)
= 0,0014"
tt = |tp + tm - tw|
= |0 + 0 - (0,0014)|
= 0,0014"
(total, net compressive)
tc = tmc + twc - tpc
= 0 + (0,0014) - (0)
= 0,0014"
(total required, compressive)
Operating, Hot & Corroded, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 308 476 / (*60,05252*16 700*1,20*0,70)
= 0,0019"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0019 - (0,0002)
= 0,0018"
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
(total required, tensile)
(Pressure)
57/142
= 0,0001"
tmc = M / (*Rm2*Sc*Ks)
= 308 476 / (*60,05252*3 056,32*1,20)
= 0,0074"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0012"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0074 + (0,0012) - (0,0001)
= 0,0085"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0019 + (0,0002)) / (60 - 0,40*(0,105 - 0,0019 + (0,0002)))
= 48,3 psi
Operating, Hot & New, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 308 476 / (*60,05252*16 700*1,20*0,70)
= 0,0019"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0019 - (0,0002)
= 0,0018"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 308 476 / (*60,05252*3 056,32*1,20)
= 0,0074"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0012"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0074 + (0,0012) - (0,0001)
= 0,0085"
58/142
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0019 + (0,0002)) / (60 - 0,40*(0,105 - 0,0019 + (0,0002)))
= 48,3 psi
Hot Shut Down, Corroded, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 308 476 / (*60,05252*16 700*1,20*0,70)
= 0,0019"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0019 - (0,0002)
= 0,0018"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 308 476 / (*60,05252*3 056,32*1,20)
= 0,0074"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0012"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0074 + (0,0012) - (0)
= 0,0086"
Hot Shut Down, New, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 308 476 / (*60,05252*16 700*1,20*0,70)
= 0,0019"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0019 - (0,0002)
= 0,0018"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 308 476 / (*60,05252*3 056,32*1,20)
= 0,0074"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0012"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
59/142
= 0,0074 + (0,0012) - (0)
= 0,0086"
Empty, Corroded, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 14 465 / (*60,05252*3 056,32*1,20)
= 0,0003"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 0,57*1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0007"
tt
= |tp + tm - tw|
= |0 + 0,0003 - (0,0007)|
= 0,0003"
(total, net compressive)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 1,03*1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0012"
tc = tmc + twc - tpc
= 0,0003 + (0,0012) - (0)
= 0,0015"
(total required, compressive)
Empty, New, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 14 465 / (*60,05252*3 056,32*1,20)
= 0,0003"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 0,57*1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0007"
tt
= |tp + tm - tw|
= |0 + 0,0003 - (0,0007)|
= 0,0003"
(total, net compressive)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 1,03*1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0012"
tc = tmc + twc - tpc
= 0,0003 + (0,0012) - (0)
= 0,0015"
(total required, compressive)
Vacuum, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
(Pressure)
(bending)
60/142
= 308 476 / (*60,05252*16 700*1,20*0,70)
= 0,0019"
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*1 579,2 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0019 - (0,0002)
= 0,0017"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 308 476 / (*60,05252*3 056,32*1,20)
= 0,0074"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*1 579,2 / (2**60,0525*3 056,32*1,20)
= 0,0012"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0074 + (0,0012) - (-0,0001)
= 0,0087"
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0,0074 - 0,0012) / (60 - 0,40*(0,105 - 0,0074 - 0,0012))
= 11,79 psi
61/142
Cylinder #3
ASME Section VIII Division 1, 2013 Edition
Component
Cylinder
Material
SA-240 316L (II-D p. 74, ln. 9)
Impact
Tested
Normalized
Fine Grain
Practice
PWHT
Optimize MDMT/
Find MAWP
No
No
No
No
No
Design
Design
Pressure (psi) Temperature (F)
Internal
0,01
100
External
0,01
100
Design
MDMT (F)
-20
Static Liquid Head
Condition
Ps (psi)
Hs (in)
SG
Operating
9,23
170,4099
1,5
Test horizontal
6,85
126,4175
1,5
Dimensions
Inner Diameter
120"
Length
48"
Nominal Thickness
0,105"
Corrosion
Inner
0"
Outer
0"
Weight and Capacity
Weight (lb)
Capacity (US gal)
New
551,49
2 350,07
Corroded
551,49
2 350,07
Radiography
Longitudinal seam
None UW-11(c) Type 1
Top Circumferential
seam
None UW-11(c) Type 1
Bottom Circumferential
seam
None UW-11(c) Type 1
62/142
Results Summary
Governing condition
UG-16
Minimum thickness per UG-16
0,0625" + 0" = 0,0625"
Design thickness due to internal pressure (t)
0,0475"
Design thickness due to external pressure (te)
0,0264"
Design thickness due to combined loadings + corrosion
0,0154"
Maximum allowable working pressure (MAWP)
11,21 psi
Maximum allowable pressure (MAP)
20,44 psi
Maximum allowable external pressure (MAEP)
0,32 psi
Rated MDMT
-320 F
UHA-51 Material Toughness Requirements
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320F
Material is exempt from impact testing at the Design MDMT of -20F.
Design thickness, (at 100 F) UG-27(c)(1)
t
= P*R / (S*E - 0,60*P) + Corrosion
= 9,24*60 / (16 700*0,70 - 0,60*9,24) + 0
= 0,0475"
Maximum allowable working pressure, (at 100 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t) - Ps
= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 9,23
= 11,21 psi
Maximum allowable pressure, (at 70 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t)
= 16 700*0,70*0,105 / (60 + 0,60*0,105)
= 20,44 psi
External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,0264
Experimental basin formula
= 1,7325
= 4547,1948
Pa = [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3
= 0,01 psi
Design thickness for external pressure Pa = 0,01 psi
ta
= t + Corrosion
= 0,0264 + 0 = 0,0264"
63/142
Maximum Allowable External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,105
Experimental basin formula
Pa
= 1,7325
= 1144,8571
= [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3
= 0,32 psi
% Forming strain - UHA-44(a)(2)
EFE =
=
=
(50*t / Rf)*(1 - Rf / Ro)
(50*0,105 / 60,0525)*(1 - 60,0525 / infinity)
0,0874%
External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)
Pv = W / (2**Rm) + M / (*Rm2)
= 2 130,7 / (2**60,0525) + 109 464 / (*60,05252)
= 15,3088 lb/in
= Pv / (Pe*Do)
= 15,3088 / (0,01*120,21)
= 12,735
n = 7
m = 1,23 / (L / Do)2
= 1,23 / (208,2616 / 120,21)2
= 0,4098
Ratio Pe = (n2 - 1 + m + m*) / (n2 - 1 + m)
= (72 - 1 + 0,4098 + 0,4098*12,735) / (72 - 1 + 0,4098)
= 1,1078
Ratio Pe * Pe MAEP
(1,1078 * 0,01 = 0,01) 0,32
Cylinder design thickness is satisfactory.
External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)
Pv = (1 + 0,14*SDS)*W / (2**Rm) + M / (*Rm2)
= 1,03*2 130,7 / (2**60,0525) + 572 686 / (*60,05252)
= 56,3595 lb/in
= Pv / (Pe*Do)
= 56,3595 / (0,01*120,21)
= 46,8842
n = 7
m = 1,23 / (L / Do)2
= 1,23 / (208,2616 / 120,21)2
= 0,4098
Ratio Pe = (n2 - 1 + m + m*) / (n2 - 1 + m)
= (72 - 1 + 0,4098 + 0,4098*46,8842) / (72 - 1 + 0,4098)
= 1,3969
Ratio Pe * Pe MAEP
(1,3969 * 0,01 = 0,01) 0,32
64/142
Cylinder design thickness is satisfactory.
Thickness Required Due to Pressure + External Loads
Condition
Operating, Hot & Corroded
Operating, Hot & New
Hot Shut Down, Corroded
Hot Shut Down, New
Pressure P (
psi)
0,01
0,01
Empty, Corroded
Empty, New
Vacuum
-0,01
Hot Shut Down, Corroded, Weight &
Eccentric Moments Only
Allowable
Stress Before
UG-23 Stress
Increase ( psi)
St
Sc
16 700
3 056
16 700
16 700
16 700
16 700
16 700
16 700
16 700
3 056
3 056
3 056
3 056
3 056
3 056
3 056
Temperature (
F)
Corrosion C
(in)
100
100
100
100
70
70
100
100
Load
Req'd Thk Due to
Tension (in)
Req'd Thk Due
to
Compression
(in)
Wind
0,0005
0,0041
Seismic
0,0034
0,0153
Wind
0,0005
0,0041
Seismic
0,0034
0,0153
Wind
0,0004
0,0042
Seismic
0,0034
0,0154
Wind
0,0004
0,0042
Seismic
0,0034
0,0154
Wind
0,0004
0,0042
Seismic
0,0003
0,0022
Wind
0,0004
0,0042
Seismic
0,0003
0,0022
Wind
0,0004
0,0043
Seismic
0,0034
0,0154
Weight
0,0018
0,0018
Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScHC
min(B, S) = 3 056 psi
Allowable Compressive Stress, Hot and New- ScHN
ScHN
= ScHC
= 3 056 psi
Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScCN
min(B, S) = 3 056 psi
65/142
Allowable Compressive Stress, Cold and Corroded- ScCC
ScCC
= ScCN
= 3 056 psi
Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table
HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScVC
min(B, S) = 3 056 psi
Operating, Hot & Corroded, Wind, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 109 464 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0002)
= 0,0005"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 109 464 / (*60,05252*3 056,32*1,20)
= 0,0026"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0015"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0026 + (0,0015) - (0,0001)
= 0,0041"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0007 + (0,0002)) / (60 - 0,40*(0,105 - 0,0007 + (0,0002)))
= 48,92 psi
66/142
Operating, Hot & New, Wind, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 109 464 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0002)
= 0,0005"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 109 464 / (*60,05252*3 056,32*1,20)
= 0,0026"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0015"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0026 + (0,0015) - (0,0001)
= 0,0041"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0007 + (0,0002)) / (60 - 0,40*(0,105 - 0,0007 + (0,0002)))
= 48,92 psi
Hot Shut Down, Corroded, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 109 464 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0002)
= 0,0004"
tmc = M / (*Rm2*Sc*Ks)
= 109 464 / (*60,05252*3 056,32*1,20)
(total required, tensile)
(bending)
67/142
= 0,0026"
twc = W / (2**Rm*Sc*Ks)
= 2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0015"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0026 + (0,0015) - (0)
= 0,0042"
Hot Shut Down, New, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 109 464 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0002)
= 0,0004"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 109 464 / (*60,05252*3 056,32*1,20)
= 0,0026"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0015"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0026 + (0,0015) - (0)
= 0,0042"
Empty, Corroded, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 109 464 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0002)
= 0,0004"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 109 464 / (*60,05252*3 056,32*1,20)
= 0,0026"
(bending)
twc = W / (2**Rm*Sc*Ks)
(Weight)
68/142
= 2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0015"
tc
= tmc + twc - tpc
= 0,0026 + (0,0015) - (0)
= 0,0042"
(total required, compressive)
Empty, New, Wind, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 109 464 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0002)
= 0,0004"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 109 464 / (*60,05252*3 056,32*1,20)
= 0,0026"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0015"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0026 + (0,0015) - (0)
= 0,0042"
Vacuum, Wind, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 109 464 / (*60,05252*16 700*1,20*0,70)
= 0,0007"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0007 - (0,0002)
= 0,0004"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
(bending)
69/142
= 109 464 / (*60,05252*3 056,32*1,20)
= 0,0026"
twc = W / (2**Rm*Sc*Ks)
= 2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0015"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0026 + (0,0015) - (-0,0001)
= 0,0043"
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0,0026 - 0,0015) / (60 - 0,40*(0,105 - 0,0026 - 0,0015))
= 12,33 psi
Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 0 / (*60,05252*3 056,32*1,00)
= 0"
(Pressure)
(bending)
tw = W / (2**Rm*Sc*Ks)
(Weight)
= 2 130,7 / (2**60,0525*3 056,32*1,00)
= 0,0018"
tt = |tp + tm - tw|
= |0 + 0 - (0,0018)|
= 0,0018"
(total, net compressive)
tc = tmc + twc - tpc
= 0 + (0,0018) - (0)
= 0,0018"
(total required, compressive)
Operating, Hot & Corroded, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 572 686 / (*60,05252*16 700*1,20*0,70)
= 0,0036"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0036 - (0,0002)
= 0,0034"
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
(total required, tensile)
(Pressure)
70/142
= 0,0001"
tmc = M / (*Rm2*Sc*Ks)
= 572 686 / (*60,05252*3 056,32*1,20)
= 0,0138"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0016"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0138 + (0,0016) - (0,0001)
= 0,0153"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0036 + (0,0002)) / (60 - 0,40*(0,105 - 0,0036 + (0,0002)))
= 47,55 psi
Operating, Hot & New, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 572 686 / (*60,05252*16 700*1,20*0,70)
= 0,0036"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0036 - (0,0002)
= 0,0034"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 572 686 / (*60,05252*3 056,32*1,20)
= 0,0138"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0016"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0138 + (0,0016) - (0,0001)
= 0,0153"
71/142
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*0,70*(0,105 - 0,0036 + (0,0002)) / (60 - 0,40*(0,105 - 0,0036 + (0,0002)))
= 47,55 psi
Hot Shut Down, Corroded, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 572 686 / (*60,05252*16 700*1,20*0,70)
= 0,0036"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0036 - (0,0002)
= 0,0034"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 572 686 / (*60,05252*3 056,32*1,20)
= 0,0138"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0016"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0138 + (0,0016) - (0)
= 0,0154"
Hot Shut Down, New, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 572 686 / (*60,05252*16 700*1,20*0,70)
= 0,0036"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0036 - (0,0002)
= 0,0034"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 572 686 / (*60,05252*3 056,32*1,20)
= 0,0138"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0016"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
72/142
= 0,0138 + (0,0016) - (0)
= 0,0154"
Empty, Corroded, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 24 904 / (*60,05252*3 056,32*1,20)
= 0,0006"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 0,57*2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0009"
tt
= |tp + tm - tw|
= |0 + 0,0006 - (0,0009)|
= 0,0003"
(total, net compressive)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 1,03*2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0016"
tc = tmc + twc - tpc
= 0,0006 + (0,0016) - (0)
= 0,0022"
(total required, compressive)
Empty, New, Seismic, Bottom Seam
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 24 904 / (*60,05252*3 056,32*1,20)
= 0,0006"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 0,57*2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0009"
tt
= |tp + tm - tw|
= |0 + 0,0006 - (0,0009)|
= 0,0003"
(total, net compressive)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
(Weight)
= 1,03*2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0016"
tc = tmc + twc - tpc
= 0,0006 + (0,0016) - (0)
= 0,0022"
(total required, compressive)
Vacuum, Seismic, Bottom Seam
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
(Pressure)
(bending)
73/142
= 572 686 / (*60,05252*16 700*1,20*0,70)
= 0,0036"
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*2 130,7 / (2**60,0525*16 700*1,20*0,70)
= 0,0002"
tt
= tp + tm - tw
= 0 + 0,0036 - (0,0002)
= 0,0034"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 572 686 / (*60,05252*3 056,32*1,20)
= 0,0138"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*2 130,7 / (2**60,0525*3 056,32*1,20)
= 0,0016"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0138 + (0,0016) - (-0,0001)
= 0,0154"
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0,0138 - 0,0016) / (60 - 0,40*(0,105 - 0,0138 - 0,0016))
= 10,96 psi
74/142
Cylinder #4
ASME Section VIII Division 1, 2013 Edition
Component
Cylinder
Material
SA-240 316L (II-D p. 74, ln. 9)
Impact
Tested
Normalized
Fine Grain
Practice
PWHT
Optimize MDMT/
Find MAWP
No
No
No
No
No
Design
Design
Pressure (psi) Temperature (F)
Internal
0,01
100
External
0,01
100
Design
MDMT (F)
-20
Static Liquid Head
Condition
Ps (psi)
Hs (in)
SG
Operating
11,83
218,4099
1,5
Test horizontal
6,85
126,4175
1,5
Dimensions
Inner Diameter
120"
Length
48"
Nominal Thickness
0,105"
Corrosion
Inner
0"
Outer
0"
Weight and Capacity
Weight (lb)
Capacity (US gal)
New
537,72
2 350,07
Corroded
537,72
2 350,07
Radiography
Longitudinal seam
None UW-11(c) Type 1
Top Circumferential
seam
None UW-11(c) Type 1
Bottom Circumferential
seam
None UW-11(c) Type 1
75/142
Results Summary
Governing condition
UG-16
Minimum thickness per UG-16
0,0625" + 0" = 0,0625"
Design thickness due to internal pressure (t)
0,0608"
Design thickness due to external pressure (te)
0,0264"
Design thickness due to combined loadings + corrosion
0,0249"
Maximum allowable working pressure (MAWP)
8,61 psi
Maximum allowable pressure (MAP)
20,44 psi
Maximum allowable external pressure (MAEP)
0,32 psi
Rated MDMT
-320 F
UHA-51 Material Toughness Requirements
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320F
Material is exempt from impact testing at the Design MDMT of -20F.
Design thickness, (at 100 F) UG-27(c)(1)
t
= P*R / (S*E - 0,60*P) + Corrosion
= 11,84*60 / (16 700*0,70 - 0,60*11,84) + 0
= 0,0608"
Maximum allowable working pressure, (at 100 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t) - Ps
= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 11,83
= 8,61 psi
Maximum allowable pressure, (at 70 F) UG-27(c)(1)
P
= S*E*t / (R + 0,60*t)
= 16 700*0,70*0,105 / (60 + 0,60*0,105)
= 20,44 psi
External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,0264
Experimental basin formula
= 1,7325
= 4547,1948
Pa = [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3
= 0,01 psi
Design thickness for external pressure Pa = 0,01 psi
ta
= t + Corrosion
= 0,0264 + 0 = 0,0264"
76/142
Maximum Allowable External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 208,2616 / 120,21
Do / t = 120,21 / 0,105
Experimental basin formula
Pa
= 1,7325
= 1144,8571
= [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3
= 0,32 psi
% Forming strain - UHA-44(a)(2)
EFE =
=
=
(50*t / Rf)*(1 - Rf / Ro)
(50*0,105 / 60,0525)*(1 - 60,0525 / infinity)
0,0874%
External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)
Pv = W / (2**Rm) + M / (*Rm2)
= 3 410,4 / (2**60,0525) + 230 583 / (*60,05252)
= 29,3908 lb/in
= Pv / (Pe*Do)
= 29,3908 / (0,01*120,21)
= 24,4495
n = 7
m = 1,23 / (L / Do)2
= 1,23 / (208,2616 / 120,21)2
= 0,4098
Ratio Pe = (n2 - 1 + m + m*) / (n2 - 1 + m)
= (72 - 1 + 0,4098 + 0,4098*24,4495) / (72 - 1 + 0,4098)
= 1,207
Ratio Pe * Pe MAEP
(1,207 * 0,01 = 0,01) 0,32
Cylinder design thickness is satisfactory.
External Pressure + Weight + Wind Loading Check at Bottom Seam (Bergman, ASME paper 54-A-104)
= 0,6*W / (2**Rm) + M / (*Rm2)
= 0,60*-136 412,2 / (2**60,0525) + 0 / (*60,05252)
= -216,917 lb/in
= Pv / (Pe*Do)
= -216,917 / (0,01*120,21)
= -180,4484
n = 7
m = 1,23 / (L / Do)2
= 1,23 / (208,2616 / 120,21)2
= 0,4098
Ratio Pe = (n2 - 1 + m + m*) / (n2 - 1 + m)
= (72 - 1 + 0,4098 + 0,4098*-180,4484) / (72 - 1 + 0,4098)
= 1
Ratio Pe * Pe MAEP
(1 * 0,01 = 0,01) 0,32
Cylinder design thickness is satisfactory.
Pv
77/142
External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)
Pv = (1 + 0,14*SDS)*W / (2**Rm) + M / (*Rm2)
= 1,03*3 410,4 / (2**60,0525) + 924 681 / (*60,05252)
= 90,9184 lb/in
= Pv / (Pe*Do)
= 90,9184 / (0,01*120,21)
= 75,633
n = 7
m = 1,23 / (L / Do)2
= 1,23 / (208,2616 / 120,21)2
= 0,4098
Ratio Pe = (n2 - 1 + m + m*) / (n2 - 1 + m)
= (72 - 1 + 0,4098 + 0,4098*75,633) / (72 - 1 + 0,4098)
= 1,6402
Ratio Pe * Pe MAEP
(1,6402 * 0,01 = 0,02) 0,32
Cylinder design thickness is satisfactory.
External Pressure + Weight + Seismic Loading Check at Bottom Seam(Bergman, ASME paper 54-A-104)
(0,6 - 0,14*SDS)*W / (2**Rm) + M / (*Rm2)
0,57*-136 412,2 / (2**60,0525) + 432 / (*60,05252)
-206,3512 lb/in
Pv / (Pe*Do)
-206,3512 / (0,01*120,21)
-171,6589
n
7
m
1,23 / (L / Do)2
1,23 / (208,2616 / 120,21)2
0,4098
Ratio Pe
(n2 - 1 + m + m*) / (n2 - 1 + m)
(72 - 1 + 0,4098 + 0,4098*-171,6589) / (72 - 1 + 0,4098)
1
Ratio Pe * Pe MAEP
(1 * 0,01 = 0,01) 0,32
Cylinder design thickness is satisfactory.
Pv
=
=
=
=
=
=
=
=
=
=
=
=
=
78/142
Thickness Required Due to Pressure + External Loads
Pressure P (
psi)
Condition
Allowable
Stress Before
UG-23 Stress
Increase (
psi)
St
Temperature (
F)
Corrosion C
(in)
Location
0,01
16 700
3 056
100
0
Bottom
Top
Operating, Hot & New
0,01
16 700
3 056
100
0
Bottom
Top
Hot Shut Down, Corroded
16 700
3 056
100
0
Bottom
Top
Hot Shut Down, New
16 700
3 056
100
0
Bottom
Top
Empty, Corroded
16 700
3 056
70
0
Bottom
Top
Empty, New
16 700
3 056
70
0
Bottom
Top
Vacuum
-0,01
16 700
3 056
100
0
Bottom
Hot Shut Down, Corroded,
Weight & Eccentric Moments
Only
16 700
Req'd Thk Due to
Compression (in)
Wind
0,0008
0,0079
Seismic
0,0038
0,0247
Wind
0,0181
0,0108
Sc
Top
Operating, Hot & Corroded
Req'd Thk Due to
Tension (in)
Load
3 056
100
Seismic
0,0186
0,0103
Wind
0,0008
0,0079
Seismic
0,0038
0,0247
Wind
0,0181
0,0108
Seismic
0,0186
0,0103
Wind
0,0007
0,008
Seismic
0,0038
0,0248
Wind
0,018
0,0108
Seismic
0,0186
0,0103
Wind
0,0007
0,008
Seismic
0,0038
0,0248
Wind
0,018
0,0108
Seismic
0,0186
0,0103
Wind
0,0007
0,008
Seismic
0,0001
0,0046
Wind
0,0007
0,0004
Seismic
0,0007
0,0004
Wind
0,0007
0,008
Seismic
0,0001
0,0046
Wind
0,0007
0,0004
Seismic
0,0007
0,0004
Wind
0,0007
0,0081
Seismic
0,0038
0,0249
Wind
0,018
0,0108
Seismic
0,0186
0,0103
Top
Weight
0,0015
0,0044
Bottom
Weight
0,0216
0,0216
Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScHC
min(B, S) = 3 056 psi
79/142
Allowable Compressive Stress, Hot and New- ScHN
ScHN
= ScHC
= 3 056 psi
Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScCN
min(B, S) = 3 056 psi
Allowable Compressive Stress, Cold and Corroded- ScCC
ScCC
= ScCN
= 3 056 psi
Allowable Compressive Stress, Vacuum and Corroded- ScVC, (table
HA-4)
A
= 0,125 / (Ro / t)
= 0,125 / (60,105 / 0,105)
= 0,000218
B
= 3 056 psi
S
16 700 / 1,00 = 16 700 psi
ScVC
min(B, S) = 3 056 psi
Operating, Hot & Corroded, Wind, Above Support Point
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 230 583 / (*60,05252*16 700*1,20*1,00)
= 0,001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,001 - (0,0003)
= 0,0008"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 230 583 / (*60,05252*3 056,32*1,20)
= 0,0055"
(bending)
twc = W / (2**Rm*Sc*Ks)
(Weight)
80/142
= 3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
tc
= tmc + twc - tpc
= 0,0055 + (0,0025) - (0,0001)
= 0,0079"
(total required, compressive)
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*1,00*(0,105 - 0,001 + (0,0003)) / (60 - 0,40*(0,105 - 0,001 + (0,0003)))
= 69,69 psi
Operating, Hot & New, Wind, Above Support Point
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 230 583 / (*60,05252*16 700*1,20*1,00)
= 0,001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,001 - (0,0003)
= 0,0008"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 230 583 / (*60,05252*3 056,32*1,20)
= 0,0055"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0055 + (0,0025) - (0,0001)
= 0,0079"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*1,00*(0,105 - 0,001 + (0,0003)) / (60 - 0,40*(0,105 - 0,001 + (0,0003)))
= 69,69 psi
81/142
Hot Shut Down, Corroded, Wind, Above Support Point
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 230 583 / (*60,05252*16 700*1,20*1,00)
= 0,001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,001 - (0,0003)
= 0,0007"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 230 583 / (*60,05252*3 056,32*1,20)
= 0,0055"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0055 + (0,0025) - (0)
= 0,008"
Hot Shut Down, New, Wind, Above Support Point
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 230 583 / (*60,05252*16 700*1,20*1,00)
= 0,001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,001 - (0,0003)
= 0,0007"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 230 583 / (*60,05252*3 056,32*1,20)
= 0,0055"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0055 + (0,0025) - (0)
= 0,008"
82/142
Empty, Corroded, Wind, Above Support Point
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 230 583 / (*60,05252*16 700*1,20*1,00)
= 0,001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,001 - (0,0003)
= 0,0007"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 230 583 / (*60,05252*3 056,32*1,20)
= 0,0055"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0055 + (0,0025) - (0)
= 0,008"
Empty, New, Wind, Above Support Point
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 230 583 / (*60,05252*16 700*1,20*1,00)
= 0,001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,001 - (0,0003)
= 0,0007"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 230 583 / (*60,05252*3 056,32*1,20)
= 0,0055"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0055 + (0,0025) - (0)
= 0,008"
83/142
Vacuum, Wind, Above Support Point
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= -0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 230 583 / (*60,05252*16 700*1,20*1,00)
= 0,001"
(Pressure)
(bending)
tw = 0,6*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,60*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,001 - (0,0003)
= 0,0007"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 230 583 / (*60,05252*3 056,32*1,20)
= 0,0055"
(bending)
twc = W / (2**Rm*Sc*Ks)
= 3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0055 + (0,0025) - (-0,0001)
= 0,0081"
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0,0055 - 0,0025) / (60 - 0,40*(0,105 - 0,0055 - 0,0025))
= 11,86 psi
Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Above Support Point
tp = 0"
tm = M / (*Rm2*Sc*Ks)
= 50 041 / (*60,05252*3 056,32*1,00)
= 0,0014"
(Pressure)
(bending)
tw = W / (2**Rm*Sc*Ks)
(Weight)
= 3 410,4 / (2**60,0525*3 056,32*1,00)
= 0,003"
tt = |tp + tm - tw|
= |0 + 0,0014 - (0,003)|
= 0,0015"
(total, net compressive)
tc = tmc + twc - tpc
= 0,0014 + (0,003) - (0)
(total required, compressive)
84/142
= 0,0044"
Operating, Hot & Corroded, Wind, Below Support Point
tp
=
=
=
P*R / (2*St*Ks*Ec + 0,40*|P|)
0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
0"
(Pressure)
tm
=
=
=
M / (*Rm2*St*Ks*Ec)
0 / (*60,05252*16 700*1,20*1,00)
0"
(bending)
tw
=
=
=
W / (2**Rm*St*Ks*Ec)
-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,018"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,018)
0,0181"
twc
=
=
=
0,6*W / (2**Rm*St*Ks*Ec)
0,60*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0108"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0108) - (0)|
0,0108"
(total required,
tensile)
(Weight)
(total, net
tensile)
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*1,00*(0,105 - 0 + (-0,018)) / (60 - 0,40*(0,105 - 0 + (-0,018)))
= 58,12 psi
Operating, Hot & New, Wind, Below Support Point
tp
=
=
=
P*R / (2*St*Ks*Ec + 0,40*|P|)
0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
0"
(Pressure)
tm
=
=
=
M / (*Rm2*St*Ks*Ec)
0 / (*60,05252*16 700*1,20*1,00)
0"
(bending)
tw
=
=
=
W / (2**Rm*St*Ks*Ec)
-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,018"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,018)
0,0181"
=
=
0,6*W / (2**Rm*St*Ks*Ec)
0,60*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
twc
(total required,
tensile)
(Weight)
85/142
tc
-0,0108"
|tmc + twc - tpc|
=
=
|0 + (-0,0108) - (0)|
0,0108"
(total, net
tensile)
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*1,00*(0,105 - 0 + (-0,018)) / (60 - 0,40*(0,105 - 0 + (-0,018)))
= 58,12 psi
Hot Shut Down, Corroded, Wind, Below Support Point
tp
tm
=
=
=
=
0"
M / (*Rm2*St*Ks*Ec)
0 / (*60,05252*16 700*1,20*1,00)
0"
(Pressure)
(bending)
tw
=
=
=
W / (2**Rm*St*Ks*Ec)
-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,018"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,018)
0,018"
twc
=
=
=
0,6*W / (2**Rm*St*Ks*Ec)
0,60*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0108"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0108) - (0)|
0,0108"
(total required,
tensile)
(Weight)
(total, net
tensile)
Hot Shut Down, New, Wind, Below Support Point
tp
tm
=
=
=
=
0"
M / (*Rm2*St*Ks*Ec)
0 / (*60,05252*16 700*1,20*1,00)
0"
(Pressure)
(bending)
tw
=
=
=
W / (2**Rm*St*Ks*Ec)
-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,018"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,018)
0,018"
=
=
0,6*W / (2**Rm*St*Ks*Ec)
0,60*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
twc
(total required,
tensile)
(Weight)
86/142
tc
-0,0108"
|tmc + twc - tpc|
=
=
|0 + (-0,0108) - (0)|
0,0108"
(total, net
tensile)
Empty, Corroded, Wind, Below Support Point
tp
tm
=
=
=
=
0"
M / (*Rm2*St*Ks*Ec)
0 / (*60,05252*16 700*1,20*1,00)
0"
(Pressure)
(bending)
tw
=
=
=
W / (2**Rm*St*Ks*Ec)
-5 104,7 / (2**60,0525*16 700*1,20*1,00)
-0,0007"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,0007)
0,0007"
twc
=
=
=
0,6*W / (2**Rm*St*Ks*Ec)
0,60*-5 104,7 / (2**60,0525*16 700*1,20*1,00)
-0,0004"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0004) - (0)|
0,0004"
(total required,
tensile)
(Weight)
(total, net
tensile)
Empty, New, Wind, Below Support Point
tp
tm
=
=
=
=
0"
M / (*Rm2*St*Ks*Ec)
0 / (*60,05252*16 700*1,20*1,00)
0"
(Pressure)
(bending)
tw
=
=
=
W / (2**Rm*St*Ks*Ec)
-5 104,7 / (2**60,0525*16 700*1,20*1,00)
-0,0007"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,0007)
0,0007"
twc
=
=
=
0,6*W / (2**Rm*St*Ks*Ec)
0,60*-5 104,7 / (2**60,0525*16 700*1,20*1,00)
-0,0004"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0004) - (0)|
0,0004"
(total required,
tensile)
(Weight)
(total, net
tensile)
87/142
Vacuum, Wind, Below Support Point
tp
=
=
=
P*R / (2*St*Ks*Ec + 0,40*|P|)
-0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
0"
(Pressure)
tm
=
=
=
M / (*Rm2*St*Ks*Ec)
0 / (*60,05252*16 700*1,20*1,00)
0"
(bending)
tw
=
=
=
W / (2**Rm*St*Ks*Ec)
-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,018"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,018)
0,018"
twc
=
=
=
0,6*W / (2**Rm*St*Ks*Ec)
0,60*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0108"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0108) - (0)|
0,0108"
(total required,
tensile)
(Weight)
(total, net
tensile)
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0 - -0,0591) / (60 - 0,40*(0,105 - 0 - -0,0591))
= 20,09 psi
Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Below Support Point
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 0 / (*60,05252*16 700*1,00*1,00)
= 0"
(Pressure)
(bending)
tw = W / (2**Rm*St*Ks*Ec)
(Weight)
= -136 412,2 / (2**60,0525*16 700*1,00*1,00)
= -0,0216"
tt = tp + tm - tw
= 0 + 0 - (-0,0216)
= 0,0216"
(total required, tensile)
tc = |tmc + twc - tpc|
= |0 + (-0,0216) - (0)|
= 0,0216"
(total, net tensile)
88/142
Operating, Hot & Corroded, Seismic, Above Support Point
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 924 681 / (*60,05252*16 700*1,20*1,00)
= 0,0041"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,0041 - (0,0003)
= 0,0038"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 924 681 / (*60,05252*3 056,32*1,20)
= 0,0223"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0223 + (0,0025) - (0,0001)
= 0,0247"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*1,00*(0,105 - 0,0041 + (0,0003)) / (60 - 0,40*(0,105 - 0,0041 + (0,0003)))
= 67,64 psi
Operating, Hot & New, Seismic, Above Support Point
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 924 681 / (*60,05252*16 700*1,20*1,00)
= 0,0041"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,0041 - (0,0003)
= 0,0038"
(total required, tensile)
89/142
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= 0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 924 681 / (*60,05252*3 056,32*1,20)
= 0,0223"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0223 + (0,0025) - (0,0001)
= 0,0247"
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*1,00*(0,105 - 0,0041 + (0,0003)) / (60 - 0,40*(0,105 - 0,0041 + (0,0003)))
= 67,64 psi
Hot Shut Down, Corroded, Seismic, Above Support Point
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 924 681 / (*60,05252*16 700*1,20*1,00)
= 0,0041"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,0041 - (0,0003)
= 0,0038"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 924 681 / (*60,05252*3 056,32*1,20)
= 0,0223"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0223 + (0,0025) - (0)
= 0,0248"
Hot Shut Down, New, Seismic, Above Support Point
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 924 681 / (*60,05252*16 700*1,20*1,00)
= 0,0041"
(Pressure)
(bending)
90/142
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,0041 - (0,0003)
= 0,0038"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 924 681 / (*60,05252*3 056,32*1,20)
= 0,0223"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0223 + (0,0025) - (0)
= 0,0248"
Empty, Corroded, Seismic, Above Support Point
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 86 998 / (*60,05252*16 700*1,20*1,00)
= 0,0004"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,0004 - (0,0003)
= 0,0001"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 86 998 / (*60,05252*3 056,32*1,20)
= 0,0021"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0021 + (0,0025) - (0)
= 0,0046"
Empty, New, Seismic, Above Support Point
tp = 0"
tm = M / (*Rm2*St*Ks*Ec)
= 86 998 / (*60,05252*16 700*1,20*1,00)
= 0,0004"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*3 410,4 / (2**60,0525*16 700*1,20*1,00)
91/142
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,0004 - (0,0003)
= 0,0001"
(total required, tensile)
tmc = M / (*Rm2*Sc*Ks)
= 86 998 / (*60,05252*3 056,32*1,20)
= 0,0021"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0021 + (0,0025) - (0)
= 0,0046"
Vacuum, Seismic, Above Support Point
tp
= P*R / (2*St*Ks*Ec + 0,40*|P|)
= -0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
= 0"
tm = M / (*Rm2*St*Ks*Ec)
= 924 681 / (*60,05252*16 700*1,20*1,00)
= 0,0041"
(Pressure)
(bending)
tw = (0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
(Weight)
= 0,57*3 410,4 / (2**60,0525*16 700*1,20*1,00)
= 0,0003"
tt
= tp + tm - tw
= 0 + 0,0041 - (0,0003)
= 0,0038"
(total required, tensile)
tpc = P*R / (2*Sc*Ks + 0,40*|P|)
= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)
= -0,0001"
(Pressure)
tmc = M / (*Rm2*Sc*Ks)
= 924 681 / (*60,05252*3 056,32*1,20)
= 0,0223"
(bending)
twc = (1 + 0,14*SDS)*W / (2**Rm*Sc*Ks)
= 1,03*3 410,4 / (2**60,0525*3 056,32*1,20)
= 0,0025"
(Weight)
tc
(total required, compressive)
= tmc + twc - tpc
= 0,0223 + (0,0025) - (-0,0001)
= 0,0249"
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0,0223 - 0,0025) / (60 - 0,40*(0,105 - 0,0223 - 0,0025))
= 9,81 psi
92/142
Operating, Hot & Corroded, Seismic, Below Support Point
tp
=
=
=
P*R / (2*St*Ks*Ec + 0,40*|P|)
0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
0"
(Pressure)
tm
=
=
=
M / (*Rm2*St*Ks*Ec)
432 / (*60,05252*16 700*1,20*1,00)
0"
(bending)
tw
=
=
=
(1 + 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
1,03*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0186"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,0186)
0,0186"
twc
=
=
=
(0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
0,57*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0103"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0103) - (0)|
0,0103"
(total required,
tensile)
(Weight)
(total, net
tensile)
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*1,00*(0,105 - 0 + (-0,0186)) / (60 - 0,40*(0,105 - 0 + (-0,0186)))
= 57,77 psi
Operating, Hot & New, Seismic, Below Support Point
tp
=
=
=
P*R / (2*St*Ks*Ec + 0,40*|P|)
0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
0"
(Pressure)
tm
=
=
=
M / (*Rm2*St*Ks*Ec)
432 / (*60,05252*16 700*1,20*1,00)
0"
(bending)
tw
=
=
=
(1 + 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
1,03*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0186"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,0186)
0,0186"
=
=
=
(0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
0,57*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0103"
twc
(total required,
tensile)
(Weight)
93/142
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0103) - (0)|
0,0103"
(total, net
tensile)
Maximum allowable working pressure, Longitudinal Stress
P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))
= 2*16 700*1,20*1,00*(0,105 - 0 + (-0,0186)) / (60 - 0,40*(0,105 - 0 + (-0,0186)))
= 57,77 psi
Hot Shut Down, Corroded, Seismic, Below Support Point
tp
tm
=
=
=
=
0"
M / (*Rm2*St*Ks*Ec)
432 / (*60,05252*16 700*1,20*1,00)
0"
(Pressure)
(bending)
tw
=
=
=
(1 + 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
1,03*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0186"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,0186)
0,0186"
twc
=
=
=
(0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
0,57*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0103"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0103) - (0)|
0,0103"
(total required,
tensile)
(Weight)
(total, net
tensile)
Hot Shut Down, New, Seismic, Below Support Point
tp
tm
=
=
=
=
0"
M / (*Rm2*St*Ks*Ec)
432 / (*60,05252*16 700*1,20*1,00)
0"
(Pressure)
(bending)
tw
=
=
=
(1 + 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
1,03*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0186"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,0186)
0,0186"
=
=
=
(0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
0,57*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0103"
twc
(total required,
tensile)
(Weight)
94/142
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0103) - (0)|
0,0103"
(total, net
tensile)
Empty, Corroded, Seismic, Below Support Point
tp
tm
=
=
=
=
0"
M / (*Rm2*St*Ks*Ec)
544 / (*60,05252*16 700*1,20*1,00)
0"
(Pressure)
(bending)
tw
=
=
=
(1 + 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
1,03*-5 104,7 / (2**60,0525*16 700*1,20*1,00)
-0,0007"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,0007)
0,0007"
twc
=
=
=
(0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
0,57*-5 104,7 / (2**60,0525*16 700*1,20*1,00)
-0,0004"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0004) - (0)|
0,0004"
(total required,
tensile)
(Weight)
(total, net
tensile)
Empty, New, Seismic, Below Support Point
tp
tm
=
=
=
=
0"
M / (*Rm2*St*Ks*Ec)
544 / (*60,05252*16 700*1,20*1,00)
0"
(Pressure)
(bending)
tw
=
=
=
(1 + 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
1,03*-5 104,7 / (2**60,0525*16 700*1,20*1,00)
-0,0007"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,0007)
0,0007"
twc
=
=
=
(0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
0,57*-5 104,7 / (2**60,0525*16 700*1,20*1,00)
-0,0004"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0004) - (0)|
0,0004"
(total required,
tensile)
(Weight)
(total, net
tensile)
95/142
Vacuum, Seismic, Below Support Point
tp
=
=
=
P*R / (2*St*Ks*Ec + 0,40*|P|)
-0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)
0"
(Pressure)
tm
=
=
=
M / (*Rm2*St*Ks*Ec)
432 / (*60,05252*16 700*1,20*1,00)
0"
(bending)
tw
=
=
=
(1 + 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
1,03*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0186"
(Weight)
tt
tp + tm - tw
=
=
0 + 0 - (-0,0186)
0,0186"
twc
=
=
=
(0,6 - 0,14*SDS)*W / (2**Rm*St*Ks*Ec)
0,57*-136 412,2 / (2**60,0525*16 700*1,20*1,00)
-0,0103"
tc
|tmc + twc - tpc|
=
=
|0 + (-0,0103) - (0)|
0,0103"
(total required,
tensile)
(Weight)
(total, net
tensile)
Maximum Allowable External Pressure, Longitudinal Stress
P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))
= 2*3 056,32*1,20*(0,105 - 0 - -0,0563) / (60 - 0,40*(0,105 - 0 - -0,0563))
= 19,74 psi
96/142
Nozzle #1 (N1)
ASME Section VIII Division 1, 2013 Edition
Note: round inside edges per UG-76(c)
Location and Orientation
Located on
Cylinder #4
Orientation
Nozzle center line offset to datum line
18"
End of nozzle to shell center
66,4175"
Passes through a Category A joint
No
Nozzle
Access opening
No
Material specification
SA-240 316L (II-D p. 74, ln. 9)
Inside diameter, new
23,25"
Nominal wall thickness
0,375"
Corrosion allowance
0"
Projection available outside vessel, Lpr
0,3125"
Projection available outside vessel to flange face, Lf
6,3125"
Local vessel minimum thickness
0,105"
Liquid static head included
11,48 psi
Longitudinal joint efficiency
1
Reinforcing Pad
Material specification
SA-240 316L (II-D p. 74, ln. 9)
Diameter, Dp
24,25"
Thickness, te
0,105"
Is split
No
97/142
Welds
Inner Fillet, Leg41
0,125"
Outer Fillet, Leg42
0,105"
Nozzle to vessel groove weld
0,105"
Pad groove weld
0"
ASME B16.5-2009 Flange
Description
NPS 24 Class 150 WN A105
Bolt Material
SA-193 B7 Bolt <= 2 1/2 (II-D p.
352, ln. 31)
Blind included
Yes
Rated MDMT
-55F
Liquid static head
10,85 psi
MAWP rating
285 psi @ 100F
MAP rating
285 psi @ 70F
Hydrotest rating
450 psi @ 70F
PWHT performed
No
Impact Tested
No
Circumferential joint radiography
Full UW-11(a) Type 1
Notes
Flange rated MDMT per UCS-66(b)(3) = -155F (Coincident ratio = 0,04)
Bolts rated MDMT per Fig UCS-66 note (c) = -55F
UHA-51 Material Toughness Requirements Nozzle
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320F
Material is exempt from impact testing at the Design MDMT of -20F.
UHA-51 Material Toughness Requirements Pad
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320F
Material is exempt from impact testing at the Design MDMT of -20F.
98/142
Reinforcement Calculations for MAWP
Available reinforcement per UG-37 governs the MAWP of this nozzle.
UG-37 Area Calculation Summary (in2)
UG-45
Summary (in)
For P = 16,06 psi @ 100 F
The opening is adequately reinforced
The nozzle passes
UG-45
A
required
A
available
A1
A2
1,3422 1,3429 1,099 0,191
A3
--
A
welds
A5
treq
tmin
0,0263 0,0266 0,0625 0,375
UG-41 Weld Failure Path Analysis Summary (lbf)
All failure paths are stronger than the applicable weld loads
Weld load
W
Weld load
W1-1
Path 1-1
strength
Weld load
W2-2
Path 2-2
strength
Weld load
W3-3
Path 3-3
strength
4 653,87 4 072,3 195 410,29 4 765,35 87 479,47 5 387,42 81 647,05
UW-16 Weld Sizing Summary
Weld description
Required weld
throat size (in)
Actual weld
throat size (in)
Status
Nozzle to pad fillet (Leg 41)
0,0735
0,0875
weld size is adequate
Pad to shell fillet (Leg 42)
0,0525
0,0735
weld size is adequate
Calculations for internal pressure 16,06 psi @ 100 F
Parallel Limit of reinforcement per UG-40
LR
=
=
=
MAX(d, Rn + (tn - Cn) + (t - C))
MAX(23,25, 11,625 + (0,375 - 0) + (0,105 - 0))
23,25 in
Outer Normal Limit of reinforcement per UG-40
LH
=
MIN(2,5*(t - C), 2,5*(tn - Cn) + te)
=
MIN(2,5*(0,105 - 0), 2,5*(0,375 - 0) + 0,105)
=
0,2625 in
Nozzle required thickness per UG-27(c)(1)
trn
=
=
=
P*Rn / (Sn*E - 0,6*P)
16,0589*11,625 / (16 700*1 - 0,6*16,0589)
0,0112 in
Required thickness tr from UG-37(a)
tr
=
=
P*R / (S*E - 0,6*P)
16,0589*60 / (16 700*1 - 0,6*16,0589)
99/142
=
0,0577 in
Required thickness tr per Interpretation VIII-1-07-50
tr
=
=
=
P*R / (S*E - 0,6*P)
16,0589*60 / (16 700*0,7 - 0,6*16,0589)
0,0825 in
Area required per UG-37(c)
Allowable stresses: Sn = 16 700, Sv = 16 700, Sp = 16 700 psi
fr1 = lesser of 1 or Sn / Sv = 1
fr2 = lesser of 1 or Sn / Sv = 1
fr3 = lesser of fr2 or Sp / Sv = 1
fr4 = lesser of 1 or Sp / Sv = 1
=
=
=
d*tr*F + 2*tn*tr*F*(1 - fr1)
23,25*0,0577*1 + 2*0,375*0,0577*1*(1 - 1)
1,3422 in2
Area available from FIG. UG-37.1
A1 = larger of the following= 1,099 in2
=
=
=
d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)
23,25*(1*0,105 - 1*0,0577) - 2*0,375*(1*0,105 - 1*0,0577)*(1 - 1)
1,099 in2
=
=
=
2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)
2*(0,105 + 0,375)*(1*0,105 - 1*0,0577) - 2*0,375*(1*0,105 - 1*0,0577)*(1 - 1)
0,0454 in2
A2 = smaller of the following= 0,191 in2
=
=
=
5*(tn - trn)*fr2*t
5*(0,375 - 0,0112)*1*0,105
0,191 in2
=
=
=
2*(tn - trn)*fr2*Lpr
2*(0,375 - 0,0112)*1*0,3125
0,2274 in2
A41 =
=
=
Leg2*fr3
0,1252*1
0,0156 in2
100/142
A42 =
=
=
Leg2*fr4
0,1052*1
0,011 in2
A5
(Dp - d - 2*tn)*te*fr4
(24,25 - 23,25 - 2*0,375)*0,105*1
0,0263 in2
=
=
=
Area =
=
=
A1 + A2 + A41 + A42 + A5
1,099 + 0,191 + 0,0156 + 0,011 + 0,0263
1,3429 in2
As Area >= A the reinforcement is adequate.
UW-16(c)(2) Weld Check
Inner fillet: tmin
= lesser of 0,75 or tn or te = 0,105 in
tw(min) = 0,7*tmin = 0,0735 in
tw(actual) = 0,7*Leg = 0.7*0,125 = 0,0875 in
Outer fillet: tmin
= lesser of 0,75 or te or t = 0,105 in
tw(min) = 0,5*tmin = 0,0525 in
tw(actual) = 0,7*Leg = 0.7*0,105 = 0,0735 in
UG-45 Nozzle Neck Thickness Check
ta UG-27
=
=
=
P*R / (S*E - 0,6*P) + Corrosion
16,0589*11,625 / (16 700*1 - 0,6*16,0589) + 0
0,0112 in
ta
=
=
=
max[ ta UG-27 , ta UG-22 ]
max[ 0,0112 , 0 ]
0,0112 in
tb1
=
=
=
P*R / (S*E - 0,6*P) + Corrosion
16,0589*60 / (16 700*1 - 0,6*16,0589) + 0
0,0577 in
tb1
=
=
=
max[ tb1 , tb UG16 ]
max[ 0,0577 , 0,0625 ]
0,0625 in
tb
=
=
=
min[ tb3 , tb1 ]
min[ 0,3281 , 0,0625 ]
0,0625 in
101/142
tUG-45
=
=
=
max[ ta , tb ]
max[ 0,0112 , 0,0625 ]
0,0625 in
Available nozzle wall thickness new, tn = 0,375 in
The nozzle neck thickness is adequate.
Allowable stresses in joints UG-45 and UW-15(c)
Groove weld in tension: 0,74*16 700 =
Nozzle wall in shear:
0,7*16 700 =
Inner fillet weld in shear: 0,49*16 700 =
Outer fillet weld in shear: 0,49*16 700 =
Strength of welded joints:
12 358 psi
11 690 psi
8 183 psi
8 183 psi
(1) Inner fillet weld in shear
( / 2)*Nozzle OD*Leg*Si = ( / 2)*24*0,125*8 183 = 38 561,48 lbf
(2) Outer fillet weld in shear
( / 2)*Pad OD*Leg*So = ( / 2)*24,25*0,105*8 183 = 32 729,06 lbf
(3) Nozzle wall in shear
( / 2)*Mean nozzle dia*tn*Sn = ( / 2)*23,625*0,375*11 690 = 162 681,24 lbf
(4) Groove weld in tension
( / 2)*Nozzle OD*tw*Sg = ( / 2)*24*0,105*12 358 = 48 917,99 lbf
Loading on welds per UG-41(b)(1)
W
=
=
=
(A - A1 + 2*tn*fr1*(E1*t - F*tr))*Sv
(1,3422 - 1,099 + 2*0,375*1*(1*0,105 - 1*0,0577))*16 700
4 653,87 lbf
W1-1 =
=
=
(A2 + A5 + A41 + A42)*Sv
(0,191 + 0,0263 + 0,0156 + 0,011)*16 700
4 072,3 lbf
W2-2 =
=
=
(A2 + A3 + A41 + A43 + 2*tn*t*fr1)*Sv
(0,191 + 0 + 0,0156 + 0 + 2*0,375*0,105*1)*16 700
4 765,35 lbf
W3-3 =
=
=
(A2 + A3 + A5 + A41 + A42 + A43 + 2*tn*t*fr1)*Sv
(0,191 + 0 + 0,0263 + 0,0156 + 0,011 + 0 + 2*0,375*0,105*1)*16 700
5 387,42 lbf
Load for path 1-1 lesser of W or W1-1 = 4 072,3 lbf
102/142
Path 1-1 through (2) & (3) = 32 729,06 + 162 681,24 = 195 410,29 lbf
Path 1-1 is stronger than W1-1 so it is acceptable per UG-41(b)(1).
Load for path 2-2 lesser of W or W2-2 = 4 653,87 lbf
Path 2-2 through (1), (4) = 38 561,48 + 48 917,99 = 87 479,47 lbf
Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).
Load for path 3-3 lesser of W or W3-3 = 4 653,87 lbf
Path 3-3 through (2), (4) = 32 729,06 + 48 917,99 = 81 647,05 lbf
Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).
% Forming strain - UHA-44(a)(2)
EFE =
=
=
(50*t / Rf)*(1 - Rf / Ro)
(50*0,375 / 11,8125)*(1 - 11,8125 / infinity)
1,5873%
103/142
Reinforcement Calculations for MAP
Available reinforcement per UG-37 governs the MAP of this nozzle.
UG-37 Area Calculation Summary (in2)
UG-45
Summary (in)
For P = 16,06 psi @ 70 F
The opening is adequately reinforced
The nozzle passes
UG-45
A
required
A
available
A1
A2
1,3425 1,3427 1,0988 0,191
A3
A
welds
A5
--
treq
tmin
0,0263 0,0266 0,0625 0,375
UG-41 Weld Failure Path Analysis Summary (lbf)
All failure paths are stronger than the applicable weld loads
Weld load
W
Weld load
W1-1
Path 1-1
strength
Weld load
W2-2
Path 2-2
strength
Weld load
W3-3
Path 3-3
strength
4 660,97 4 072,3 195 410,29 4 765,35 87 479,47 5 387,42 81 647,05
UW-16 Weld Sizing Summary
Weld description
Required weld
throat size (in)
Actual weld
throat size (in)
Status
Nozzle to pad fillet (Leg 41)
0,0735
0,0875
weld size is adequate
Pad to shell fillet (Leg 42)
0,0525
0,0735
weld size is adequate
Calculations for internal pressure 16,06 psi @ 70 F
Parallel Limit of reinforcement per UG-40
LR
=
=
=
MAX(d, Rn + (tn - Cn) + (t - C))
MAX(23,25, 11,625 + (0,375 - 0) + (0,105 - 0))
23,25 in
Outer Normal Limit of reinforcement per UG-40
LH
=
MIN(2,5*(t - C), 2,5*(tn - Cn) + te)
=
MIN(2,5*(0,105 - 0), 2,5*(0,375 - 0) + 0,105)
=
0,2625 in
Nozzle required thickness per UG-27(c)(1)
trn
=
=
=
P*Rn / (Sn*E - 0,6*P)
16,0603*11,625 / (16 700*1 - 0,6*16,0603)
0,0112 in
Required thickness tr from UG-37(a)
tr
=
=
P*R / (S*E - 0,6*P)
16,0603*60 / (16 700*1 - 0,6*16,0603)
104/142
=
0,0577 in
Required thickness tr per Interpretation VIII-1-07-50
tr
=
=
=
P*R / (S*E - 0,6*P)
16,0603*60 / (16 700*0,7 - 0,6*16,0603)
0,0825 in
Area required per UG-37(c)
Allowable stresses: Sn = 16 700, Sv = 16 700, Sp = 16 700 psi
fr1 = lesser of 1 or Sn / Sv = 1
fr2 = lesser of 1 or Sn / Sv = 1
fr3 = lesser of fr2 or Sp / Sv = 1
fr4 = lesser of 1 or Sp / Sv = 1
=
=
=
d*tr*F + 2*tn*tr*F*(1 - fr1)
23,25*0,0577*1 + 2*0,375*0,0577*1*(1 - 1)
1,3425 in2
Area available from FIG. UG-37.1
A1 = larger of the following= 1,0988 in2
=
=
=
d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)
23,25*(1*0,105 - 1*0,0577) - 2*0,375*(1*0,105 - 1*0,0577)*(1 - 1)
1,0988 in2
=
=
=
2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)
2*(0,105 + 0,375)*(1*0,105 - 1*0,0577) - 2*0,375*(1*0,105 - 1*0,0577)*(1 - 1)
0,0454 in2
A2 = smaller of the following= 0,191 in2
=
=
=
5*(tn - trn)*fr2*t
5*(0,375 - 0,0112)*1*0,105
0,191 in2
=
=
=
2*(tn - trn)*fr2*Lpr
2*(0,375 - 0,0112)*1*0,3125
0,2274 in2
A41 =
=
=
Leg2*fr3
0,1252*1
0,0156 in2
105/142
A42 =
=
=
Leg2*fr4
0,1052*1
0,011 in2
A5
(Dp - d - 2*tn)*te*fr4
(24,25 - 23,25 - 2*0,375)*0,105*1
0,0263 in2
=
=
=
Area =
=
=
A1 + A2 + A41 + A42 + A5
1,0988 + 0,191 + 0,0156 + 0,011 + 0,0263
1,3427 in2
As Area >= A the reinforcement is adequate.
UW-16(c)(2) Weld Check
Inner fillet: tmin
= lesser of 0,75 or tn or te = 0,105 in
tw(min) = 0,7*tmin = 0,0735 in
tw(actual) = 0,7*Leg = 0.7*0,125 = 0,0875 in
Outer fillet: tmin
= lesser of 0,75 or te or t = 0,105 in
tw(min) = 0,5*tmin = 0,0525 in
tw(actual) = 0,7*Leg = 0.7*0,105 = 0,0735 in
UG-45 Nozzle Neck Thickness Check
ta UG-27
=
=
=
P*R / (S*E - 0,6*P) + Corrosion
16,0603*11,625 / (16 700*1 - 0,6*16,0603) + 0
0,0112 in
ta
=
=
=
max[ ta UG-27 , ta UG-22 ]
max[ 0,0112 , 0 ]
0,0112 in
tb1
=
=
=
P*R / (S*E - 0,6*P) + Corrosion
16,0603*60 / (16 700*1 - 0,6*16,0603) + 0
0,0577 in
tb1
=
=
=
max[ tb1 , tb UG16 ]
max[ 0,0577 , 0,0625 ]
0,0625 in
tb
=
=
=
min[ tb3 , tb1 ]
min[ 0,3281 , 0,0625 ]
0,0625 in
106/142
tUG-45
=
=
=
max[ ta , tb ]
max[ 0,0112 , 0,0625 ]
0,0625 in
Available nozzle wall thickness new, tn = 0,375 in
The nozzle neck thickness is adequate.
Allowable stresses in joints UG-45 and UW-15(c)
Groove weld in tension: 0,74*16 700 =
Nozzle wall in shear:
0,7*16 700 =
Inner fillet weld in shear: 0,49*16 700 =
Outer fillet weld in shear: 0,49*16 700 =
Strength of welded joints:
12 358 psi
11 690 psi
8 183 psi
8 183 psi
(1) Inner fillet weld in shear
( / 2)*Nozzle OD*Leg*Si = ( / 2)*24*0,125*8 183 = 38 561,48 lbf
(2) Outer fillet weld in shear
( / 2)*Pad OD*Leg*So = ( / 2)*24,25*0,105*8 183 = 32 729,06 lbf
(3) Nozzle wall in shear
( / 2)*Mean nozzle dia*tn*Sn = ( / 2)*23,625*0,375*11 690 = 162 681,24 lbf
(4) Groove weld in tension
( / 2)*Nozzle OD*tw*Sg = ( / 2)*24*0,105*12 358 = 48 917,99 lbf
Loading on welds per UG-41(b)(1)
W
=
=
=
(A - A1 + 2*tn*fr1*(E1*t - F*tr))*Sv
(1,3425 - 1,0988 + 2*0,375*1*(1*0,105 - 1*0,0577))*16 700
4 660,97 lbf
W1-1 =
=
=
(A2 + A5 + A41 + A42)*Sv
(0,191 + 0,0263 + 0,0156 + 0,011)*16 700
4 072,3 lbf
W2-2 =
=
=
(A2 + A3 + A41 + A43 + 2*tn*t*fr1)*Sv
(0,191 + 0 + 0,0156 + 0 + 2*0,375*0,105*1)*16 700
4 765,35 lbf
W3-3 =
=
=
(A2 + A3 + A5 + A41 + A42 + A43 + 2*tn*t*fr1)*Sv
(0,191 + 0 + 0,0263 + 0,0156 + 0,011 + 0 + 2*0,375*0,105*1)*16 700
5 387,42 lbf
Load for path 1-1 lesser of W or W1-1 = 4 072,3 lbf
107/142
Path 1-1 through (2) & (3) = 32 729,06 + 162 681,24 = 195 410,29 lbf
Path 1-1 is stronger than W1-1 so it is acceptable per UG-41(b)(1).
Load for path 2-2 lesser of W or W2-2 = 4 660,97 lbf
Path 2-2 through (1), (4) = 38 561,48 + 48 917,99 = 87 479,47 lbf
Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).
Load for path 3-3 lesser of W or W3-3 = 4 660,97 lbf
Path 3-3 through (2), (4) = 32 729,06 + 48 917,99 = 81 647,05 lbf
Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).
108/142
Reinforcement Calculations for MAEP
UG-37 Area Calculation Summary (in2)
UG-45
Summary (in)
For Pe = 0,15 psi @ 100 F
The opening is adequately reinforced
The nozzle passes
UG-45
A
required
A
available
0,8955
0,896
A1
A2
0,6503 0,1928
A3
--
A
welds
A5
treq
tmin
0,0263 0,0266 0,0625 0,375
UG-41 Weld Failure Path Analysis Summary
Weld strength calculations are not required for external pressure
UW-16 Weld Sizing Summary
Weld description
Required weld
throat size (in)
Actual weld
throat size (in)
Status
Nozzle to pad fillet (Leg 41)
0,0735
0,0875
weld size is adequate
Pad to shell fillet (Leg 42)
0,0525
0,0735
weld size is adequate
Calculations for external pressure 0,15 psi @ 100 F
Parallel Limit of reinforcement per UG-40
LR
=
=
=
MAX(d, Rn + (tn - Cn) + (t - C))
MAX(23,25, 11,625 + (0,375 - 0) + (0,105 - 0))
23,25 in
Outer Normal Limit of reinforcement per UG-40
LH
=
=
=
MIN(2,5*(t - C), 2,5*(tn - Cn) + te)
MIN(2,5*(0,105 - 0), 2,5*(0,375 - 0) + 0,105)
0,2625 in
Nozzle required thickness per UG-28 trn = 0,0077 in
From UG-37(d)(1) required thickness tr = 0,077 in
Area required per UG-37(d)(1)
Allowable stresses: Sn = 16 700, Sv = 16 700, Sp = 16 700 psi
fr1 = lesser of 1 or Sn / Sv = 1
fr2 = lesser of 1 or Sn / Sv = 1
fr3 = lesser of fr2 or Sp / Sv = 1
109/142
fr4 = lesser of 1 or Sp / Sv = 1
=
=
=
0,5*(d*tr*F + 2*tn*tr*F*(1 - fr1))
0,5*(23,25*0,077*1 + 2*0,375*0,077*1*(1 - 1))
0,8955 in2
Area available from FIG. UG-37.1
A1 = larger of the following= 0,6503 in2
=
=
=
d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)
23,25*(1*0,105 - 1*0,077) - 2*0,375*(1*0,105 - 1*0,077)*(1 - 1)
0,6503 in2
=
=
=
2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)
2*(0,105 + 0,375)*(1*0,105 - 1*0,077) - 2*0,375*(1*0,105 - 1*0,077)*(1 - 1)
0,0269 in2
A2 = smaller of the following= 0,1928 in2
=
=
=
5*(tn - trn)*fr2*t
5*(0,375 - 0,0077)*1*0,105
0,1928 in2
=
=
=
2*(tn - trn)*fr2*Lpr
2*(0,375 - 0,0077)*1*0,3125
0,2296 in2
A41 =
=
=
Leg2*fr3
0,1252*1
0,0156 in2
A42 =
=
=
Leg2*fr4
0,1052*1
0,011 in2
A5
(Dp - d - 2*tn)*te*fr4
(24,25 - 23,25 - 2*0,375)*0,105*1
0,0263 in2
=
=
=
Area =
=
=
A1 + A2 + A41 + A42 + A5
0,6503 + 0,1928 + 0,0156 + 0,011 + 0,0263
0,896 in2
As Area >= A the reinforcement is adequate.
110/142
UW-16(c)(2) Weld Check
Inner fillet: tmin
= lesser of 0,75 or tn or te = 0,105 in
tw(min) = 0,7*tmin = 0,0735 in
tw(actual) = 0,7*Leg = 0.7*0,125 = 0,0875 in
Outer fillet: tmin
= lesser of 0,75 or te or t = 0,105 in
tw(min) = 0,5*tmin = 0,0525 in
tw(actual) = 0,7*Leg = 0.7*0,105 = 0,0735 in
UG-45 Nozzle Neck Thickness Check
ta UG-28
0,0077 in
ta
=
=
=
max[ ta UG-28 , ta UG-22 ]
max[ 0,0077 , 0 ]
0,0077 in
tb2
=
=
=
P*R / (S*E - 0,6*P) + Corrosion
0,1464*60 / (16 700*1 - 0,6*0,1464) + 0
0,0005 in
tb2
=
=
=
max[ tb2 , tb UG16 ]
max[ 0,0005 , 0,0625 ]
0,0625 in
tb
=
=
=
min[ tb3 , tb2 ]
min[ 0,3281 , 0,0625 ]
0,0625 in
tUG-45
=
=
=
max[ ta , tb ]
max[ 0,0077 , 0,0625 ]
0,0625 in
Available nozzle wall thickness new, tn = 0,375 in
The nozzle neck thickness is adequate.
External Pressure, (Corroded & at 100 F) UG-28(c)
L / Do = 7,5226 / 24 = 0,3134
Do / t = 24 / 0,0077 = 3116,5647
Experimental basin formula
Pa
= [2,42*E / (1 - 2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3
= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0077 / 24)2,50 / (7,5226 / 24 - 0,45*(0,0077 / 24)0,50)] / 3
= 0,15 psi
111/142
Design thickness for external pressure Pa = 0,15 psi
ta
= t + Corrosion
= 0,0077 + 0 = 0,0077"
112/142
Support Skirt #1
ASME Section VIII Division 1, 2013 Edition
Component
Support Skirt
Material
SA-240 304L (II-D p. 86, ln. 43)
Skirt is Attached To
Cylinder #4
Skirt Attachment Offset
1" up from the bottom seam
Design Temperature
Internal
100F
External
100F
Dimensions
Inner Diameter
Top
120,21"
Botttom
120,21"
Length (includes base ring thickness)
40"
Nominal Thickness
0,25"
Corrosion
Inner
0"
Outer
0"
Weight
New
1 083,75 lb
Corroded
1 083,75 lb
Joint Efficiency
Top
0,55
Bottom
0,8
Skirt design thickness, largest of the following + corrosion = 0,0668 in
The governing condition is due to earthquake, compressive stress at the base, operating & corroded.
The skirt thickness of 0,25 in is adequate.
113/142
Results Summary
Calculated
Stress/E
(psi)
Required
thickness
(in)
7 308,12
-805,81
0,0276
7 308,12
1 596,42
0,0546
70
16 700
57,74
0,0009
bottom
70
7 308,12
208,52
0,0071
top
100
7 308,12
-805,81
0,0276
vacuum, corroded (-)
bottom
100
7 308,12
1 596,42
0,0546
Seismic
operating, corroded (+)
top
100
7 308,12
-519,31
0,0178
Seismic
operating, corroded (-)
bottom
100
7 308,12
1 953,31
0,0668
Seismic
empty, corroded (+)
bottom
70
7 308,12
-21,57
0,0007
Seismic
empty, corroded (-)
bottom
70
7 308,12
140,76
0,0048
Seismic
vacuum, corroded (+)
top
100
7 308,12
-519,31
0,0178
Seismic
vacuum, corroded (-)
bottom
100
7 308,12
1 953,31
0,0668
Governing
Skirt
Location
Temperature
(F)
Allowable
Stress
(psi)
operating, corroded (+)
top
100
operating, corroded (-)
bottom
100
empty, corroded (+)
bottom
Wind
empty, corroded (-)
Wind
vacuum, corroded (+)
Wind
Loading
Vessel
Condition
(Stress)
Wind
Wind
Wind
Loading due to wind, operating & corroded
Windward side (tensile)
Required thickness, tensile stress at base:
t
= -0,6*W / (*D*St*E) + 48*M / (*D2*St*E)
= -0,6*140 906,34 / (*120,46*7 308*1) + 48*25 420,5 / (*120,462*7 308*1)
= 0,0269 in
Required thickness, tensile stress at the top:
t
= -0,6*Wt / (*Dt*St*E) + 48*Mt / (*Dt2*St*E)
= -0,6*139 822,59 / (*120,46*7 308*1) + 48*19 215,2 / (*120,462*7 308*1)
= 0,0276 in
Leeward side (compressive)
Required thickness, compressive stress at base:
t
= W / (*D*Sc*Ec) + 48*M / (*D2*Sc*Ec)
= 140 906,34 / (*120,46*7 308*1) + 48*25 420,5 / (*120,462*7 308*1)
= 0,0546 in
Required thickness, compressive stress at the top:
t
= Wt / (*Dt*Sc*Ec) + 48*Mt / (*Dt2*Sc*Ec)
= 139 822,59 / (*120,46*7 308*1) + 48*19 215,2 / (*120,462*7 308*1)
= 0,0533 in
114/142
Loading due to wind, empty & corroded
Windward side (tensile)
Required thickness, tensile stress at base:
t
= -0,6*W / (*D*St*E) + 48*M / (*D2*St*E)
= -0,6*9 598,83 / (*120,46*16 700*0,8) + 48*25 420,5 / (*120,462*16 700*0,8)
= 0,0009 in
Required thickness, tensile stress at the top:
t
= -0,6*Wt / (*Dt*St*E) + 48*Mt / (*Dt2*St*E)
= -0,6*8 515,09 / (*120,46*16 700*0,55) + 48*19 215,2 / (*120,462*16 700*0,55)
= 0,0007 in
Leeward side (compressive)
Required thickness, compressive stress at base:
t
= W / (*D*Sc*Ec) + 48*M / (*D2*Sc*Ec)
= 9 598,83 / (*120,46*7 308*1) + 48*25 420,5 / (*120,462*7 308*1)
= 0,0071 in
Required thickness, compressive stress at the top:
t
= Wt / (*Dt*Sc*Ec) + 48*Mt / (*Dt2*Sc*Ec)
= 8 515,09 / (*120,46*7 308*1) + 48*19 215,2 / (*120,462*7 308*1)
= 0,0058 in
Loading due to wind, vacuum & corroded
Windward side (tensile)
Required thickness, tensile stress at base:
t
= -0,6*W / (*D*St*E) + 48*M / (*D2*St*E)
= -0,6*140 906,34 / (*120,46*7 308*1) + 48*25 420,5 / (*120,462*7 308*1)
= 0,0269 in
Required thickness, tensile stress at the top:
t
= -0,6*Wt / (*Dt*St*E) + 48*Mt / (*Dt2*St*E)
= -0,6*139 822,59 / (*120,46*7 308*1) + 48*19 215,2 / (*120,462*7 308*1)
= 0,0276 in
115/142
Leeward side (compressive)
Required thickness, compressive stress at base:
t
= W / (*D*Sc*Ec) + 48*M / (*D2*Sc*Ec)
= 140 906,34 / (*120,46*7 308*1) + 48*25 420,5 / (*120,462*7 308*1)
= 0,0546 in
Required thickness, compressive stress at the top:
t
= Wt / (*Dt*Sc*Ec) + 48*Mt / (*Dt2*Sc*Ec)
= 139 822,59 / (*120,46*7 308*1) + 48*19 215,2 / (*120,462*7 308*1)
= 0,0533 in
Loading due to earthquake, operating & corroded
Tensile side
Required thickness, tensile stress at base:
t
= -(0,6 - 0,14*SDS)*W / (*D*St*E) + 48*M / (*D2*St*E)
= -(0,6 - 0,14*0,208)*140 906,34 / (*120,46*7 308*1) + 48*99 859,8 / (*120,462*7 308*1)
= 0,0147 in
Required thickness, tensile stress at the top:
t
= -(0,6 - 0,14*SDS)*Wt / (*Dt*St*E) + 48*Mt / (*Dt2*St*E)
= -(0,6 - 0,14*0,208)*139 822,59 / (*120,46*7 308*1) + 48*77 020,8 / (*120,462*7 308*1)
= 0,0178 in
Compressive side
Required thickness, compressive stress at base:
t
= (1 + 0,14*SDS)*W / (*D*Sc*Ec) + 48*M / (*D2*Sc*Ec)
= (1 + 0,14*0,208)*140 906,34 / (*120,46*7 308*1) + 48*99 859,8 / (*120,462*7 308*1)
= 0,0668 in
Required thickness, compressive stress at the top:
t
= (1 + 0,14*SDS)*Wt / (*Dt*Sc*Ec) + 48*Mt / (*Dt2*Sc*Ec)
= (1 + 0,14*0,208)*139 822,59 / (*120,46*7 308*1) + 48*77 020,8 / (*120,462*7 308*1)
= 0,0631 in
Loading due to earthquake, empty & corroded
116/142
Tensile side
Required thickness, tensile stress at base:
t
= -(0,6 - 0,14*SDS)*W / (*D*St*E) + 48*M / (*D2*St*E)
= -(0,6 - 0,14*0,208)*9 598,83 / (*120,46*7 308*1) + 48*8 630,3 / (*120,462*7 308*1)
= 0,0007 in
Required thickness, tensile stress at the top:
t
= -(0,6 - 0,14*SDS)*Wt / (*Dt*St*E) + 48*Mt / (*Dt2*St*E)
= -(0,6 - 0,14*0,208)*8 515,09 / (*120,46*7 308*1) + 48*7 204,5 / (*120,462*7 308*1)
= 0,0007 in
Compressive side
Required thickness, compressive stress at base:
t
= (1 + 0,14*SDS)*W / (*D*Sc*Ec) + 48*M / (*D2*Sc*Ec)
= (1 + 0,14*0,208)*9 598,83 / (*120,46*7 308*1) + 48*8 630,3 / (*120,462*7 308*1)
= 0,0048 in
Required thickness, compressive stress at the top:
t
= (1 + 0,14*SDS)*Wt / (*Dt*Sc*Ec) + 48*Mt / (*Dt2*Sc*Ec)
= (1 + 0,14*0,208)*8 515,09 / (*120,46*7 308*1) + 48*7 204,5 / (*120,462*7 308*1)
= 0,0042 in
Loading due to earthquake, vacuum & corroded
Tensile side
Required thickness, tensile stress at base:
t
= -(0,6 - 0,14*SDS)*W / (*D*St*E) + 48*M / (*D2*St*E)
= -(0,6 - 0,14*0,208)*140 906,34 / (*120,46*7 308*1) + 48*99 859,8 / (*120,462*7 308*1)
= 0,0147 in
Required thickness, tensile stress at the top:
t
= -(0,6 - 0,14*SDS)*Wt / (*Dt*St*E) + 48*Mt / (*Dt2*St*E)
= -(0,6 - 0,14*0,208)*139 822,59 / (*120,46*7 308*1) + 48*77 020,8 / (*120,462*7 308*1)
= 0,0178 in
Compressive side
117/142
Required thickness, compressive stress at base:
t
= (1 + 0,14*SDS)*W / (*D*Sc*Ec) + 48*M / (*D2*Sc*Ec)
= (1 + 0,14*0,208)*140 906,34 / (*120,46*7 308*1) + 48*99 859,8 / (*120,462*7 308*1)
= 0,0668 in
Required thickness, compressive stress at the top:
t
= (1 + 0,14*SDS)*Wt / (*Dt*Sc*Ec) + 48*Mt / (*Dt2*Sc*Ec)
= (1 + 0,14*0,208)*139 822,59 / (*120,46*7 308*1) + 48*77 020,8 / (*120,462*7 308*1)
= 0,0631 in
118/142
Skirt Base Ring #1
Inputs
Base configuration
single base plate
Base plate material
Base plate allowable stress, Sp
20 000 psi
Foundation compressive strength
1 658 psi
Concrete ultimate 28-day strength
3 000 psi
Bolt circle, BC
124,75"
Base plate inner diameter, Di
118"
Base plate outer diameter, Do
130"
Base plate thickness, tb
0,5"
Gusset separation, w
4"
Gusset height, h
4,75"
Gusset thickness, tg
0,375"
Anchor Bolts
Material
Allowable stress, Sb
20 000 psi
Bolt size and type
0,75 " series 8 threaded
Number of bolts, N
Corrosion allowance (applied to root radius)
0"
Anchor bolt clearance
0,375"
Bolt root area (corroded), Ab
0,3 in2
Diameter of anchor bolt holes, db
1,125"
Initial bolt preload
Bolt at 0
0% (0 psi)
No
119/142
Results Summary
Base V
(lbf)
Base M
(lbf-ft)
W
(lb)
Required
bolt area
(in2)
tr
Foundation
bearing
stress
(psi)
Load
Vessel
condition
Wind
operating, corroded
2 022,5 25 420,5 141 254,3
0 0,4483
65,04
Wind
operating, new
2 022,5 25 420,5 141 254,3
0 0,4483
65,04
Wind
empty, corroded
2 022,5 25 420,5
9 946,8 0,0238 0,1637
8,67
Wind
empty, new
2 022,5 25 420,5
9 946,8 0,0238 0,1637
8,67
Wind
vacuum, corroded
2 022,5 25 420,5 141 254,3
0 0,4483
65,04
Seismic
operating, corroded
6 855,5 99 859,8 141 254,3
0 0,4962
79,7
Seismic
operating, new
6 855,5 99 859,8 141 254,3
0 0,4962
79,7
Seismic
empty, corroded
434,5
8 630,3
9 946,8
0 0,1349
5,89
Seismic
empty, new
434,5
8 630,3
9 946,8
0 0,1349
5,89
Seismic
vacuum, corroded
6 855,5 99 859,8 141 254,3
0 0,4962
79,7
Base
(in)
Anchor bolt load (operating, corroded + Wind)
P = -0,6*W / N + 48 * M / (N*BC)
= -0,6*141 254,34 / 8 + 48 * 25 420,5 / (8*124,75)
= -9 371,45 lbf
The anchor bolts are satisfactory (no net uplift on anchor bolt)
Foundation bearing stress (operating, corroded + Wind)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + 141 254,34 / 2 329,3928 + 6*25 420,5*130 / 4 502 895
= 65 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (operating, corroded + Wind)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*65*44,23922 = 313,2 lbf
My = -0,4773*65*4,6452 = -669,9 lbf
tr = (6*Mmax / Sp)0,5
= (6*669,86 / 20 000)0,5
= 0,4483 in
120/142
The base plate thickness is satisfactory.
Base plate bolt load (Jawad & Farr eq. 12.13, operating, corroded + Wind)
Bolt load = Ab*fs =0,302*0 = 0 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*0*4,645 / (2**0,252*4,75)
= 0 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
Anchor bolt load (operating, new + Wind)
P = -0,6*W / N + 48 * M / (N*BC)
= -0,6*141 254,34 / 8 + 48 * 25 420,5 / (8*124,75)
= -9 371,45 lbf
The anchor bolts are satisfactory (no net uplift on anchor bolt)
Foundation bearing stress (operating, new + Wind)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + 141 254,34 / 2 329,3928 + 6*25 420,5*130 / 4 502 895
= 65 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (operating, new + Wind)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*65*44,23922 = 313,2 lbf
My = -0,4773*65*4,6452 = -669,9 lbf
tr = (6*Mmax / Sp)0,5
= (6*669,86 / 20 000)0,5
= 0,4483 in
121/142
The base plate thickness is satisfactory.
Base plate bolt load (Jawad & Farr eq. 12.13, operating, new + Wind)
Bolt load = Ab*fs =0,302*0 = 0 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*0*4,645 / (2**0,252*4,75)
= 0 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
Anchor bolt load (empty, corroded + Wind)
P = -0,6*W / N + 48 * M / (N*BC)
= -0,6*9 946,83 / 8 + 48 * 25 420,5 / (8*124,75)
= 476,62 lbf
Required area per bolt = P / Sb = 0,0238 in2
The area provided (0,302 in2) by the specified anchor bolt is adequate.
Foundation bearing stress (empty, corroded + Wind)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + 9 946,83 / 2 329,3928 + 6*25 420,5*130 / 4 502 895
= 9 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (empty, corroded + Wind)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*9*44,23922 = 41,8 lbf
My = -0,4773*9*4,6452 = -89,3 lbf
tr = (6*Mmax / Sp)0,5
= (6*89,33 / 20 000)0,5
= 0,1637 in
122/142
The base plate thickness is satisfactory.
Base plate bolt load (Jawad & Farr eq. 12.13, empty, corroded + Wind)
Bolt load = Ab*fs =0,302*1 578 = 476,62 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*476,62 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0,1447 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*476,62*4,645 / (2**0,252*4,75)
= 1 780,3 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
Anchor bolt load (empty, new + Wind)
P = -0,6*W / N + 48 * M / (N*BC)
= -0,6*9 946,83 / 8 + 48 * 25 420,5 / (8*124,75)
= 476,62 lbf
Required area per bolt = P / Sb = 0,0238 in2
The area provided (0,302 in2) by the specified anchor bolt is adequate.
Foundation bearing stress (empty, new + Wind)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + 9 946,83 / 2 329,3928 + 6*25 420,5*130 / 4 502 895
= 9 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (empty, new + Wind)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*9*44,23922 = 41,8 lbf
My = -0,4773*9*4,6452 = -89,3 lbf
tr = (6*Mmax / Sp)0,5
= (6*89,33 / 20 000)0,5
123/142
= 0,1637 in
The base plate thickness is satisfactory.
Base plate bolt load (Jawad & Farr eq. 12.13, empty, new + Wind)
Bolt load = Ab*fs =0,302*1 578 = 476,62 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*476,62 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0,1447 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*476,62*4,645 / (2**0,252*4,75)
= 1 780,3 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
Anchor bolt load (vacuum, corroded + Wind)
P = -0,6*W / N + 48 * M / (N*BC)
= -0,6*141 254,34 / 8 + 48 * 25 420,5 / (8*124,75)
= -9 371,45 lbf
The anchor bolts are satisfactory (no net uplift on anchor bolt)
Foundation bearing stress (vacuum, corroded + Wind)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + 141 254,34 / 2 329,3928 + 6*25 420,5*130 / 4 502 895
= 65 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (vacuum, corroded + Wind)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*65*44,23922 = 313,2 lbf
My = -0,4773*65*4,6452 = -669,9 lbf
tr = (6*Mmax / Sp)0,5
= (6*669,86 / 20 000)0,5
= 0,4483 in
124/142
The base plate thickness is satisfactory.
Base plate bolt load (Jawad & Farr eq. 12.13, vacuum, corroded + Wind)
Bolt load = Ab*fs =0,302*0 = 0 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*0*4,645 / (2**0,252*4,75)
= 0 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
Anchor bolt load (operating, corroded + Seismic)
P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)
= -(0,6 - 0,14*0,208)*141 254,34 / 8 + 48 * 99 859,8 / (8*124,75)
= -5 277,03 lbf
The anchor bolts are satisfactory (no net uplift on anchor bolt)
Foundation bearing stress (operating, corroded + Seismic)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*141 254,34 / 2 329,3928 + 6*99 859,8*130 / 4 502 895
= 80 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (operating, corroded + Seismic)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*80*44,23922 = 383,7 lbf
My = -0,4773*80*4,6452 = -820,8 lbf
tr = (6*Mmax / Sp)0,5
= (6*820,84 / 20 000)0,5
= 0,4962 in
125/142
The base plate thickness is satisfactory.
Base plate bolt load (Jawad & Farr eq. 12.13, operating, corroded + Seismic)
Bolt load = Ab*fs =0,302*0 = 0 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*0*4,645 / (2**0,252*4,75)
= 0 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
Anchor bolt load (operating, new + Seismic)
P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)
= -(0,6 - 0,14*0,208)*141 254,34 / 8 + 48 * 99 859,8 / (8*124,75)
= -5 277,03 lbf
The anchor bolts are satisfactory (no net uplift on anchor bolt)
Foundation bearing stress (operating, new + Seismic)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*141 254,34 / 2 329,3928 + 6*99 859,8*130 / 4 502 895
= 80 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (operating, new + Seismic)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*80*44,23922 = 383,7 lbf
My = -0,4773*80*4,6452 = -820,8 lbf
tr = (6*Mmax / Sp)0,5
= (6*820,84 / 20 000)0,5
= 0,4962 in
The base plate thickness is satisfactory.
126/142
Base plate bolt load (Jawad & Farr eq. 12.13, operating, new + Seismic)
Bolt load = Ab*fs =0,302*0 = 0 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*0*4,645 / (2**0,252*4,75)
= 0 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
Anchor bolt load (empty, corroded + Seismic)
P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)
= -(0,6 - 0,14*0,208)*9 946,83 / 8 + 48 * 8 630,3 / (8*124,75)
= -294,72 lbf
The anchor bolts are satisfactory (no net uplift on anchor bolt)
Foundation bearing stress (empty, corroded + Seismic)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*9 946,83 / 2 329,3928 + 6*8 630,3*130 / 4 502 895
= 6 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (empty, corroded + Seismic)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*6*44,23922 = 28,4 lbf
My = -0,4773*6*4,6452 = -60,7 lbf
tr = (6*Mmax / Sp)0,5
= (6*60,65 / 20 000)0,5
= 0,1349 in
The base plate thickness is satisfactory.
127/142
Base plate bolt load (Jawad & Farr eq. 12.13, empty, corroded + Seismic)
Bolt load = Ab*fs =0,302*0 = 0 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*0*4,645 / (2**0,252*4,75)
= 0 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
Anchor bolt load (empty, new + Seismic)
P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)
= -(0,6 - 0,14*0,208)*9 946,83 / 8 + 48 * 8 630,3 / (8*124,75)
= -294,72 lbf
The anchor bolts are satisfactory (no net uplift on anchor bolt)
Foundation bearing stress (empty, new + Seismic)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*9 946,83 / 2 329,3928 + 6*8 630,3*130 / 4 502 895
= 6 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (empty, new + Seismic)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*6*44,23922 = 28,4 lbf
My = -0,4773*6*4,6452 = -60,7 lbf
tr = (6*Mmax / Sp)0,5
= (6*60,65 / 20 000)0,5
= 0,1349 in
The base plate thickness is satisfactory.
Base plate bolt load (Jawad & Farr eq. 12.13, empty, new + Seismic)
128/142
Bolt load = Ab*fs =0,302*0 = 0 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*0*4,645 / (2**0,252*4,75)
= 0 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
Anchor bolt load (vacuum, corroded + Seismic)
P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)
= -(0,6 - 0,14*0,208)*141 254,34 / 8 + 48 * 99 859,8 / (8*124,75)
= -5 277,03 lbf
The anchor bolts are satisfactory (no net uplift on anchor bolt)
Foundation bearing stress (vacuum, corroded + Seismic)
Ac = *(Do2 - Di2) / 4 - N**db2 / 4
= *(1302 - 1182) / 4 - 8**1,1252 / 4
= 2 329,3928 in2
Ic = *(Do4 - Di4) / 64
= *(1304 - 1184) / 64
= 4 502 895 in4
fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic
= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*141 254,34 / 2 329,3928 + 6*99 859,8*130 / 4 502 895
= 80 psi
As fc <= 1 658 psi the base plate width is satisfactory.
Base plate required thickness (vacuum, corroded + Seismic)
From Brownell & Young, Table 10.3:, l / b = 0,105
Mx = 0,0025*80*44,23922 = 383,7 lbf
My = -0,4773*80*4,6452 = -820,8 lbf
tr = (6*Mmax / Sp)0,5
= (6*820,84 / 20 000)0,5
= 0,4962 in
The base plate thickness is satisfactory.
Base plate bolt load (Jawad & Farr eq. 12.13, vacuum, corroded + Seismic)
129/142
Bolt load = Ab*fs =0,302*0 = 0 lbf
tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5
= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5
= 0 in
The base plate thickness is satisfactory.
Check skirt for gusset reaction (Jawad & Farr eq. 12.14)
Sr = 1,5*F*b / (gussets**tsk2*h)
= 1,5*0*4,645 / (2**0,252*4,75)
= 0 psi
As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.
130/142
Welded Cover #1
ASME Section VIII Division 1, 2013 Edition
Component
Welded Cover
Configuration
Figure UG-34 Sketch (b-1)
Material
SA-240 316L (II-D p. 74, ln. 9)
Attached To
Cylinder #4
Impact
Tested
Normalized
Fine Grain
Practice
PWHT
Optimize MDMT/
Find MAWP
No
No
No
No
No
Design
Design
Pressure (psi) Temperature (F)
Internal
0,01
100
External
0,01
100
Design
MDMT (F)
-20
Static Liquid Head
Condition
Ps (psi)
Hs (in)
SG
Operating
12,05
222,5349
1,5
Test horizontal
6,85
126,4175
1,5
Dimensions
Inner Diameter
120"
Nominal Thickness
1,625"
Inside corner radius r
4,125"
Corrosion
Inner
0"
Outer
0"
Weight and Capacity
Weight (lb)
Capacity (US gal)
New
5 093,23
196,09
Corroded
5 093,23
196,09
Radiography
Category A joints
None UW-11(c) Type 1
Head to shell seam
None UW-11(c) Type 1
131/142
Results Summary
Governing condition
internal pressure
Minimum thickness per UG-16
0,0625" + 0" = 0,0625"
Design thickness due to internal pressure (t)
1,5891"
Design thickness due to external pressure (te)
0,0458"
Maximum allowable working pressure (MAWP)
0,56 psi
Maximum allowable pressure (MAP)
12,61 psi
Maximum allowable external pressure (MAEP)
12,61 psi
Rated MDMT
-320F
UHA-51 Material Toughness Requirements
Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320F
Material is exempt from impact testing at the Design MDMT of -20F.
Factor C from Fig. UG-34, sketch (b-1)
Factor C = 0,17
Design thickness, (at 100 F) UG-34 (c)(2)
t
=
=
=
d*Sqr(C*P / (S*E)) + Corrosion
120*Sqr(0,17*12,06 / (16 700*0,7)) + 0
1,5891"
Maximum allowable working pressure, (at 100 F )
MAWP =
=
=
(S*E / C)*(t / d)2 - Ps
(16 700*0,7 / 0,17)*(1,625 / 120)2 - 12,05
0,56 psi
Maximum allowable pressure, (At 70 F )
MAP
=
=
=
(S*E / C)*(t / d)2
(16 700*0,7 / 0,17)*(1,625 / 120)2
12,61 psi
Design thickness for external pressure, (at 100 F) UG-34(c)(2)
t
=
=
=
d*Sqr(C*Pe / (S*E)) + Corrosion
120*Sqr(0,17*0,01 / (16 700*0,7)) + 0
0,0458"
Maximum allowable external pressure, (At 100 F )
MAEP
=
=
=
(S*E / C)*(t / d)2
(16 700*0,7 / 0,17)*(1,625 / 120)2
12,61 psi
132/142
Seismic Code
Building Code: ASCE 7-10 ground supported
Site Class
Importance Factor, Ie
1,0000
Spectral Response Acceleration at short
period (% g), Ss
26,00%
Spectral Response Acceleration at period of
6,50%
1 sec (% g), S1
Response Modification Coeficient from
Table 15.4-2, R
3,0000
Acceleration-based Site Coefficient, Fa
1,2000
Velocity-based Site Coefficient, Fv
1,7000
Long-period Transition Period, TL
12,0000
Redundancy factor,
1,0000
Risk Category (Table 1.5-1)
II
User Defined Vertical Accelerations
Considered
No
Vessel Characteristics
Height
21,4596 ft
Operating, Corroded 141 254 lb
Weight
Empty, Corroded 9 947 lb
Vacuum, Corroded 141 254 lb
Period of Vibration Calculation
Operating, Corroded 0,084 sec (f = 12,0 Hz)
Fundamental Period, T
Empty, Corroded 0,013 sec (f = 77,7 Hz)
Vacuum, Corroded 0,084 sec (f = 12,0 Hz)
The fundamental period of vibration T (above) is calculated using the Rayleigh method of approximation
T = 2 * PI * Sqr( {Sum(Wi * yi2 )} / {g * Sum(Wi * yi )} ), where
Wi is the weight of the ith lumped mass, and
yi is its deflection when the system is treated as a cantilever beam.
133/142
12.4.2.3 Basic Load Combinations for Allowable Stress Design
Load combinations considered in accordance with ASCE section
2.4.1:
5.
D + P + Ps + 0.7E
= (1.0 + 0.14SDS)D + P + Ps + 0.7QE
8.
0.6D + P + Ps + 0.7E
= (0.6 - 0.14SDS)D + P + Ps + 0.7QE
Parameter description
D
= Dead load
= Internal or external pressure load
Ps = Static head load
E
= Seismic load
= Eh +/- Ev
= QE +/- 0.2SDSD
Seismic Shear Reports:
Operating, Corroded
Empty, Corroded
Vacuum, Corroded
Base Shear Calculations
Seismic Shear Report: Operating, Corroded
Elevation of Bottom
above Base (in)
Elastic Modulus E
(106 psi)
Inertia I
(ft4)
Seismic Shear at
Bottom (lb f)
Bending Moment at
Bottom (lb f-ft)
F&D Head #1
234
28,1
847
619
Cylinder #1
183
28,1
3,4451
3 192
9 404
Component
Cylinder #2
135
28,1
3,4451
4 875
25 706
Cylinder #3
87
28,1
3,4451
6 049
47 724
Cylinder #4 (top)
40
28,1
3,4451
6 723
77 057
Support Skirt #1
28,1
8,276
6 856
99 860
Cylinder #4 (bottom)
40
28,1
3,4451
125
36
Welded Cover #1
39
28,1
497,7822
116
26
*Moment of Inertia I varies over the length of the component
134/142
Seismic Shear Report: Empty, Corroded
Elevation of Bottom
above Base (in)
Elastic Modulus E
(106 psi)
Inertia I
(ft4)
Seismic Shear at
Bottom (lb f)
Bending Moment at
Bottom (lb f-ft)
F&D Head #1
234
28,3
67
67
Cylinder #1
183
28,3
3,4451
143
520
Cylinder #2
135
28,3
3,4451
197
1 205
Cylinder #3
87
28,3
3,4451
235
2 075
Cylinder #4 (top)
40
28,3
3,4451
282
7 250
Support Skirt #1
28,3
8,276
434
8 630
Cylinder #4 (bottom)
40
28,3
3,4451
139
45
Welded Cover #1
39
28,3
497,7822
138
34
Component
*Moment of Inertia I varies over the length of the component
Seismic Shear Report: Vacuum, Corroded
Elevation of Bottom
above Base (in)
Elastic Modulus E
(106 psi)
Inertia I
(ft4)
Seismic Shear at
Bottom (lb f)
Bending Moment at
Bottom (lb f-ft)
F&D Head #1
234
28,1
847
619
Cylinder #1
183
28,1
3,4451
3 192
9 404
Component
Cylinder #2
135
28,1
3,4451
4 875
25 706
Cylinder #3
87
28,1
3,4451
6 049
47 724
Cylinder #4 (top)
40
28,1
3,4451
6 723
77 057
Support Skirt #1
28,1
8,276
6 856
99 860
Cylinder #4 (bottom)
40
28,1
3,4451
125
36
Welded Cover #1
39
28,1
497,7822
116
26
*Moment of Inertia I varies over the length of the component
11.4.3: Maximum considered earthquake spectral response acceleration
The maximum considered earthquake spectral response acceleration at short period, SMS
SMS = Fa * Ss = 1,2000 * 26,00 / 100 = 0,3120
The maximum considered earthquake spectral response acceleration at 1 s period, SM1
SM1 = Fv * S1 = 1,7000 * 6,50 / 100 = 0,1105
11.4.4: Design spectral response acceleration parameters
Design earthquake spectral response acceleration at short period, SDS
SDS = 2 / 3 * SMS = 2 / 3 * 0,3120 = 0,2080
Design earthquake spectral response acceleration at 1 s period, SD1
SD1 = 2 / 3 * SM1 = 2 / 3 * 0,1105 = 0,0737
11.6 Seismic Design Category
The Risk Category is II.
From Table 11.6-1, the Seismic Design Category based on SDs = 0,2080 is B.
From Table 11.6-2, the Seismic Design Category based on SD1 = 0,0737 is B.
This vessel is assigned to Seismic Design Category B.
12.4.2.3: Seismic Load Combinations: Vertical Term
135/142
Factor is applied to dead load.
Compressive Side: = 1.0 + 0.14 * SDS
= 1.0 + 0.14 * 0,2080
= 1,0291
Tensile Side:
= 0.6 - 0.14 * SDS
= 0.6 - 0.14 * 0,2080
= 0,5709
Base Shear Calculations
Operating, Corroded
Empty, Corroded
Vacuum, Corroded
Base Shear Calculations: Operating, Corroded
Paragraph 15.4.4: Period Determination
Fundamental Period is taken from the Rayleigh method listed previously in this report.
T = 0,0836 sec.
12.8.1: Calculation of Seismic Response Coefficient
Cs is the value computed below, bounded by CsMin and CsMax:
CsMin is calculated with equation 15.4-1 and shall not be less than 0.03; in addition, if S1 >= 0.6g, CsMin shall not be
less than eqn 15.4-2.
CsMax calculated with 12.8-3 because (T = 0,0836) <= (TL = 12,0000)
Cs = SDS / (R / Ie) = 0,2080 / (3,0000 / 1,0000) = 0,0693
CsMin = max ( 0.044 * SDS * Ie , 0.03 )
= max ( 0.044 * 0,2080 * 1,0000 , 0.03 )
CsMax = SD1 / (T * (R / Ie))
= 0,0737 / (0,0836 * (3,0000 / 1,0000)) = 0,2937
= 0,0300
Cs = 0,0693
12.8.1: Calculation of Base Shear
V = Cs * W
= 0,0693 * 141 254,3438
= 9 793,63 lb
12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh
QE = V
Eh = 0.7 * * QE (Only 70% of seismic load considered as per Section 2.4.1)
= 0,70 * 1,0000 * 9 793,63
= 6 855,54 lb
136/142
Base Shear Calculations: Empty, Corroded
Paragraph 15.4.2: T < 0,06, so:
V = 0,30 * SDS * W * Ie
= 0,30 * 0,2080 * 9 946,8330 * 1,0000
= 620,68 lb
12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh
QE = V
Eh = 0.7 * * QE (Only 70% of seismic load considered as per Section 2.4.1)
= 0,70 * 1,0000 * 620,68
= 434,48 lb
Base Shear Calculations: Vacuum, Corroded
Paragraph 15.4.4: Period Determination
Fundamental Period is taken from the Rayleigh method listed previously in this report.
T = 0,0836 sec.
12.8.1: Calculation of Seismic Response Coefficient
Cs is the value computed below, bounded by CsMin and CsMax:
CsMin is calculated with equation 15.4-1 and shall not be less than 0.03; in addition, if S1 >= 0.6g, CsMin shall not be
less than eqn 15.4-2.
CsMax calculated with 12.8-3 because (T = 0,0836) <= (TL = 12,0000)
Cs = SDS / (R / Ie) = 0,2080 / (3,0000 / 1,0000) = 0,0693
CsMin = max ( 0.044 * SDS * Ie , 0.03 )
= max ( 0.044 * 0,2080 * 1,0000 , 0.03 )
CsMax = SD1 / (T * (R / Ie))
= 0,0737 / (0,0836 * (3,0000 / 1,0000)) = 0,2937
= 0,0300
Cs = 0,0693
12.8.1: Calculation of Base Shear
V = Cs * W
= 0,0693 * 141 254,3438
= 9 793,63 lb
12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh
QE = V
Eh = 0.7 * * QE (Only 70% of seismic load considered as per Section 2.4.1)
= 0,70 * 1,0000 * 9 793,63
= 6 855,54 lb
137/142
Wind Code
Building Code: ASCE 7-10
Elevation of base above grade
0,0000 ft
Increase effective outer diameter by
0,0000 ft
Wind Force Coefficient, Cf
0,5100
Risk Category (Table 1.5-1)
II
Basic Wind Speed, V
115,0000 mph
Exposure category
Wind Directionality Factor, Kd
0,9500
Topographic Factor, Kzt
1,0000
Enforce min. loading of 16 psf
Yes
Vessel Characteristics
Height, h
Minimum Diameter, b
21,4596 ft
Operating, Corroded 10,0175 ft
Empty, Corroded 10,0175 ft
Operating, Corroded 11,9624 Hz
Fundamental Frequency, n1
Empty, Corroded 77,7439 Hz
Vacuum, Corroded 11,9624 Hz
Operating, Corroded 0,0249
Damping coefficient,
Empty, Corroded 0,0200
Vacuum, Corroded 0,0249
Table Lookup Values
2.4.1 Basic Load Combinations for Allowable Stress Design
Load combinations considered in accordance with ASCE
section 2.4.1:
5.
D + P + Ps + 0.6W
7.
0.6D + P + Ps + 0.6W
Parameter Description
= Dead load
= Internal or external pressure load
Ps
= Static head load
= Wind load
138/142
Wind Deflection Reports:
Operating, Corroded
Empty, Corroded
Vacuum, Corroded
Wind Pressure Calculations
Wind Deflection Report: Operating, Corroded
Platform
Wind Shear at
Bottom (lb f)
Total Wind
Shear at
Bottom (lb f)
Bending
Moment at
Bottom (lb f-ft)
Elevation of
Bottom above
Base (in)
Effective OD
(ft)
Elastic Modulus
E (106 psi)
F&D Head #1
234
10,02
28,1
146
119
0,0017
Cylinder #1
183
10,02
28,1
3,445
555
1 608
0,0014
Cylinder #2
135
10,02
28,1
3,445
939
4 595
0,001
Component
Inertia
I (ft4)
Deflection
at Top (in)
Cylinder #3
87
10,02
28,1
3,445
1 324
9 122
0,0006
Cylinder #4 (top)
40
10,02
28,1
3,445
1 701
19 215
0,0003
Support Skirt #1
10,06
28,1
8,276
2 023
25 421
Cylinder #4 (bottom)
40
10,06
28,1
3,445
Welded Cover #1
39
10,04
28,1
497,8
0,0001
Total Wind
Shear at
Bottom (lb f)
Bending
Moment at
Bottom (lb f-ft)
Deflection
at Top (in)
*Moment of Inertia I varies over the length of the component
Wind Deflection Report: Empty, Corroded
Platform
Wind Shear at
Bottom (lb f)
Elevation of
Bottom above
Base (in)
Effective OD
(ft)
Elastic Modulus
E (106 psi)
F&D Head #1
234
10,02
28,3
146
119
0,0016
Cylinder #1
183
10,02
28,3
3,445
555
1 608
0,0014
Cylinder #2
135
10,02
28,3
3,445
939
4 595
0,001
Component
Inertia
I (ft4)
Cylinder #3
87
10,02
28,3
3,445
1 324
9 122
0,0006
Cylinder #4 (top)
40
10,02
28,3
3,445
1 701
19 215
0,0003
Support Skirt #1
10,06
28,3
8,276
2 023
25 421
Cylinder #4 (bottom)
40
10,06
28,3
3,445
Welded Cover #1
39
10,04
28,3
497,8
0,0001
*Moment of Inertia I varies over the length of the component
139/142
Wind Deflection Report: Vacuum, Corroded
Platform
Wind Shear at
Bottom (lb f)
Total Wind
Shear at
Bottom (lb f)
Bending
Moment at
Bottom (lb f-ft)
Elevation of
Bottom above
Base (in)
Effective OD
(ft)
Elastic Modulus
E (106 psi)
F&D Head #1
234
10,02
28,1
146
119
0,0017
Cylinder #1
183
10,02
28,1
3,445
555
1 608
0,0014
Cylinder #2
135
10,02
28,1
3,445
939
4 595
0,001
Component
Inertia
I (ft4)
Deflection
at Top (in)
Cylinder #3
87
10,02
28,1
3,445
1 324
9 122
0,0006
Cylinder #4 (top)
40
10,02
28,1
3,445
1 701
19 215
0,0003
Support Skirt #1
10,06
28,1
8,276
2 023
25 421
Cylinder #4 (bottom)
40
10,06
28,1
3,445
Welded Cover #1
39
10,04
28,1
497,8
0,0001
*Moment of Inertia I varies over the length of the component
Wind Pressure (WP) Calculations
Gust Factor (G) Calculations
Kz = 2,01 * (Z/Zg)2/
= 2,01 * (Z/1 200,0000)0,2857
qz = 0,00256 * Kz * Kzt * Kd * V2
= 0,00256 * Kz * 1,0000 * 0,9500 * 115,00002
= 32,1632 * Kz
WP = 0.6 * qz * G * Cf (Minimum 16 lb/ft2)
= 0.6 * qz * G * 0,5100 (Minimum 16 lb/ft2)
Design Wind Pressures
Height Z
(')
Kz
qz
(psf)
WP (psf)
Operating Empty Hydrotest New Hydrotest Corroded Vacuum
15,0
0,5747 18,48
9,60
9,60
N.A.
N.A.
9,60
20,0
0,6240 20,07
9,60
9,60
N.A.
N.A.
9,60
25,0
0,6650 21,39
9,60
9,60
N.A.
N.A.
9,60
Design Wind Force determined from: F = Pressure * Af , where Af is the projected area.
Gust Factor Calculations
Operating, Corroded
Empty, Corroded
Vacuum, Corroded
Gust Factor Calculations: Operating, Corroded
Vessel is considered a rigid structure as n1 = 11,9624 Hz 1 Hz.
z = max ( 0,60 * h , zmin )
= max ( 0,60 * 21,4596 , 30,0000 )
= 30,0000
140/142
Iz = c * (33 / z)1/6
= 0,3000 * (33 / 30,0000)1/6
= 0,3048
Lz = l * (z / 33)ep
= 320,0000 * (30,0000 / 33)0,3333
= 309,9934
Q = Sqr(1 / (1 + 0,63 * ((b + h) / Lz)0,63))
= Sqr(1 / (1 + 0,63 * ((10,0175 + 21,4596) / 309,9934)0,63))
= 0,9329
G = 0.925 * (1 + 1.7 * gQ * Iz * Q) / (1 + 1.7 * gv * Iz)
= 0.925 * (1 + 1.7 * 3,40* 0,3048 * 0,9329) / (1 + 1.7 * 3,40 * 0,3048)
= 0,8854
Gust Factor Calculations: Empty, Corroded
Vessel is considered a rigid structure as n1 = 77,7439 Hz 1 Hz.
z = max ( 0,60 * h , zmin )
= max ( 0,60 * 21,4596 , 30,0000 )
= 30,0000
Iz = c * (33 / z)1/6
= 0,3000 * (33 / 30,0000)1/6
= 0,3048
Lz = l * (z / 33)ep
= 320,0000 * (30,0000 / 33)0,3333
= 309,9934
Q = Sqr(1 / (1 + 0,63 * ((b + h) / Lz)0,63))
= Sqr(1 / (1 + 0,63 * ((10,0175 + 21,4596) / 309,9934)0,63))
= 0,9329
G = 0.925 * (1 + 1.7 * gQ * Iz * Q) / (1 + 1.7 * gv * Iz)
= 0.925 * (1 + 1.7 * 3,40* 0,3048 * 0,9329) / (1 + 1.7 * 3,40 * 0,3048)
= 0,8854
Gust Factor Calculations: Vacuum, Corroded
Vessel is considered a rigid structure as n1 = 11,9624 Hz 1 Hz.
z = max ( 0,60 * h , zmin )
= max ( 0,60 * 21,4596 , 30,0000 )
= 30,0000
Iz = c * (33 / z)1/6
= 0,3000 * (33 / 30,0000)1/6
= 0,3048
Lz = l * (z / 33)ep
= 320,0000 * (30,0000 / 33)0,3333
= 309,9934
Q = Sqr(1 / (1 + 0,63 * ((b + h) / Lz)0,63))
141/142
= Sqr(1 / (1 + 0,63 * ((10,0175 + 21,4596) / 309,9934)0,63))
= 0,9329
G = 0.925 * (1 + 1.7 * gQ * Iz * Q) / (1 + 1.7 * gv * Iz)
= 0.925 * (1 + 1.7 * 3,40* 0,3048 * 0,9329) / (1 + 1.7 * 3,40 * 0,3048)
= 0,8854
Table Lookup Values
= 7,0000, zg = 1 200,0000 ft
[Table 26.9-1, page
256]
c = 0,3000, l = 320,0000, ep = 0,3333
[Table 26.9-1, page
256]
a = 0,2500, b = 0,4500
[Table 26.9-1, page
256]
zmin = 30,0000 ft
[Table 26.9-1, page
256]
gQ = 3,40
[26.9.4 page 254]
gv = 3,40
[26.9.4 page 254]
142/142