1 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
DESIGN CALCULATION
SHORT CIRCUIT FORCE CALCULATION
SHEET
2 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
SHEET
3 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
PREPARED
CHECKED
VTN
SSV
SHEET
CALCULATIONS ARE BASED ON IEC Std 865-1(1993)
1.0.0
SYSTEM PARAMETERS
1.1.1
System Voltage
132
kV
1.1.2
Frequency
50
Hz
1.1.3
Fault level
Isc
31.5
kA
(As per Tech Spec CH
-E0, Clause 5.00.00 e)
1.1.4
Duration of fault
Tfd
(As per Tech Spec CH
-E0, Clause 5.00.00 e)
2.0.0
ENVIRONMENTAL DETAILS
2.1.5
Acceleration due to gravity
gn
9.81
m/s2
3.0.0
OTHER DETAILS
3.1.1
Distance between supports (Maximum span)
3.1.3
Phase to Phase spacing of conductor
2.50
3.1.4
Width of Girder
Wg
3.1.5
Sub Conductor spacing
as
3.1.6
Sub-Conductor span (Spacer distance)
ls
3.1.7
Length of Insulator String
li
(Maximum Span allowable
by IEC-865-I)
Layout Drawing
vtn:
m 0 for Equipment
(Assumed )
(As per Tech Spec CH
-E0, Clause 1.01.09)
(Assumed)
(47 discs)
vtn:
m 0 for Equipment
3.1.8
Static Tensile Force per phase at Min. Temperature
Z0
Static Tensile Force per phase at Max. Temperature
40
kg
392.4
30
kg
294
(Sag Tension Calcultion)
(Sag Tension Calcultion)
3.1.9
Resultant Spring constant of both supports of one span
100000
N/m
(As per IEC 865-1(1993)Page 41)
3.1.10
Material Constant
Cth
0.27E-18
m4/A2s
(As per IEC 865-1(1993)Page 45)
4.0.0
CONDUCTOR DATA
4.1.1
Type of conductor
ACSR
Code name
COWSLIP
a)
Cross sectional area of conductor
As
0.001013
b)
Aluminium area (if ACSR)
Aa
#REF!
c)
Overall Diameter
d)
Unit weight of conductor
e)
Modulus of Elasticity of conductor
(As per Tech Spec CH
-E12, Clause 2.00.00 )
sq.m
ds
41.41
mm
m's
2.791
kg/m
6.73E+10
N/m2
(Typical Data)
4 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
6.5.0
DOCUMENT NO
: #REF!
#REF!
Cord length of main conductor in the span
Hence No. of Runs
DATE
2/21/2016
Lc
PREPARED
CHECKED
VTN
SSV
L -(2li + Wg)
5.00 - (2*0.000 + 0.0)
5.00
SHEET
m
1
------->(7.4a)
5 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
8.0.0
SHORT CIRCUIT FORCE CALCULATION
8.0.1
METHODOLOGY AND ASSUMPTIONS
PREPARED
CHECKED
VTN
SSV
SHEET
. The calculation is based on IEC 865 PART-1 1993
. The effect of Short Circuit Force has been considered to be on the gantries having Strung bus within the Substation to cater for extreme
operational situations.
. Temperature rise due to Short Circuit and the subsequent reduction in tension to this effect is neglected.
. The equations apply for span length upto approximately 60m
8.0.2
Short circuit force is the maximum of the following
a)
Tensile force during (Ft) Short Circuit
b)
Tensile force (Ff) after Short Circuit caused by drop (Drop force)
c)
Tensile force Fpicaused by Pinch effect
- Not applicable for Single run
CALCULATION
8.1.0
Tensile force during (Ft) Short Circuit
8.1.1
Electromagnetic Force / Unit Length (F' )
F'
0.75 (I"K3)2 Lc
2a
8.1.2
(Pg-39)
L
4 * 10-7 * 0.75 * 31500 *5.00 / ( 2*2.5*5.00)
59.54
N/m
The Parameter r is:
r
F'
(Pg-39)
n * m's * gn
8.1.3
59.54 / (1*2.791*9.81)
2.1744
arctan( r )
arctan(2.1744)
1.1397
radians
65.30
degrees
n * m's * gn * L2
The Direction of Resulting force (d1) is
d1
8.1.4
(Pg-39)
The Equivalent static conductor sag at midpoint (bc)
bc
(Pg-39)
8 Fst
8.1.5
(1 *2.791 *9.81 *5.00) / (8 *392)
0.22
The Period of the conductor oscillations (T)
T
0.8 *bc
gn
(Pg-39)
6 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
2 * (0.8*0.218 / 9.81)
0.84
secs
SHEET
7 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
8.1.6
DOCUMENT NO
: #REF!
#REF!
PREPARED
CHECKED
VTN
SSV
SHEET
Resulting period of the conductor oscillation during short circuit (Tres)
Tres
T
d1
1+r2 1-2
64
8.1.7
DATE
2/21/2016
(Pg-41)
2
90o
0.84/((1+2.1744)^0.25*(1-/64*(65.30/90))
0.59
secs
5.00E+07
N/m2
392.4 /( 1*0.001013)
Actual Young's Modulus (Es)
As per IEC 865-1(1993)- Eqn 27
sfin
Fst / n As
3.87E+05
Actual Young's modulus
Es
(Pg-41)
N/m2
E 0.3+0.7 sin
Fst *90o
n As dfin
for Fst < fin
nAs
for Fst > fin
nAs
8.1.8
6.73E+10*(0.3+0.7*sin(392.4*90/(1*0.001013*5.00E+7))
2.08E+10
Stiffness Norms (N)
N
SL
8.1.9
(Pg-41)
n Es As
1/ (100000*5.00 ) + 1/(1 *2.08E+10 *0.001013)
2.05E-06
( n gn m's L )2
1/N
Stress Factor (d)
z
24 (Fst)3
8.1.10
N/m2
(Pg-41)
(1.0* 9.81 * 2.791 *5.00) / ( 24 *392 *2.05E-06)
6.3120
Swing out angle at the end of short circuit flow(dk)
Fault Clearing time
Tfc
sec
0.4T
0.335
sec
Tk1
Tk1/Tres
Minimum (Tfc ,0.4T)
Minimum(1,0.335)
0.335
0.34/0.59
0.5686
d1 ( 1- cos (360o Tk1/Tres))
(Assumed)
sec
(Pg-41)
Swing out Angle
dk
for 0 < Tk1/Tres < 0.5
8 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
2d1
Hence dk
2* 65.30
130.61
SHEET
for Tk1/Tres > 0.5
degrees
9 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
8.1.11
DOCUMENT NO
: #REF!
#REF!
PREPARED
CHECKED
VTN
SSV
Quantity for maximum Swing out angle ( d )
=
Hence
8.1.12
SHEET
1 - r sin dk
(Pg-43)
for 0 < dk < 90o
1-r
for dk > 90o
1-2.174
d = -1.1744
Maximum Swing out angle ( dm )
(Pg-43)
dm
8.1.13
DATE
2/21/2016
1.25 arccosd
0.766 < d < 1
10 + arc cosd
-0.985 < d < 0.766
180o
d < -0.985
180.00
180.00
0.5895 / 4
0.1474
3(
degrees
The load parameter d is
Tres / 4
secs
(Pg-43)
Tk1 > Tres/ 4
1+r2 - 1)
3(r sin dk + cos dk-1)
8.1.14
3 ((1+2.1744) - 1)
4.1800
Tk1 < Tres / 4
Factor for tensile force in a flexible conductor (d)
Real solution of the following equation gives the value of d
d2 c 3 + w ( 2+d) c
+ (1+2d) d - d (2+d) = 0
(Pg-43)
17.473 + 34.744+13.624-39.008 = 0
Solving the above
8.1.15
0.7694
Ft
Fst (1+ cw)
for n=1
1.1 Fst (1+dd)
for n>2
The tensile force (Ft) due to Short Circuit is
(Pg-43)
Ft
8.2
8.2.1
392.4 (1+4.1800*0.7694)
1654
1.65 KN
1.2 Fst 1 + 8d dm
Tensile force (Ff) after Short Circuit caused by drop (Drop force)
Drop force Ff
(Pg-45)
10 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
PREPARED
CHECKED
VTN
SSV
180o
Ff
1.2 * 392.4 (1+8 *6.3120 * 180.00/180)
3379
3.38 KN
SHEET
11 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
PREPARED
CHECKED
VTN
SSV
8.3
Maximum Horizontal span displacement ( bh ) and Minimum air clearance ( amin )
8.3.1
Elastic expansion (Eela)
Eela
8.3.2
DATE
2/21/2016
N (Ft - Fst)
2.05E-6 *(1654 - 392.4)
2.58E-03
SHEET
(Pg-45)
Thermal Expansion (Eth)
Material constant (Cth ) is 0.27*10-18 m4/A2s for Cross section area of Aluminium/Steel > 6
0.17*10-18 m4/A2s for Cross section area of Aluminium/Steel < 6
0.088*10-18 m4/A2s for Cross section area of Copper
Thermal Expansion
Cth
Eth
0.27E-18
Cth
m4/A2s
I"K3 Tres/4
(Pg-45)
for Tk1>Tres/4
nAs
Cth
I"K3 Tk1
for Tk1<Tres/4
nAs
8.3.3
0.27E-18*(31500/(1*0.001013))*0.59/4
3.85E-05
Dilation Factor (CD)
CD
1+3
8
8.3.4
(Eela+Eth)
(Pg-45)
(1+3/8*(5/0.22)*(2.58E-03+3.85E-05))
1.23
1.05
for r < 0.8
0.97+0.1r
for 0.8 < r < 1.8
1.15
for r > 1.8
Form factor (CF)
(Pg-45)
CF
=
=
8.3.5
L
bc
1.15
#REF!
1.15
Maximum Horizontal span displacement ( bh )
(Pg-47)
For slack conductors
For strained Conductors
bh
bh
b h=
CF CD bc
for d m > 90o
CF CD bc sin dm
for dm < 90o
CF CD bc sin d1
for dm > d1
CF CD bc sin dm
for dm < d1
slack
=
1.15*1.23*0.2180*
0.31
#NAME?
12 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
8.3.6
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
PREPARED
CHECKED
VTN
SSV
SHEET
Minimum air clearance ( amin )
amin
a - 2bh
2.5- 2*0.31
1.88
(Pg-47)
#REF!
13 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
PREPARED
CHECKED
VTN
SSV
RESULTS
9.0.0
CONDUCTOR SELECTED
a)
Conductor Type
ACSR-COWSLIP
b)
No.of runs
1 run
c)
Minimum Air clearance in m
1.88
d)
Tensile force Ft
1.65 KN
e)
Drop force Ff
3.38 KN
g)
Phase Pull force (Maximum of f,g,h)
3.38 KN
Short Circuit Force of 0.00 KN (0.35T) shall be considered for Tower and Associated Foundation Design.
SHEET
14 of 72
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
SHEET
15+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
DESIGN CALCULATION
CONDUCTOR SIZING & SHORT CIRCUIT
FORCE CALCULATION- QUAD MOOSE
SHEET
16+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
SHEET
17+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
PREPARED
CHECKED
VTN
SSV
SHEET
CALCULATIONS ARE BASED ON IEC Std 865-1(1993)
1.0.0
SYSTEM PARAMETERS
1.1.1
System Voltage
132
kV
1.1.2
Frequency
50
Hz
1.1.3
Fault level
Isc
32
kA
(As per Tech Spec CH
-E0, Clause 4.00.00 e)
1.1.4
Duration of fault
Tfd
(As per Tech Spec CH
-E0, Clause 4.00.00 e)
2.0.0
ENVIRONMENTAL DETAILS
2.1.5
Acceleration due to gravity
gn
9.81
m/s2
3.0.0
OTHER DETAILS
3.1.1
Distance between supports (Maximum span)
3.1.3
Phase to Phase spacing of conductor
2.50
3.1.4
Width of Girder
Wg
#NAME?
(Assumed )
3.1.5
Sub Conductor spacing
as
(As per Tech Spec CH
-E0, Clause 1.01.09)
3.1.6
Sub-Conductor span (Spacer distance)
ls
#NAME?
(Assumed)
3.1.7
Length of Insulator String
li
47*0.145+0.2
3.1.8
Static Tensile Force per phase at Min. Temperature
Z0
30.00
kg
294.3
(Assumed)
0
3.1.9
Resultant Spring constant of both supports of one span
100000
N/m
(As per IEC 865-1(1993)Page 41)
3.1.10
Material Constant
Cth
0.27E-18
m4/A2s
(As per IEC 865-1(1993)Page 45)
4.0.0
CONDUCTOR DATA
4.1.1
Type of conductor
ACSR
Code name
COWSLIP
c)
Cross sectional area of conductor
As
#REF!
d)
Aluminium area (if ACSR)
Aa
#REF!
e)
Overall Diameter
f)
Unit weight of conductor
g)
Modulus of Elasticity of conductor
(As per Tech Spec CH
-E12, Clause 2.00.00 )
sq.m
ds
#REF!
mm
m's
#REF!
kg/m
#REF!
N/m2
(Typical Data)
18+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
6.5.0
DOCUMENT NO
: #REF!
#REF!
Cord length of main conductor in the span
Lc
PREPARED
CHECKED
VTN
SSV
=
=
=
Hence No. of Runs
DATE
2/21/2016
SHEET
L -(2li + Wg)
#NAME?
#NAME?
1
m
------->(7.4a)
19+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
8.0.0
SHORT CIRCUIT FORCE CALCULATION
8.0.1
METHODOLOGY AND ASSUMPTIONS
PREPARED
CHECKED
VTN
SSV
SHEET
. The calculation is based on IEC 865 PART-1 1993
. The effect of Short Circuit Force has been considered to be on the gantries having Strung bus within the Substation to cater for extreme
operational situations.
. Temperature rise due to Short Circuit and the subsequent reduction in tension to this effect is neglected.
. The equations apply for span length upto approximately 60m
8.0.2
Short circuit force is the maximum of the following
a)
Tensile force during (Ft) Short Circuit
b)
Tensile force (Ff) after Short Circuit caused by drop (Drop force)
c)
Tensile force Fpicaused by Pinch effect
- Not applicable for Single run
CALCULATION
8.1.0
Tensile force during (Ft) Short Circuit
8.1.1
Electromagnetic Force / Unit Length (F' )
F'
0.75 (I"K3)2 Lc
2a
=
=
8.1.2
(Pg-39)
L
#NAME?
#NAME?
N/m
The Parameter r is:
r
F'
(Pg-39)
n * m's * gn
=
8.1.3
#NAME?
#REF!
arctan( r )
The Direction of Resulting force (d1) is
d1
8.1.4
(Pg-39)
#REF!
#REF!
radians
#REF!
degrees
n * m's * gn * L2
The Equivalent static conductor sag at midpoint (bc)
bc
(Pg-39)
8 Fst
=
8.1.5
#REF!
#REF!
The Period of the conductor oscillations (T)
T
0.8 *bc
gn
(Pg-39)
20+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
=
=
#REF!
#REF!
secs
SHEET
21+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
8.1.6
DOCUMENT NO
: #REF!
#REF!
PREPARED
CHECKED
VTN
SSV
SHEET
Resulting period of the conductor oscillation during short circuit (Tres)
Tres
T
d1
1+r2 1-2
64
8.1.7
DATE
2/21/2016
(Pg-41)
2
90o
#REF!
#REF!
secs
5.00E+07
N/m2
#REF!
Actual Young's Modulus (Es)
As per IEC 865-1(1993)- Eqn 27
sfin
Fst / n As
#REF!
Actual Young's modulus
Es
(Pg-41)
N/m2
E 0.3+0.7 sin
Fst *90o
n As dfin
for Fst < fin
nAs
for Fst > fin
nAs
8.1.8
#REF!
#REF!
Stiffness Norms (N)
N
SL
8.1.9
N/m2
#REF!
#REF!
( n gn m's L )2
1/N
Stress Factor (d)
z
24 (Fst)3
=
=
8.1.10
(Pg-41)
n Es As
(Pg-41)
#REF!
#REF!
Swing out angle at the end of short circuit flow(dk)
Fault Clearing time
Tfc
sec
0.4T
#REF!
sec
Tk1
Tk1/Tres
Minimum (Tfc ,0.4T)
#REF!
#REF!
#REF!
#REF!
d1 ( 1- cos (360o Tk1/Tres))
(Assumed)
sec
(Pg-41)
Swing out Angle
dk
for 0 < Tk1/Tres < 0.5
22+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
2d1
Hence dk
#REF!
#REF!
SHEET
for Tk1/Tres > 0.5
degrees
23+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
8.1.11
DOCUMENT NO
: #REF!
#REF!
PREPARED
CHECKED
VTN
SSV
Quantity for maximum Swing out angle ( d )
=
Hence
8.1.12
SHEET
1 - r sin dk
(Pg-43)
for 0 < dk < 90o
1-r
for dk > 90o
#REF!
d = #REF!
Maximum Swing out angle ( dm )
(Pg-43)
dm
8.1.13
DATE
2/21/2016
1.25 arccosd
0.766 < d < 1
10 + arc cosd
-0.985 < d < 0.766
180o
d < -0.985
#REF!
#REF!
#REF!
#REF!
3(
degrees
The load parameter d is
Tres / 4
secs
(Pg-43)
Tk1 > Tres/ 4
1+r2 - 1)
3(r sin dk + cos dk-1)
=
=
8.1.14
Tk1 < Tres / 4
#REF!
#REF!
Factor for tensile force in a flexible conductor (d)
Real solution of the following equation gives the value of d
d2 c 3 + d ( 2+d) d
+ (1+2d) d - d (2+d) = 0
(Pg-43)
#REF!
Solving the above
8.1.15
0.6198
Ft
Fst (1+ d d )
for n=1
1.1 Fst (1+dd)
for n>2
The tensile force (Ft) due to Short Circuit is
(Pg-43)
Ft
8.2
8.2.1
#REF!
#REF!
#REF!
1.2 Fst 1 + 8d dm
Tensile force (Ff) after Short Circuit caused by drop (Drop force)
Drop force Ff
(Pg-45)
24+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
PREPARED
CHECKED
VTN
SSV
180o
Ff
#REF!
#REF!
#REF!
SHEET
25+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
PREPARED
CHECKED
VTN
SSV
8.3
Maximum Horizontal span displacement ( bh ) and Minimum air clearance ( amin )
8.3.1
Elastic expansion (Eela)
Eela
8.3.2
DATE
2/21/2016
N (Ft - Fst)
#REF!
#REF!
SHEET
(Pg-45)
Thermal Expansion (Eth)
Material constant (Cth ) is 0.27*10-18 m4/A2s for Cross section area of Aluminium/Steel > 6
0.17*10-18 m4/A2s for Cross section area of Aluminium/Steel < 6
0.088*10-18 m4/A2s for Cross section area of Copper
Thermal Expansion
Cth
Eth
0.27E-18
Cth
m4/A2s
I"K3 Tres/4
(Pg-45)
for Tk1>Tres/4
nAs
Cth
I"K3 Tk1
for Tk1<Tres/4
nAs
8.3.3
#REF!
#REF!
1+3
Dilation Factor (CD)
CD
8.3.4
(Eela+Eth)
(Pg-45)
#REF!
#REF!
1.05
for r < 0.8
0.97+0.1r
for 0.8 < r < 1.8
1.15
for r > 1.8
Form factor (CF)
(Pg-45)
CF
=
=
8.3.5
L
bc
#REF!
#REF!
Maximum Horizontal span displacement ( bh )
(Pg-47)
For slack conductors
For strained Conductors
bh
bh
b h=
CF CD bc
for dm > 90o
CF CD bc sin dm
for dm < 90o
CF CD bc sin d1
for dm > d1
CF CD bc sin dm
for dm < d1
slack
=
#REF!
#REF!
26+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
8.3.6
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
PREPARED
CHECKED
VTN
SSV
SHEET
Minimum air clearance ( amin )
amin
a - 2bh
#REF!
#REF!
(Pg-47)
27+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
PREPARED
CHECKED
VTN
SSV
SHEET
Tensile force Fpicaused by Pinch effect
8.4
Pinch force shall be ignored if the sub-conductors of the bundle said to clash effectively. For effective Clashing following conditions shall be satisfied
as/ds < 2.0 and ls > 50as
(Pg-47)
as/ds < 2.5 and ls > 70as
as/ds
#REF!
ls/as
#NAME?
n1
#REF!
8.4.1
Factors n1,
8.4.1.1
Factor d1
d2 & d3 for calculating Fpi
(as-ds) m's
mo
sin 180o
(Pg-49)
(n-1)
as
2n
n
=
I"k3
50
#REF!
sin(180/1)
(4.10-7/2*(31500/1) *(1-1)/0
0.00
1.02+0.98e-3(R/X)
1.81
-2f
ln k-1.02
0.98
Factor d2
8.4.1.2
Peak factor (k)
k
( As per pg 47 of IEC:909)
Assuming X/R = 14
Time constant (d)
1 /d
-2 *50/3*ln((1.81-1.02)/0.98)
22.44
0.045
arctan(2fd)
arctan (2*50*0.045)
1.50
(Pg-109)
Factor (d )
n2
n1
= fTpi d2
(Pg-109)
(Pg-109)
Solving d2 from the above two equations
8.4.1.3
n2
n3
0.0000
Factor d3
ds/as
sin(180/n)
(as/ds-1)
tan-1(as/ds-1)
(Pg-111)
28+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
#REF!
#REF!
0.0000
SHEET
29+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
8.4.2
DOCUMENT NO
: #REF!
#REF!
PREPARED
CHECKED
VTN
SSV
(n-1) mo I"k3
ls
d2
as
(Pg-49)
n3
#NAME?
0.00
1.5 Fst ls2 N
Strain Factors Est and Epi
est
(as-ds)
epi
The Parameter
(Pg-49)
(Pg-49)
#NAME?
0.375nFd ls3N
#REF!
#NAME?
(Epi/(1+Est))
#NAME?
sin 180
n
j
j
=
0
sin 180
#REF!
(as-ds)3
8.4.4
SHEET
Short circuit current force between conductors in a bundle(Fn)
Fd
8.4.3
DATE
2/21/2016
#NAME?
(Pg-49)
30+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
SHEET
31+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
8.4.5
Tensile force in case of non clashing of conductors
8.4.5.1
Factor h for calculating Fpi
PREPARED
CHECKED
VTN
SSV
ya
asw
1/2*(as-d*(as-ds))
SHEET
(Pg-53)
as 2ya/as
((1-2yaas)/(2yaas))
sin 180o
arctan((1-2yaas)/(2yaas))
(Pg-53)
n
fh
h3 +dst h - epi fh =
Solving for
asd 3/asw
(Pg-53)
0<d < 1
(Pg-53)
d
h
n4
#NAME?
Factors n4 & de for calculating Fpi
8.4.5.2
h (as-ds)
(Pg-51)
as-d(as-ds)
=
ne
1 + 9.n(n-1).do I"k3 2.N .d2. ls
2
8.4.5.3
#NAME?
#NAME?
2 n
as-ds
.(sin (180/n)4) 1-arctan(d4) - 1
d4
#NAME?
1/2
(Pg-51)
Tensile Force (Fpi)
For value of j < 1, as per IEC Pinch Force is calculated by the below formula
Fpi
Fst(1+de/Est *
#NAME?
#NAME?
#NAME?
d2))
(Pg-51)
32+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
SHEET
33+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
DATE
2/21/2016
#REF!
PREPARED
CHECKED
VTN
SSV
SHEET
RESULTS
9.0.0
CONDUCTOR SELECTED
a)
Conductor Type
ACSR-COWSLIP
b)
No.of runs
1 run
e)
Minimum Air clearance
#REF!
f)
Tensile force Ft
#REF!
#REF!
g)
Drop force Ff
#REF!
#REF!
h)
Pinch force Fpi
#NAME?
I)
Phase Pull force (Maximum of f,g,h)
#REF!
###
#NAME?
#REF!
34+18 of 72+18
LARSEN & TOUBRO LIMITED
ECC Division - EDRC
PROJECT
TITLE
DOCUMENT NO
: #REF!
#REF!
DATE
2/21/2016
PREPARED
CHECKED
VTN
SSV
SHEET
Quad Moose-60m
Page 35
Quad Moose-60m
Page 36
Quad Moose-60m
Page 37
Quad Moose-60m
Page 38
Twin Moose-60m
Page 39
Twin Moose-60m
Page 40
Twin Moose-60m
Page 41
Twin Moose-60m
Page 42
Twin Moose-137m
Page 43
Twin Moose-137m
Page 44
Twin Moose-137m
Page 45
Twin Moose-137m
139.7
Page 46
Twin Moose-150m
Page 47
Twin Moose-150m
Page 48
Twin Moose-150m
Page 49
Twin Moose-150m
152.6
Page 50
Twin Moose-153m
Page 51
Twin Moose-153m
Page 52
Twin Moose-153m
Page 53
Twin Moose-153m
155.8
Page 54
Twin Moose-130.2
Page 55
Twin Moose-130.2
Page 56
Twin Moose-130.2
Page 57
Twin Moose-130.2
130.2
Page 58
Twin Moose-124.4m
Page 59
Twin Moose-124.4m
Page 60
Twin Moose-124.4m
Page 61
Twin Moose-124.4m
124.4
Page 62
Twin Moose-133.7m
Page 63
Twin Moose-133.7m
Page 64
Twin Moose-133.7m
Page 65
Twin Moose-133.7m
133.7
Page 66
CUBIC EQUATION
+d st d - d pifn = 0
A0
1
1
Coeff
A1
0
(Eqn 62,Pg-56-IEC:865-Part-I)
A2
2.64E-031
2.64E-031
A3
#DIV/0!
#DIV/0!
SOLUTION
REF
Schaum Series-Mathematics
Ch-9 Solution of Algebraic Equations
=(3 A2-A12)/9
8.78E-032
=(9 A1A2-27A3-2A13)/54
#DIV/0!
=3(R+(Q3+R2))
#DIV/0!
=3(R-(Q3+R2))
#DIV/0!
=Q3+R2
#DIV/0!
D<0
D=0
D>0
Result
#DIV/0!
Theta
#DIV/0!
Root1
#DIV/0!
#DIV/0!
Root2
#DIV/0!
#DIV/0!
#DIV/0!
Root3
#DIV/0!
#DIV/0!
#DIV/0!
CHECK
(-) abg
(+) d d +d d +dd
(-) d+d+d
Calculated
#DIV/0!
#DIV/0!
#DIV/0!
Actual
#DIV/0!
2.64E-031
0
Error (%)
#DIV/0!
#DIV/0!
0.00000%
Error (%)
#DIV/0!
#DIV/0!
0.00000%
CUBIC EQUATION
+d st d - d pifn = 0
A0
1
1
Coeff
A1
0
(Eqn 62,Pg-56-IEC:865-Part-I)
A2
#NAME?
#NAME?
A3
#NAME?
#NAME?
SOLUTION
REF
Schaum Series-Mathematics
Ch-9 Solution of Algebraic Equations
=(3 A2-A12)/9
#NAME?
=(9 A1A2-27A3-2A13)/54
#NAME?
=3(R+(Q3+R2))
#NAME?
=3(R-(Q3+R2))
#NAME?
=Q3+R2
#NAME?
D<0
D=0
D>0
Result
#NAME?
Theta
#NAME?
Root1
#NAME?
#NAME?
#NAME?
Root2
#NAME?
#NAME?
#NAME?
#NAME?
Root3
#NAME?
#NAME?
#NAME?
#NAME?
Actual
#NAME?
#NAME?
0
Error (%)
#NAME?
#NAME?
0.00000%
CHECK
(-) ddd
(+) dd+dd+dd
(-) d+d+d
Calculated
#NAME?
#NAME?
#NAME?
Error (%)
#NAME?
#NAME?
0.00000%
CUBIC EQUATION
d2 c 3 + d ( 2+d) d
A0
+ (1+2d) d - d (2+d) = 0
A1
A2
(Eqn 33,Pg-43-IEC:865-Part-I)
A3
17.47271 34.74443 13.62398 -39.00833
1
1.988496 0.779729 -2.232529
Coeff
SOLUTION
REF
Schaum Series-Mathematics
Ch-9 Solution of Algebraic Equations
=(3 A2-A12)/9
-0.179437
=(9 A1A2-27A3-2A13)/54
1.083466
=3(R+(Q3+R2))
1.293511
=3(R-(Q3+R2))
0.138721
=Q3+R2
1.168121
D<0
D=0
D>0
Result
0.769399
Theta
Root1
0.184368
0.769399
0.769399
Root2
-1.086432
-1.378948
-1.37895+1.00008i
-1.37895+1.00008i
Root3
-1.086432
-1.378948
-1.37895-1.00008i
-1.37895-1.00008i
CHECK
Calculated
(-) ddd
(+) dd+dd+dd
(-) d+d+d
Actual
Error (%)
-2.23254
0.77973697313824
-2.232529
0.779729
0.00040%
0.00104%
1.988501
1.988496
0.00022%
CUBIC EQUATION
+d st d
A0
1
1
Coeff
- d pi = 0
A1
2.64E-031
2.64E-031
(Eqn 51,Pg-54-IEC:865-Part-I)
A2
0
0
A3
0
0
SOLUTION
REF
Schaum Series-Mathematics
Ch-9 Solution of Algebraic Equations
=(3 A2-A12)/9
-7.7E-063
=(9 A1A2-27A3-2A13)/54
-6.8E-094
=3(R+(Q3+R2))
#VALUE!
=3(R-(Q3+R2))
#VALUE!
=Q3+R2
D<0
D=0
D>0
Result
#VALUE!
Theta
Root1
#VALUE!
#VALUE!
Root2
#VALUE!
#VALUE!
#VALUE!
Root3
#VALUE!
#VALUE!
#VALUE!
CHECK
(-) ddd
(+) dd+dd+dd
(-) d+d+d
Calculated
#VALUE!
#VALUE!
#VALUE!
Actual
0
0
2.64E-031
Error (%)
#VALUE!
0.00000%
#VALUE!