The Art and Science of
Total Synthesis
REVIEWS
The Art and Science of Total Synthesis at the Dawn
of the Twenty-First Century**
K. C. Nicolaou,* Dionisios Vourloumis, Nicolas Winssinger, and Phil S. Baran
Dedicated to Professor E. J. Corey for his outstanding contributions to organic synthesis
At the dawn of the twenty-first century, the state of the art and science of
total synthesis is as healthy and vigorous as ever. The birth of this exhilarating, multifaceted, and boundless science is marked by Whlers synthesis
of urea in 1828. This milestone event
as trivial as it may seem by todays
standardscontributed to a demystification of nature and illuminated the
entrance to a path which subsequently
led to great heights and countless rich
dividends for humankind. Being both a
precise science and a fine art, this
discipline has been driven by the constant flow of beautiful molecular architectures from nature and serves as the
engine that drives the more general
field of organic synthesis forward.
Organic synthesis is considered, to a
large extent, to be responsible for some
of the most exciting and important
discoveries of the twentieth century in
chemistry, biology, and medicine, and
continues to fuel the drug discovery
and development process with myriad
processes and compounds for new
biomedical breakthroughs and applications. In this review, we will chronicle the past, evaluate the present, and
project to the future of the art and
science of total synthesis. The gradual
sharpening of this tool is demonstrated
by considering its history along the
lines of pre-World War II, the Woodward and Corey eras, and the 1990s,
and by accounting major accomplishments along the way. Today, natural
product total synthesis is associated
with prudent and tasteful selection of
challenging and preferably biologically
important target molecules; the dis-
1. Prologue
Your Majesty, Your Royal Highnesses, Ladies and Gentlemen.
In our days, the chemistry of natural products attracts a very
lively interest. New substances, more or less complicated,
[*] K. C. Nicolaou, D. Vourloumis, N. Winssinger, P. S. Baran
Department of Chemistry
and The Skaggs Institute for Chemical Biology
The Scripps Research Institute
10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
and
Department of Chemistry and Biochemistry
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093 (USA)
Fax: ( 1) 858-784-2469
E-mail: kcn@scripps.edu
[**] A list of abbreviations can be found at the end of the article.
Angew. Chem. Int. Ed. 2000, 39, 44  122
covery and invention of new synthetic
strategies and technologies; and explorations in chemical biology through
molecular design and mechanistic
studies. Future strides in the field are
likely to be aided by advances in the
isolation and characterization of novel
molecular targets from nature, the
availability of new reagents and synthetic methods, and information and
automation technologies. Such advances are destined to bring the power of
organic synthesis closer to, or even
beyond, the boundaries defined by
nature, which, at present, and despite
our many advantages, still look so far
away.
Keywords: drug research  natural
products  synthetic methods  total
synthesis
more or less useful, are constantly discovered and investigated. For the determination of the structure, the architecture
of the molecule, we have today very powerful tools, often
borrowed from Physical Chemistry. The organic chemists of
the year 1900 would have been greatly amazed if they had
heard of the methods now at hand. However, one cannot say
that the work is easier; the steadily improving methods make
it possible to attack more and more difficult problems and the
ability of Nature to build up complicated substances has, as it
seems, no limits.
In the course of the investigation of a complicated
substance, the investigator is sooner or later confronted by
the problem of synthesis, of the preparation of the substance
by chemical methods. He can have various motives. Perhaps
he wants to check the correctness of the structure he has
found. Perhaps he wants to improve our knowledge of the
reactions and the chemical properties of the molecule. If the
 WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3901-0045 $ 17.50+.50/0
45
REVIEWS
K. C. Nicolaou et al.
substance is of practical importance, he may hope that the
synthetic compound will be less expensive or more easily
accessible than the natural product. It can also be desirable to
modify some details in the molecular structure. An antibiotic
substance of medical importance is often first isolated from a
microorganism, perhaps a mould or a germ. There ought to
exist a number of related compounds with similar effects; they
may be more or less potent, some may perhaps have
undesirable secondary effects. It is by no means, or even
probable, that the compound produced by the microorganismmost likely as a weapon in the struggle for existenceis
the very best from the medicinal point of view. If it is possible
to synthesize the compound, it will also be possible to modify
the details of the structure and to find the most effective
remedies.
K. C. Nicolaou
D. Vourloumis
The synthesis of a complicated molecule is, however, a very
difficult task; every group, every atom must be placed
in its proper position and this should be taken in its most
literal sense. It is sometimes said that organic synthesis
is at the same time an exact science and a fine art. Here
nature is the uncontested master, but I dare say that
the prize-winner of this year, Professor Woodward, is a good
second.[1]
With these elegant words Professor A. Fredga, a member of
the Nobel Prize Committee for Chemistry of the Royal
Swedish Academy of Sciences, proceeded to introduce R. B.
Woodward at the Nobel ceremonies in 1965, the year in which
Woodward received the prize for the art of organic synthesis.
Twenty-five years later Professor S. Gronowitz, then a member of the Nobel Prize Committee for Chemistry, concluded
N. Winssinger
P. S. Baran
K.C. Nicolaou, born in Cyprus and educated in England and the US, is currently Chairman of the Department of Chemistry
at The Scripps Research Institute, La Jolla, California, where he holds the Darlene Shiley Chair in Chemistry and the
Aline W. and L. S. Skaggs Professorship in Chemical Biology as well as Professor of Chemistry at the University of
California, San Diego. His impact on chemistry, biology, and medicine flows from his works in organic synthesis described
in nearly 500 publications and 70 patents as well as his dedication to chemical education, as evidenced by his training of
over 250 graduate students and postdoctoral fellows. His recent book titled Classics in Total Synthesis,[3] which he coauthored with Erik J. Sorensen, is used around the world as a teaching tool and source of inspiration for students and
practitioners of organic synthesis.
Dionisios Vourloumis, born in 1966 in Athens, Greece, received his B.Sc. degree from the University of Athens and his
Ph.D. from West Virginia University under the direction of Professor P. A. Magriotis, in 1994, working on the synthesis of
novel enediyne antibiotics. He joined Professor K. C. Nicolaous group in 1996, and was involved in the total synthesis of
epothilones A and B, eleutherobin, sarcodictyins A and B, and analogues thereof. He joined Glaxo Wellcome in early 1999
and is currently working with the Combichem Technology Team in Research Triangle Park, North Carolina.
Nicolas Winssinger was born in Belgium in 1970. He received his B.Sc. degree in chemistry from Tufts University after
conducting research in the laboratory of Professor M. DAlarcao. Before joining The Scripps Research Institute as a
graduate student in chemistry in 1995, he worked for two years under the direction of Dr. M. P. Pavia at Sphinx
Pharmaceuticals in the area of molecular diversity focusing on combinatorial chemistry. At Scripps, he joined the
laboratory of Professor K. C. Nicolaou, where he has been working on methodologies for solid-phase chemistry and
combinatorial synthesis. His research interests include natural products synthesis, molecular diversity, molecular evolution,
and their application to chemical biology.
Phil S. Baran was born in Denville, New Jersey in 1977. He received his B.Sc. degree in chemistry from New York University
while conducting research under the guidance of Professors D. I. Schuster and S. R. Wilson, exploring new realms in
fullerene science. Upon entering The Scripps Research Institute in 1997 as a graduate student in chemistry, he joined the
laboratory of Professor K. C. Nicolaou where he embarked on the total synthesis of the CP molecules. His primary research
interest involves natural product synthesis as an enabling endeavor for the discovery of new fundamental processes and
concepts in chemistry and their application to chemical biology.
46
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
his introduction of E. J. Corey, the 1990 Nobel prize winner,
with the following words:
...Corey has thus been awarded with the Prize for three
intimately connected contributions, which form a whole.
Through retrosynthetic analysis and introduction of new
synthetic reactions, he has succeeded in preparing biologically
important natural products, previously thought impossible to
achieve. Coreys contributions have turned the art of synthesis
into a science...[2]
This description and praise for total synthesis resonates
today with equal validity and appeal; most likely, it will be
valid for some time to come. Indeed, unlike many one-time
discoveries or inventions, the endeavor of total synthesis[36] is
in a constant state of effervescence and flux. It has been on the
move and center stage throughout the twentieth century and
continues to provide fertile ground for new discoveries and
inventions. Its central role and importance within chemistry
will undoubtedly ensure its present preeminence into the
future. The practice of total synthesis demands the following
virtues from, and cultivates the best in, those who practice it:
ingenuity, artistic taste, experimental skill, persistence, and
character. In turn, the practitioner is often rewarded with
discoveries and inventions that impact, in major ways, not
only other areas of chemistry, but most significantly material
science, biology, and medicine. The harvest of chemical
synthesis touches upon our everyday lives in myriad ways:
medicines, high-tech materials for computers, communication
and transportation equipment, nutritional products, vitamins,
cosmetics, plastics, clothing, and tools for biology and
physics.[7]
But why is it that total synthesis has such a lasting value as a
discipline within chemistry? There must be several reasons for
this phenomenon. To be sure, its dual nature as a precise
science and a fine art provides excitement and rewards of rare
heights. Most significantly, the discipline is continually being
challenged by new structural types isolated from natures
seemingly unlimited library of molecular architectures. Happily, the practice of total synthesis is being enriched constantly
by new tools such as new reagents and catalysts as well as
analytical instrumentation for the rapid purification and
characterization of compounds.
Thus, the original goal of total synthesis during the first part
of the twentieth century to confirm the structure of a natural
product has been replaced slowly but surely with objectives
related more to the exploration and discovery of new
chemistry along the pathway to the target molecule. More
recently, issues of biology have become extremely important
components of programs in total synthesis. It is now clear that
as we enter the twenty-first century both exploration and
discovery of new chemistry and chemical biology will be
facilitated by developments in total synthesis.
In this article, and following a short historical perspective of
total synthesis in the nineteenth century, we will attempt to
review the art and science of total synthesis during the
twentieth century. This period can be divided into the preWorld War II Era, the Woodward Era, the Corey Era, and the
1990s. There are clearly overlaps in the last three eras and
many more practitioners deserve credit for contributing to the
evolution of the science during these periods than are
Angew. Chem. Int. Ed. 2000, 39, 44  122
mentioned. The labeling of these eras is arbitrarynot
withstanding the tremendous impact Woodward and Corey
had in shaping the discipline of total synthesis during their
time. As in any review of this kind, omissions are inevitable
and we apologize profusely, and in advance, to those
whose brilliant works were omitted as a result of space
limitations.
2. Total Synthesis in the Nineteenth Century
The birth of total synthesis occurred in the nineteenth
century. The first conscious total synthesis of a natural product
was that of urea (Figure 1) in 1828 by Whler.[8] Significantly,
this event also marks the beginning of organic synthesis and
OH
O
NH2
O
NH2
Me
OH
HO
HO
O
OH
OH
urea
acetic acid
glucose
[Whler, 1828][8]
[Kolbe, 1845][9]
[Fischer, 1890][12]
Figure 1. Selected nineteenth century landmark total syntheses of natural
products.
the first instance in which an inorganic substance
(NH4CNO:ammonium cyanate) was converted into an organic substance. The synthesis of acetic acid from elemental
carbon by Kolbe in 1845[9] is the second major achievement in
the history of total synthesis. It is historically significant that,
in his 1845 publication, Kolbe used the word synthesis for
the first time to describe the process of assembling a chemical
compound from other substances. The total syntheses of
alizarin (1869) by Graebe and Liebermann[10] and indigo
(1878) by Baeyer[11] spurred the legendary German dye
industry and represent landmark accomplishments in the
field. But perhaps, after urea, the most spectacular total
synthesis of the nineteenth century was that of ()-glucose
(Figure 1) by E. Fischer.[12] This total synthesis is remarkable
not only for the complexity of the target, which included, for
the first time, stereochemical elements, but also for the
considerable stereochemical control that accompanied it.
With its oxygen-containing monocyclic structure (pyranose)
and five stereogenic centers (four controllable), glucose
represented the state-of-the-art in terms of target molecules
at the end of the nineteenth century. E. Fischer became the
second winner of the Nobel Prize for chemistry (1902), after
J. H. vant Hoff (1901).[13]
3. Total Synthesis in the Twentieth Century
The twentieth century has been an age of enormous
scientific advancement and technological progress. To be
sure, we now stand at the highest point of human accomplishment in science and technology, and the twenty-first century
promises to be even more revealing and rewarding. Advances
47
REVIEWS
in medicine, computer science, communication, and transportation have dramatically changed the way we live and the
way we interact with the world around us. An enormous
amount of wealth has been created and opportunities for new
enterprises abound. It is clear that at the heart of this
technological revolution has been science, and one cannot
deny that basic research has provided the foundation for this
to occur.
Chemistry has played a central and decisive role in shaping
the twentieth century. Oil, for example, has reached its
potential only after chemistry allowed its analysis, fractionation, and transformation into myriad of useful products such
as kerosene and other fuels. Synthetic organic chemistry is
perhaps the most expressive branch of the science of
chemistry in view of its creative power and unlimited scope.
To appreciate its impact on modern humanity one only has to
look around and recognize that this science is a pillar behind
pharmaceuticals, high-tech materials, polymers, fertilizers,
pesticides, cosmetics, and clothing.[7] The engine that drives
forward and sharpens our ability to create such molecules
through chemical synthesis (from which we can pick and
choose the most appropriate for each application) is total
synthesis. In its quest to construct the most complex and
challenging of natures products, this endeavorperhaps
more that any otherbecomes the prime driving force for
the advancement of the art and science of organic synthesis.
Thus, its value as a research discipline extends beyond
providing a test for the state-of-the-art. It offers the opportunity to discover and invent new science in chemistry and
related disciplines, as well as to train, in a most rigorous way,
young practitioners whose expertise may feed many peripheral areas of science and technology.[6]
3.1. The Pre-World War II Era
The syntheses of the nineteenth century were relatively
simple and, with a few exceptions, were directed towards
benzenoid compounds. The starting materials for these target
molecules were other benzenoid compounds, chosen for their
resemblance to the targeted substance and the ease by which
the synthetic chemist could connect them by simple functionalization chemistry. The twentieth century was destined to
bring dramatic advances in the field of total synthesis. The
pre-World War II Era began with impressive strides and with
increasing molecular complexity and sophistication in strategy design. Some of the most notable examples of total
synthesis of this era are a-terpineol (Perkin, 1904),[14]
camphor (Komppa, 1903; Perkin, 1904),[15] tropinone (Robinson, 1917; Willsttter, 1901),[1617] haemin (H. Fischer,
1929),[18] pyridoxine hydrochloride (Folkers, 1939),[1920] and
equilenin (Bachmann, 1939)[21] (Figure 2). Particularly impressive were Robinsons one-step synthesis of tropinone
(1917)[16] from succindialdehyde, methylamine, and acetone
dicarboxylic acid and H. Fischers synthesis of haemin[18]
(1929). These total syntheses are among those which will be
highlighted below. Both men went on to win a Nobel Prize for
Chemistry (Fischer, 1929; Robinson, 1947).[13]
48
K. C. Nicolaou et al.
Figure 2. Selected landmark total syntheses of natural products from 1901
to 1939.
3.2. The Woodward Era
In 1937 and at the age of 20 R. B. Woodward became an
assistant professor in the Department of Chemistry at
Harvard University where he remained for the rest of his
life. Since that time, total synthesis and organic chemistry
would never be the same. A quantum leap forward was about
to be taken, and total synthesis would be elevated to a
powerful science and a fine art. Woodwards climactic
contributions to total synthesis included the conquest of some
of the most fearsome molecular architectures of the time. One
after another, diverse structures of unprecedented complexity
succumbed to synthesis in the face of his ingenuity and
resourcefulness. The following structures (some are shown in
Figure 3) are amongst his most spectacular synthetic achievements: quinine (1944),[22] patulin (1950),[23] cholesterol and
cortisone (1951),[24] lanosterol (1954),[25] lysergic acid (1954),[26]
strychnine (1954),[27] reserpine (1958),[28] chlorophyll a (1960),[29]
colchicine (1965),[286] cephalosporin C (1966),[30] prostaglandin F2a (1973),[31] vitamin B12 (with A. Eschenmoser) (1973),[32]
and erythromycin A (1981).[33] Some of these accomplishments
will be briefly presented in Section 3.5.
Woodward brought his towering intellect to bear on these
daunting problems of the 1940s, 1950s, and 1960s with
distinctive style and unprecedented glamour. His spectacular
successes were often accompanied by appropriate media
coverage and his lectures and seminars remained legendary
for their intellectual content, precise delivery, and mesmerizing style, not to mention their colorful nature and length!
What distinguished him from his predecessors was not just his
powerful intellect, but the mechanistic rationale and stereochemical control he brought to the field. If Robinson
introduced the curved arrow to organic chemistry (on paper),
Woodward elevated it to the sharp tool that it became for
teaching and mechanistic understanding, and used it to
explain his science and predict the outcome of chemical
reactions. He was not only a General but, most importantly, a
generalist and could generalize observations into useful
theories. He was master not only of the art of total synthesis,
but also of structure determination, an endeavor he cherished
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
H
H
O
H
HO
OH
OH
patulin (1950)[23]
H
H
MeO2C H
reserpine (1958)[28]
O
H
OMe
Me
H
O Me
Me
H
H2N
OH
NH2
Me
Me
O H
O P
O
O
H
MeO
NH2
HO
H OH
HO
PGF2 (1973)[31]
H
O
marasmic acid (1976)[288]
O
cephalosporin C (1966)[30]
isolongistrobine (1973)[287]
OHC
OMe OMe
illudalic acid
CO2H
(1977)[289]
illudinine
(1977)[289]
HO
H
N
R
O
MeO
Me
Me
Me
OMe
OHC
OAc
OH
HO
NHAc
colchicine (1965)[286]
CO2H
illudacetalic acid
penems
(1977)[289]
HO
S
N
O
H
OH
MeO
Me
OH
CO2H
vitamin B12 (1973)[32]
[with A. Eschenmoser]
OH
O
Me
OMe
O
CO2
N
HO
H H H
N
S
H3N
Me O
Me
MeO
OH
HO
Me
HO
O H
NMe2
NH2
OH
chlorophyll a (1960)[29]
O
H
N
6-demethyl-6-deoxytetracycline (1962)[285]
OMe
Me
CN
lanosterol (1954)[25]
NH2
N
OMe
Co
NH
HN
lysergic acid (1954)[26]
strychnine (1954)[27]
Me MeH
MeO2C
H2N
Me
HO
Mg
MeO
Me
NMe
O
H
H2N
N
N
H
cortisone (1951)[24]
quinine (1944)
Me
[22]
H
N
CO2H
Me
O
Me
MeO
Me
OH
R'
OH
Me
HO
O
OH
Me
Me
O
O
CO2H
(1978)[290]
OMe
NMe2
Me
Me
Me
OH
O
Me
erythromycin A (1981)[33]
Figure 3. Selected syntheses by the Woodward Group (1944  1981).
throughout his career. He clearly influenced the careers of not
only his students, but also of his peers and colleagues, for
example, J. Wilkinson (sandwich structure of ferrocene), K.
Block (steroid biosynthesis), R. Hoffmann (Woodward and
Hoffmann rules), all of whom won the Nobel Prize for
chemistry.[13]
His brilliant use of rings to install and control stereochemical centers and to unravel functionality by rupturing
them is an unmistakable feature of his syntheses. This theme
appears in his first total synthesis, that of quinine,[22] and
appears over and over again as in the total synthesis of
reserpine,[28] vitamin B12 ,[3, 32] and, remarkably, in his last
synthesis, that of erythromycin.[33] Woodwards mark was that
of an artist, treating each target individually with total
mastery as he moved from one structural type to another.
He exercised an amazing intuition in devising strategies
toward his targets, magically connecting them to suitable
starting materials through elegant, almost balletlike, maneuvers.
However, the avalanche of new natural products appearing
on the scene as a consequence of the advent and development
of new analytical techniques demanded a new and more
systematic approach to strategy design. A new school of
thought was appearing on the horizon which promised to take
the field of total synthesis, and that of organic synthesis in
general, to its next level of sophistication.
3.3. The Corey Era
In 1959 and at the age of 31 E. J. Corey arrived at Harvard
as a full professor of chemistry from the University of Illinois,
Angew. Chem. Int. Ed. 2000, 39, 44  122
Urbana-Champaign. His dynamism and brilliance were to
make him the natural recipient of the total synthesis baton
from R. B. Woodward, even though the two men overlapped
for two decades at Harvard. Coreys pursuit of total synthesis
was marked by two distinctive elements, retrosynthetic
analysis and the development of new synthetic methods as
an integral part of the endeavor, even though Woodward
(consciously or unconsciously) must have been engaged in
such practices. It was Coreys 1961 synthesis of longifolene[34]
that marked the official introduction of the principles of
retrosynthetic analysis.[4] He practiced and spread this concept
throughout the world of total synthesis, which became a much
more rational and systematic endeavor. Students could now
be taught the logic of chemical synthesis[4] by learning how
to analyze complex target molecules and devise possible
synthetic strategies for their construction. New synthetic
methods are often incorporated into the synthetic schemes
towards the target and the exercise of the total synthesis
becomes an opportunity for the invention and discovery of
new chemistry. Combining his systematic and brilliant approaches to total synthesis with the new tools of organic
synthesis and analytical chemistry, Corey synthesized hundreds of natural and designed products within the thirty year
period stretching between 1960 and 1990 (Figure 4)the year
of his Nobel Prize.
Corey brought a highly organized and systematic approach
to the field of total synthesis by identifying unsolved and
important structural types and pursuing them until they fell.
The benefits and spin-offs from his endeavors were even more
impressive: the theory of retrosynthetic analysis, new synthetic methods, asymmetric synthesis, mechanistic proposals,
and important contributions to biology and medicine. Some of
49
REVIEWS
K. C. Nicolaou et al.
Figure 4. Selected syntheses by the Corey Group (1961  1999).
50
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
his most notable accomplishments in the field are highlighted
in Section 3.5.
The period of 1950  1990 was an era during which total
synthesis underwent explosive growth as evidenced by
inspection of the primary chemical literature. In addition to
the Woodward and Corey schools, a number of other groups
contributed notably to this rich period for total synthesis[35]
and some continue to do so today. Indeed, throughout the
second half of the twentieth century a number of great
synthetic chemists made significant contributions to the field,
as natural products became opportunities to initiate and focus
major research programs and served as ports of entry for
adventures and rewarding voyages.
Among these great chemists are G. Stork, A. Eschenmoser,
and Sir D. H. R. Barton, whose sweeping contributions began
with the Woodward era and spanned over half a century. The
Stork  Eschenmoser hypothesis[35] for the stereospecific
course of biomimetic  cation cyclizations, such as the conversion of squalene into steroidal structures, stimulated much
synthetic work (for example, the total synthesis of progesterone by W. S. Johnson, 1971).[36] Storks elegant total syntheses
(for example, steroids, prostaglandins, tetracyclins)[3739] decorate beautifully the chemical literature and his useful
methodologies (for example, enamine chemistry, anionic ring
closures, radical chemistry, tethering devices)[4043] have found
important and widespread use in many laboratories and
industrial settings.
Similarly, Eschenmosers beautiful total syntheses (for
example, colchicine, corrins, vitamin B12 , designed nucleic
acids)[4447] are often accompanied by profound mechanistic
insights and synthetic designs of such admirable clarity and
deep thought. His exquisite total synthesis of vitamin B12
(with Woodward), in particular, is an extraordinary achievement and will always remain a classic[3] in the annals of
organic synthesis. The work of D. H. R. Barton,[48] starting
with his contributions to conformational analysis and biogenetic theory and continuing with brilliant contributions
both in total synthesis and synthetic methodology, was
instrumental in shaping the art and science of natural products
synthesis as we know it today. Among his most significant
contributions are the Barton reaction, which involves the
photocleavage of nitrite esters[49] and its application to the
synthesis of aldosterone-21-acetate,[50] and his deoxygenation
reactions and related radical chemistry,[51] which has found
numerous applications in organic and natural product synthesis.
It seemed for a moment, in 1990, that the efforts of the
synthetic chemists had conquerred most of the known
structural types of secondary metabolites: prostaglandins,
steroids, b-lactams, macrolides, polyene macrolides, polyethers, alkaloids, porphyrinoids, endiandric acids, palitoxin
carboxyclic acid, and gingkolide; all fell as a result of the
awesome power of total synthesis. Tempted by the lure of
other unexplored and promising fields, some researchers even
thought that total synthesis was dead, and declared it so. They
were wrong. To the astute eye, a number of challenging and
beautiful architectures remained standing, daring the synthetic chemists of the time and inviting them to a feast of
discovery and invention. Furthermore, several new structures
were soon to be discovered from nature that offered
Angew. Chem. Int. Ed. 2000, 39, 44  122
unprecedented challenges and opportunities. To be sure, the
final decade of the twentieth century proved to be a most
exciting and rewarding period in the history of total synthesis.
3.4. The 1990s Era
The climactic productivity of the 1980s in total synthesis
boded well for the future of the science, and the seeds were
already sown for continued breakthroughs and a new
explosion of the field. Entirely new types of structures were
on the minds of synthetic chemists, challenging and presenting
them with new opportunities. These luring architectures
included the enediynes such as calicheamicin and dynemicin,
the polyether neurotoxins exemplified by brevetoxins A and
B, the immunosuppressants cyclosporin, FK506, rapamycin,
and sanglifehrin A, taxol and other tubulin binding agents,
such as the epothilones eleutherobin and the sarcodictyins,
ecteinascidin, the manzamines, the glycopeptide antibiotics
such as vancomycin, the CP molecules, and everninomicin
13,384-1 (see Section 3.5).
Most significantly, total synthesis assumed a more serious
role in biology and medicine. The more aggressive incorporation of this new dimension to the enterprise was aided and
encouraged by combinatorial chemistry and the new challenges posed by discoveries in genomics. Thus, new fields of
investigation in chemical biology were established by synthetic chemists taking advantage of the novel molecular
architectures and biological action of certain natural products.
Besides culminating in the total synthesis of the targeted
natural products, some of these new programs expanded into
the development of new synthetic methods as in the past, but
also into the areas of chemical biology, solid phase chemistry,
and combinatorial synthesis. Synthetic chemists were moving
deeper into biology, particularly as they recognized the
timeliness of using their powerful tools to probe biological
phenomena and make contributions to chemical and functional genomics. Biologists, in turn, realized the tremendous
benefits that chemical synthesis could bring to their science
and adopted it, primarily through interdisciplinary collaborations with synthetic chemists. A new philosophy for total
synthesis as an important component of chemical biology
began to take hold, and natural products continued to be in
the center of it all. In the next section we briefly discuss a
number of selected total syntheses of the twentieth century.
3.5. Selected Examples of Total Syntheses
The chemical literature of the twentieth century is adorned
with beautiful total syntheses of natural products.[35] We have
chosen to highlight a few here as illustrative examples of
structural types and synthetic strategies.
Tropinone (1917)
Perhaps the first example of a strikingly beautiful total
synthesis is that of the alkaloid ()-tropinone (1 in Scheme 1)
reported as early as 1917 by Sir R. Robinson.[5, 16] In this
elegant synthesiscalled biomimetic because of its resem51
REVIEWS
K. C. Nicolaou et al.
a)
Me
N
Mannich reaction
CO2H
CHO
NMe
O
CO2H
H
O
H2NMe
CHO
CHO
Mannich reaction
1: tropinone
b)
H2NMe
Me
- H2 O
Equilenin (1939)
NMe
NMe
+ H2O
CHO
H
2: succin-dialdehyde
OH
7
O
[intermolecular Mannich reaction]
Me
Me
CO2H
CO2H
10
H
CO2
CO2H
O H
Me O
Dieckmann
cyclization
CO2H
CO2H
9
[intramolecular Mannich reaction]
The first sex hormone to be constructed in the laboratory by
total synthesis was equilenin (1 in Scheme 3). The total
synthesis of this first steroidal structure was accomplished in
a)
HCl
-2 CO2
O2 C
Me
Me
N
prior to elimination of the latter functionalities. In contrast to
the rather brutal reagents and conditions used in this
porphyrins synthesis, the tools of the trade when Woodward faced chlorophyll a, approximately thirty years later,
were much sharper and selective.
HO
O
H CO2H
H
MeO
HO
1: equilenin
4: Butenandt's ketone
Scheme 1. a) Strategic bond disconnecions and retrosynthetic analysis of
()-tropinone and b) total synthesis (Robinson, 1917).[16]
Me
blance to the way nature synthesizes tropinoneRobinson
utilized a tandem sequence in which one molecule of
succindialdehyde, methylamine, and either acetone dicarboxylic acid (or dicarboxylate) react together to afford the natural
substance in a simple one-pot procedure. Two consecutive
Mannich reactions are involved in this synthesis, the first one
in an inter- and the second one in an intramolecular fashion.
In a way, the total synthesis of ()-tropinone by Robinson was
quite ahead of its time both in terms of elegance and logic.
With this synthesis Robinson introduced aesthetics into total
synthesis, and art became part of the endeavor. It was left,
however, to R. B. Woodward to elevate it to the artistic status
that it achieved in the 1950s and to E. J. Corey to make it into
the precise science that it became in the following decades.
Me
CO2Me
HO
Haemin (1 in Scheme 2), the red pigment of blood and the
carrier of oxygen within the human body, belongs to the
porphyrin class of compounds. Both its structure and total
synthesis were established by H. Fischer.[5, 18] This combined
program of structural determination through chemical synthesis is exemplary of the early days of total synthesis. Such
practices were particularly useful for structural elucidation in
the absence of todays physical methods such as NMR
spectroscopy, mass spectrometry, and X-ray crystallography.
In the case of haemin, the molecule was degraded into smaller
fragments, which chemical synthesis confirmed to be substituted pyrroles. The assembly of the pieces by exploiting the
greater nucleophilicity of pyrroles 2-position, relative to that
of the 3-position, led to haemins framework into which the
iron cation was implanted in the final step. Among the most
remarkable features of Fischers total synthesis of haemin are
the fusion of the two dipyrrole components in succinic acid at
180  190 8C to form the cyclic porphyrin skeleton in a single
step by two CC bond-forming reactions, and the unusual way
in which the carbonyl groups were reduced to hydroxyl groups
52
CO2H
CO2Me
HO
Arndt-Eistert reaction
Reformatsky
reaction
a. (CO2Me)2, MeONa
b. 180 C, glass
b)
MeO
Me
CO2Me
(90%)
MeI, MeONa
(92%)
O
MeO
CO2Me
O
MeO
[Reformatsky reaction] a. BrZnCH2CO2Me
[dehydration] b. SOCl2, py
[saponification] c. KOH, MeOH
a. CH2N2
Me
Me
CO2Me
CO2H
b. NaOH
d. Na-Hg
c. SOCl
Me
CO2H
H
O
MeO
Cl
MeO
Haemin (1929)
CO2H
Me
Me
H
MeO
[Dieckmann cyclizationdecarboxylation sequence]
CO2Me
CO2Me
a. MeONa
b. HCl, AcOH
CO2Me
MeO
10
CO2H
MeO
3a
(84% overall)
a. CH2N2
b. Ag2O, MeOH [-N2]
[Arndt-Eistert
reaction]
(39% overall)
CO2H
Me O
HO
(92%)
1: equilenin
Scheme 3. a) Strategic bond disconnections and retrosynthetic analysis of
equilenin and b) total synthesis (Bachmann et al., 1939).[21]
1939 by Bachmann and his group at the University of
Michigan.[21, 52] This synthesis featured relatively simple
chemistry as characteristically pointed out by the authors:
The reactions which were used are fairly obvious ones...[21]
Specifically, the sequence involves enolate-type chemistry, a
Reformatsky reaction, a sodium amalgam reduction, an
Arndt  Eistert homologation, and a Dieckmann cyclization  decarboxylation process to fuse the required cyclopentanone ring onto the pre-existing tricyclic system of the
starting material. As the last pre-World War II synthesis of
note, this example was destined to mark the end of an era; A
new epoch was about to begin in the 1940s with R. B.
Woodward and his school of chemistry at the helm.
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
Me
Me
Me
Me
Me
Me
Me
Br
Me
Me
1: haemin
HO2C
b)
Me
HO
Me
Me
Me
CO2H
Me
5
CO2H
NH HN
Me
HO2C
H
HO
Me
N
H
4
Br
Me
OHC
N
H
Fe
N
Me
NH HN
CO2Et
N
H
CO2H
6
Me
Me
Me
Me
HBr
Me
N
H
Me
Me
N
H
Me
H
NH HN
Me
Me
Me
a. H2SO4
HCO2H
b. 
Me
HCl
CO2Et
N
H
Me
OHC
Me
CO2Et
N
H
11
Me
12
CO2H
Me
piperidine
[Knoevenagel]
CO2Et
N
H
Me
N
H
Me
Me
Me
Me
CO2Et
N
H
Me
CO2Et
N
H
17
16
HO2C
HO2C
Me
HO2C
CO2Et
N
H
NH HN
Me
10
HO2C
HO2C
H2 O
Me
NH HN
Me
HBr,
Br2
Me
15
HO2C
Me
HO
9 Br
Na/Hg
CO2Et
N
H
13
HO2C
Me
HO2C
HO2C
14
Me
Me
NH HN
Me
Me
CO2H
EtO2C
Me
NH HN
Me
Me
H Me
Br
CO2Et
CO2Et
N
H
22
CO2Et
N
H
21
Br
CO2Et
N
H
19
20
CO2Et
N
H
Br
Br
18
O
HO2C
EtO2C
Me
Me
Me
CO2Et
NH HN
Me
HO2C
HO
N
H
CO2Et
N
H
22
CO2Et
H
CO2H
23
H
H
Me
Me
NH HN
- Br Br + Me
Me
Me
CO2H
HO2C
Me
Me
Me
Me
Me
Me
NH HN
Me
Br
Me
NH HN
CO2H
Br
Br
NH HN
Me
Me [fusion in succinic acid]
27
HO2C
CO2H
26
Me
NH HN
Me Br
CO2H
CO2H
NH HN
Me
CO2H
25
28
29
HO2C
Me
Br
 [CO2]
HO2C
NH HN
NH HN
HO2C
24
Br
NH HN
NH HN
Me
Me
Me
HO2C
CO2H
CO2H
CO2H
HO2C
[oxidation]
O
Me
Me
a. Fe3
b. Ac2O, AlCl3
HN
Me
HN
c. H
Me
NH
Me
NH
HO2C
31
30
CO2H
Me
O
KOH,EtOH, 
Me
Me
HN
OH
[reduction]
[Friedel-Crafts acylation]
Me
HO
Me
Me
CO2H
Me
NH
O2C
32
a. /H
[dehydration]
Me
Me
CO2
Cl
Me
1: haemin
HO2C
HO2C
N
Fe
b. Fe3
Me
CO2H
Scheme 2. a) Strategic bond disconnections and retrosynthetic analysis of haemin and b) total synthesis (Fisher, 1929).[18]
Before we close this era of total synthesis and enter into a
new one, the following considerations might be instructive in
atempting to understand the way of thinking of the pre-World
War II chemists as opposed to those who followed them. The
rather straightforward synthesis of equilenin is representative
of the total syntheses of pre-World War II erawith the
exception of Robinsons unique tropinone synthesis. In
contemplating a strategy towards equilenin, Bachmann must
have considered several possible starting materials before
recognizing the resemblance of his target molecule to
Butenands ketone (4 in Scheme 3). After all, three of
equilenins rings are present in 4 and all he needed to do
was fuse the extra ring and introduce a methyl group onto the
Angew. Chem. Int. Ed. 2000, 39, 44  122
cyclohexane system in order to accomplish his goal. The issue
of stereochemistry of the two stereocenters was probably left
open to chance in contrast to the rational approaches towards
such matters of the later periods. Connecting the chosen
starting material 4 with the target molecule 1 was apparently
obvious to Bachmann, who explicitly stated the known nature
of the reactions he used to accomplish the synthesis.
Since the motivations for total synthesis were strongly tied
to the proof of structure, one needed a high degree of
confidence that the proposed transformations did indeed lead
to the proposed structure. Furthermore, the limited arsenal of
chemical transformations did not entice much creative deviation from the most straightforward course. This high degree of
53
REVIEWS
confidence that synthetic chemists had in their designed
strategies was soon to decrease as the complexity of newly
discovered natural products increased, thus catalyzing the
development of novel strategies and new chemistry in
subsequent years. In addition, advances in theoretical and
mechanistic organic chemistry as well as new synthetic tools
were to allow much longer sequences to be planned with a
heightened measure of confidence and considerable flexibility
for redesign along the way.
Strychnine (1954)
As the most notorious poison[53] of the Strychnos plant
species, strychnine (1 in Scheme 4) occupied the minds of
K. C. Nicolaou et al.
structural chemists for a rather long time. Its gross structure
was revealed in 1946[54] and was subsequently confirmed by
X-ray crystallographic analysis.[55] In 1952, Sir Robert Robinson commented that strychnine: For its molecular size it is
the most complex substance known.[56] This estimation had
not, apparently, escaped R. B. Woodwards attention who had
already been fully engaged in strychnines total synthesis. In
1948 Woodward put forth the idea that oxidative cleavage of
electron-rich aromatic rings might be relevant in the biogenesis of the strychnos alkaloids.[57] This provocative idea was
implemented in his 1954[27] synthesis of strychnine, which
established Woodward as the undisputed master of the art at
the time. The total synthesis of ()-strychnine by Woodward
(Scheme 4) ushered in a golden era of total synthesis and
Scheme 4. a) Strategic bond disconnections and retrosynthetic analysis of ()-strychnine and b) total synthesis (Woodward et al., 1954).[27]
54
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
installed unprecedented confidence in, and respect for, the
science of organic synthesis. Although several of its steps were
beautifully designed and executed, perhaps the most striking
feature is its reliance on only the simplest of reagents to carry
out what seemed to be rather complex chemical transformations. With its challenging molecular structure, the molecule
of strychnine continued to occupy the minds of several
subsequent practitioners of the art and several other total
syntheses have since appeared in the literature.[58, 59]
Penicillin (1957)
Few discoveries of the twentieth century can claim higher
notoriety than that of penicillin (1 in Scheme 5). Discovered
in 1928 by Alexander Fleming[60] in the secretion of the mold
Penicillium notatum, penicillin was later shown to possess
remarkable antibacterial properties by Chain and Florey.[61]
Following a massive development effort known as the
Anglo  American penicillin project[62, 63] the substance was
introduced as a drug during World War II and saved countless
lives. Its molecular structure containing the unique and
strained b-lactam ring was under the cloud of some controversy until Dorothy Crowfoot-Hodgkin confirmed it by X-ray
crystallographic analysis.[64]
Not surprisingly, penicillin immediately became a highly
priced synthetic target attracting the attention of major
players in total synthesis of the time. Finally, it was Sheehan
and Henery-Logan[65] at the Massachusetts Institute of
Technology who delivered synthetic penicillin V by total
synthesis of the enchanted molecule, as Sheehan later
called it.[66] Their synthesis, reported in 1957 and summarized
in Scheme 5, was accompanied by the development of the
phthalimide and tert-butyl ester protecting groups and the
introduction of an aliphatic carbodiimide as a condensing
agent to form amide bonds andin the eventpenicillins
fragile b-lactam ring. With this milestone, another class of
natural products was now open to chemical manipulation and
a new chapter in total synthesis had begun.
Reserpine (1958)
a)
Ring formation
Amide formation
H
N
PhO
H
S
Me
Me
Me
Me
OH
Me
HClH2N
CO2H
2
Me
NH2
HN
5: valine
4
O
O
Me
(75%)
Me
Ac2O, 60 C
CO2H
Me
(72-80%)
Me
HS
CO2H
ClCH2COCl
CO2H
Me
tBuO2C HN
CO2H
Lactamization
1:penicillin V
b)
PhtN
PhtN
Me
Cl
Me
O
Cl
OAc
SH
Me
Me
[isomerization]
Me
Me
Me
Me
11
Me
O
H
Me
Me
O
O
N
10
Cl
Cl
(75%) H2S, NaOMe [Michael addition]
O
Me Me
Me O OMe
OMe Me
HS
HS
Me
12
13
Me
Me
HS
O
CHO
Me
HClH2N
tBuO2C
NaOAc
a. N2H4
tBuO2C HN
Me
HClH2N
(82%)
Me
H
N
H
S
PhO
tBuO2C HN
CO2H
16
PhOCH2COCl,
Et3N
(70%) O
b. HCl, H2O
Me
Me
tBuO2C HN
Me
CO2H
H
S
N
O
O
Me
Me
a. KOH (1.0 equiv)
b. DCC, H2O, dioxane
(12%)
H
N
(100%)
H
S
PhO
HO2C HN
Me
Me
CO2H
CO2K
[potassium salt of 1]
Me
19
a. HCl
b. py, acetone, H2O
H
N
Me
CO2H
18
PhO
CO2H
O
H
3a
Me
S
N
CO2H
4: D-penicillamine
hydrochloride
tBuO2C
17
HCO2H
Ac2O
(74%)
a. brucine
b. resolution
Me
c. HCl, H2O
Me
d. HCl
Me
CO2H
15
Me
HS
Me
S
N
H
CO2Me (100%)
14
Me
Me
b. Me2CO
N
H
Me
a. tBuONa
b. tBuOCHO
a. HCl, H2O
Me
20
Scheme 5. a) Strategic bond disconnections and retrosynthetic analysis of
penicillin V and b) total synthesis (Sheehan et al., 1957).[65]
Angew. Chem. Int. Ed. 2000, 39, 44  122
Reserpine (1 in Scheme 6), a constituent of the Indian
snakeroot Rauwolfia serpentina Benth., is an alkaloid substance with curative properties[67] for the treatment of hypertension, as well as nervous and mental disorders.[68] Reserpine
was isolated in 1952 and yielded to structural elucidation in
1955 (Schlittler and co-workers)[69] and to total synthesis in
1958 (Woodward et al.).[28] The first total synthesis of reserpine (Scheme 6), considered by some as one of Woodwards
greatest contributions to synthesis, inspires admiration and
respect by the manner in which it exploits molecular
conformation to arrive at certain desired synthetic objectives.
During this synthesis, Woodward demonstrated brilliantly the
power of the venerable Diels  Alder reaction to construct a
highly functionalized 6-membered ring, to control stereochemistry around the periphery of such a ring, and most
importantly, to induce a desired epimerization by constraining
the molecule into an unfavorable conformation by intramolecular tethering. All in all, Woodwards total synthesis of
reserpine remains as brilliant in strategy as admirable in
execution. It was to be followed by several others.[70]
The synthesis of reserpine appropriately represents Woodwards approach to total synthesis. Even though Woodward
did not talk about retrosynthetic analysis, he must have
practiced it subconsciously. In his mind, reserpine consisted of
three parts: the indole (the AB unit, see Scheme 6), the
trimethoxybenzene system, and the highly substituted E-ring
cyclohexane. Given the simplicity of the first two fragments
and their obvious attachment to fragment 3, Woodward
concerned himself primarily with the stereoselective construction of 3 and the stereochemical problem encountered in
completing the architecture of the CD ring system. He
brilliantly solved the first problem by employing the Diels 
Alder reaction to generate a cyclic template onto which he
installed the required functionality by taking advantage of the
special effects of ring systems on the stereochemical outcomes
of reactions. He addressed the second issue, that of the last
stereocenter to be set at the junction of rings C and D, by
55
REVIEWS
K. C. Nicolaou et al.
a)
MeO
Lactamization
MeO
B
N
H
C-C bond
formation
A
B
N O
H
N
H
H
MeO2C
Imine
formation
N
H
OMe
MeO2C
OMe
OAc
OMe
OMe
1: reserpine
OMe
Esterification
O
H
O
H
Diels-Alder
reaction
O
H
MeO2C
CO2Me
MeO2C
E
OAc
MeO2C
H
OMe
[Meerwein-Pondorff-Verley
reduction]
b)
O
[Diels-Alder
reaction]
O
AcOH
OH
H
HO
13
B
C
N
N
H H
D
OAc
B
N
H
NaBH4
MeO2C
OAc
POCl3
H
OAc
MeO2C
OMe
N
H
OAc
15
OAc
R
HN
MeO
R = CO2Me
17
H
N H
H
O
MeO
HN
O
18
19
tBuCO2H, 
[isomerization]
OMe
OMe
A
B
C
N
N
H H
D
H
H
N
NaOMe, MeOH, 
H
O
E
OH
21
H
HN
MeO
MeO2C
OMe
20
py
Cl
OMe
OMe
MeO
OMe
B
C
N
N
H H
D
H
H
O
MeO2C
a. MeOH/CHCl3
(+)-CSA
b. resolution
c. 1 N NaOH
OMe
O
OMe
23
OMe
[esterification]
22
OMe
OMe
Chlorophyll a (1 in Scheme 7), the green pigment of plants
and the essential molecule of photosynthesis, is distinguished
from its cousin molecule haemin by the presence of two extra
hydrogen atoms (and, therefore, two chiral centers) in one of
its pyrrole rings, the presence of the phytyl side chain, and the
encapsulation of a magnesium cation rather than an iron
cation. Its total synthesis by R. B. Woodward et al. in 1960[29]
represents a beautiful example of bold planning and exquisite
execution. This synthesis includes improvements over Fischers routes to porphyrin building blocks and, most importantly, a number of clever maneuvers for the installment of the
three stereocenters and the extra five-membered ring residing
on the periphery of the chlorin system of chlorophyll a. The
chemical synthesis of chlorophyll a is a significant advance
over Fischers total synthesis of haemin,[18] and must have
given Woodward the confidence, and prepared the ground, for
his daring venture towards vitamin B12 in which he was to be
joined by A. Eschenmoser (see p. 61).
OMe
a. KOH, MeOH
b. DCC, py
N H
Chlorophyll a (1960)
16
MeO
OMe
MeO
OAc
B
N Cl
H
OMe
OAc
OMe
17
MeO2C
MeO
OMe
B
N
H
MeO
OMe
NH2
OMe
B
O
N
H
MeO2C
14
NaBH4, MeOH
[reductive amination-lactamization]
MeO
OH
OMe
MeO2C
10
OMe
MeO
H2O
MeO
OH
HO2C
H
H H2SO4 H
O
H
MeO2C
NaOMe
MeOH
11
a. CH2N2
b. Ac2O
c. OsO4
d. HIO4
e. CH2N2
Br
OMe
Br
O H
NBS
H2Cr2O7 H
AcOH
HO
H
OH
OMe
12
[elimination-conjugate addition]
Zn
Br
H
H
OH
Zn
Br2
Br
OH
OH
H
5+6 CO2Me
MeO2C
Zn
O Al(OiPr)3,
H
iPrOH
A
B
C
N
N
H H
D
H
H
O
OMe
MeO2C
OMe
1: ()-reserpine
OMe
OMe
Scheme 6. a) Strategic bond disconnections and retrosynthetic analysis of
reserpine and b) total synthesis (Woodward et al., 1958).[28]
56
cleverly coaxing his polycycle into an unfavorable conformation (through intramolecular tethering), which forced an
isomerization to give the desired stereochemistry.
These maneuvers clearly constituted unprecedented sophistication and rational thinking in chemical synthesis
design. While this rational thinking was to be further
advanced and formalized by Coreys concepts on retrosynthetic analysis, the stereocontrol strategies of this era were to
dominate synthetic planning for some time before being
complemented and, to a large degree, eclipsed by acyclic
stereoselection and asymmetric synthesis advances which
emerged towards the end of the century.
Longifolene (1961)
The publication of the total synthesis of longifolene (1 in
Scheme 8) in 1961 by Corey et al.[34] is of historical significance in that in it Corey laid out the foundation of his
systematic approach to retrosynthetic analysis. Our thinking
about synthetic design has been profoundly affected and
shaped by the principles of retrosynthetic analysis ever since,
and the theory is sure to survive for a long time to come.
Coreys longifolene synthesis[34] exemplifies the identification
and mental disconnection of strategic bonds for the purposes
of simplifying the target structure. The process of retrosynthetic analysis unravels a retrosynthetic tree with possible
pathways and intermediates from which the synthetic chemist
can choose the most likely to succeed and/or most elegant
strategies. The total synthesis of longifolene itself, shown in
Scheme 8, involves a Wittig reaction, an osmium tetroxidemediated dihydroxylation of a double bond, a ring expansion,
and an intramolecular Michael-type alkylation to construct
the longifolene skeleton. This synthesis remains a landmark in
the evolution of the art and science of total synthesis.
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
Hofmann elimination reaction
Me
H2N
Me
Me
OHC
Me
HN
Mg
Me
Me
NH
Me
H
H
Dieckmann cyclization
H
Me
Me
H2N
NC
Me
NH
NH
HN
HBr
NH
Me
NH
Me
HN
AcOH
b. H2S
Me
a. MeO2C
Me b. NaOH
c. CH2N2
HN
Me a. EtNH2,
NaBH4
HN
MeO2C
CO2Me
CO2Me
CN
Me
Me
Me
CO2Et
HN
HN
HCl
Me
CO2Et
formation]
NC
HN
HN
Me
CO2Et [thioaldehyde
MeO2C
Me
Cl
CN
OHC
SHC
MeO2C
NH
Me
Me
NH
Me
Me
Me
4: phytol
CO2Me
H3N
Me
Me
Me
Me
MeO2C
OHC
H2N
Me
CO2Et
1: chlorophyll a
b)
OH
+
Me
Me
Me
Ester
formation
Me
HN
NH
Me
O
CO2Me
Me
Cl
CO2Et
Me
HCl
AcHN
H3N
N
Me
Me
AcHN
Me
NH HN
Me
NH HN
Me
Me a. I2 [oxidation]
Me
Me
NH
Me
Me
NH HN
Me
Me
Me
AcOH, 
(50% overall)
Me
Me
NH HN
Me
b. Ac2O, py
NH HN
AcHN
Me
Me
NH
Me
NH HN
Me
Me
CO2Me
CO2Me
CO2Me
10
CO2Me
CO2Me
CO2Me
CO2Me
11
NH
CO2Me
13
12
Me
NH
Me
NH
Me a. resolution
Me
Me
HN
Me
H
H
CHO CO2Me
CO2Me
b. CH2N2 Me
b. NaOH, H2O Me
HN
Me
H
HO2C
19
CO2Me
14
HO
NH
HN
Me
O2, hv
Me
H
O CHO
CO2Me
NH
HN
CO2Me
MeO2C
MeO2C
17
Me
[Hofmann
elimination] Me
Me a. HCl,
MeOH
b. Me2SO4, Me
Me
NaOH
H
[photooxygenation]
MeO2C
MeO2C
18
Me
Me
[highly specific
photochemical
Me
Me cleavage of the
cyclopentadiene ring]
AcOH/
[hydrolysis]
Me
NH
HN
Me
CO2Me
MeO2C
MeO2C
16
Me
15
[cyanohydrin lactone
formation]
HCN, Et3N
Me
NH
a. KOH, MeOH
with quinine
Me
Me
Me
Me
CO2Me
CO2Me
AcHN
Me
Me
CO2Me
CO2Me
CO2Me
NH
[oxidation] Me
Me
O
CO2Me
air
Me
HN
Me
H
H
NC
CO2Me
Me
Me
a. Zn, AcOH
b. CH2N2
c. MeOH, HCl
[reduction]
[methylation]
[methanolysis]
20
Me
Me
NH
HN
H
H
MeO2C
CO2Me
Me
Me
Me
[Dieckmann
cyclization]
Me
b. H ,
Me
HN
Me
H
H
CO2Me
21
NH
NaOH, py
Me
a. NaOH, H2O
4
Me
c. Mg(OEt)2
[ester exchangemagnesium
insertion sequence]
Me
Me
Me
MeO2C
CO2Me
N
Mg
H
O
22
O
CO2Me
Me
1: chlorophyll a
Me
Me
Me
Me
Scheme 7. a) Strategic bond disconnections and retrosynthetic analysis of chlorophyll a and b) total synthesis (Woodward et al., 1960).[29] The locking of 2
and 9 together through formation of a schiff base forces the cyclization to proceed with the desired regioselectivity.
Lycopodine (1968)
Lycopodine (1 in Scheme 9), first isolated in 1881, is the
most wildly distributed alkaloid from the genus lycopodium.[71] In addition to the great challenge of synthesizing this
novel polycyclic framework in a stereocontrolled manner, one
must effectively address the challenge posed by the C13
quaternary center, which is common to all four rings. Gilbert
Stork was one of the first to successfully complete the total
synthesis of lycopodine.[72] This masterfully executed synthesis
Angew. Chem. Int. Ed. 2000, 39, 44  122
features a unique aza-annulation strategy which utilizes the
Stork enamine methodology[73] (a generally useful strategy to
generate and trap enolates regiospecifically) to construct
quinolone systems, a stereospecific cationic cyclization to
establish the C13 quaternary center, and a series of functional
group manipulations to elaborate the resulting aromatic ring
into ring D. Several syntheses of lycopodine have since
appeared,[74] each featuring a unique strategy complementary
to Storks beautiful synthesis.
57
REVIEWS
a)
K. C. Nicolaou et al.
Alkylation
Me
Me
Michael Me
addition
a)
Me
O
Allylic
Me
H oxidation
Me
OMe
H
O
H
Olefination
Me
1: longifolene
N
N
Me
Me
Cl3C
Lactamization
O
Me
pinacol
rearrangement
Me
1: lycopodine
Me
5: Wieland-Miescher
ketone
OH
OTs
Ozonolysis
CO2Me
Me
Me
N
H
Cationic
cyclization
2
Stork enamine
Me
O
CHO
O
OMe
MeO
OMe
CO2Et
Conjugate
addition
b)
HO
a.
OH
pTsOH, 
b. Ph3P=CHMe
Me
a. OsO4, py
b. pTsCl, py
Me
O Me
7
O
[pinacol
(31% overall) rearrangement]
4 H
OTs
LiClO4,
CaCO3
b)
MeO
HO
O
O
OH
O Me
Et3N , 
a.
Me
O
O
HS
Me Me
S
SH
BF3Et2O
b. LiAlH4, 
Me
Me
H
Me
Me
a. Na, NH2NH2, 
b. CrO3, AcOH
O
H
Me
Me
H
Me
N
H
[Stork
enamine]
Ar
H2N
N
Me
(55%) O
Me
c. KOtBu
d. O
OMe
12
11
Cl
Me
a. LiAlH4
b. Li-NH3
[Birch
reduction]
N
H
OMe
Scheme 8. a) Strategic bond disconnections and retrosynthetic analysis of
longifolene and b) total synthesis (Corey et al., 1961).[34]
H
H
(49% overall)
Me
10
H3PO4:HCO2H (1:1)
H
Me
a. MeLi, 
b. SOCl2, py
N
O
CCl3
13
OMe
Cl3C
O3, MeOH
H
Me
Me
Cephalosporin C (1966)
Cephalosporin C (1 in Scheme 10) was isolated from
Cephalosporium acremonium in the mid-1950s[75] and was
structurally elucidated by X-ray crystallographic analysis in
1961.[76] Reminiscent of the penicillins, the cephalosporins
represent the second subclass of b-lactams, several of which
became legendary antibiotics in the latter part of the
twentieth century. Having missed the opportunity to deliver
penicillin, the Woodward group became at once interested in
the synthesis of cephalosporin C and, by 1965, they completed
the first total synthesis of the molecule.[30]
This total synthesis of cephalosporin C was the sole topic of
Woodwards 1965 Nobel lecture in Stockholm. Indeed, in a
move that broke tradition, R. B. Woodward described on that
occasion for the first time, and in a breathtaking fashion, the
elegant synthesis of cephalosporin C. Highlights of this synthesis, which is summarized in Scheme 10, include the
development of the azodicarboxylate-mediated functionalization of the methylene group adjacent to the sulfur atom of
l-cysteine, the aluminum-mediated closure of the aminoester
to the b-lactam functionality, the brilliant formation of
cephalosporins sulfur-containing ring, and the use of the
b,b,b-trichloroethyloxy moiety to protect the hydroxyl group.
This total synthesis stands as a milestone accomplishment in
the field of natural product synthesis.
Ar
(20-25%
of
desired
isomer)
Me
[cationic
cyclization]
10
H
N
Me
H2N
1: longifolene
58
OH
H
N
Me
OH
H
[conjugate
addition]
(90%)
OMe
Me
Ph3CNa; MeI (60%)
Me
a. LiAlH4
b. MeMgBr,
CuCl2
Me
Me 8
OMe
OMe
(36%)
(10-20%)
CH3
b. K2CO3, H2O
[decarboxylation]
O Me
2 N HCl, 
[Isomerization;
Michael addition]
a. NaOEt, 7
CO2Et
Me
Me
EtO2C
Me
H
H
O
O
N
O
Cl3C
N
O
16
CO2Me
O
Cl3C
15
CO2Me
Cl3C
H
O
O
N
OH
Me
OH
14
SeO2
N
H2O2
(30%
O
overall)O
CO2Me
Cl3C
CHO
CO2Me
a. NaOMe [formate methanolysis]
b. Zn, MeOH [deprotection of amine]
Me
Me
N
H
Me
N
O
H
H
a. LiAlH4
b. CrO3-H2SO4
O
H
17
MeO
H
H
1: lycopodine
18
Scheme 9. a) Strategic bond disconnections and retrosynthetic analysis of
()-lycopodine and b) total synthesis (G. Stork et al., 1968).[72]
Prostaglandins F2a and E2 (1969)
The prostaglandins were discovered by von Euler in the
1930s[77] and their structures became known in the mid-1960s
primarily as a result of the pioneering work of Bergstrm and
his group.[78] With their potent and important biological
activities and their potential applications in medicine,[79] these
scarce substances elicited intense efforts directed at their
chemical synthesis. By 1969 Corey had devised and completed
his first total synthesis of prostaglandins F2a (1 in Scheme 11)
and E2 .[80] These syntheses amplified brilliantly Coreys
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
CO2H
Conjugate
addition
O
H
NH H
H2N
H
Cyclization
O
CH2OAc
MeO2C
H
H2N
Me
CO2Me
N N
MeO2C
H
Me
tBuOC(O)N
S
Me
N3
H
tBuOC(O)N
Me
MeO2C
Me
MeO2C
H
Me
a. acetone
MeO2C
H
b. tBuOCOCl
N
c.
CH
2
2
SH
tBuOC(O)N
HO2C
H
OAc
H
tBuOC(O)N
6: L-(+)-cysteine
b)
H
Me
HO2C
H
SH
Me
1: cephalosporin C
H2N
CHO
tBuOC(O)N
Amide bond formation
CO2H
CO2CH2CCl3
NH
N CO Me
2
S N
Me
Me CO2Me
OAc
CO2Me
MeO2C H
H
S
CO2Me
MeO2C H
H
tBuOC(O)N
Me
tBuOC(O)N
[oxidation]
Me
12
tBuOC(O)N
Me
MeO2C
H
Pd(OAc)4
N
S
Me
13
CO2Me
tBuOC(O)N
CO2Me
Me
tBuOC(O)N
CO2Me
Me
MeO2C
H
NH
Me
11
MeO2C
H
OAc
Me
CO2Me
N
10
Me CO2Me
MeO2C OAc
N
H
N
OAc
NH
S N
tBuOC(O)N
CO2Me
Me
Me
14
CO2Me
Me
15
OAc
[-N2]
MeO2C
H
OAc
H
tBuOC(O)N
Me
MeO2C
H
tBuOC(O)N
Me
Me
5: major product
MeO2C
H
OAc
H
OAc
tBuOC(O)N
S
Me
Me
17: minor product
Me
16
AcO, MeOH
O
MeO2C
OH a. MeSO2Cl
H
H b. NaN3
tBuOC(O)N
S
MeO2C
H
tBuOC(O)N
Me
Me
Me
18
Me
[lactamization]
CHO
H
NHCO2CH2CCl3
H
N H
H
O
CO2CH2CCl3
a.
27
CO2CH2CCl3
O
N
TFA
H
tBuOC(O)N
Me
N H
H
CO2CH2CCl3
py
[equilibration]
Me
CH2OAc
CO2H
O
CH2OAc
N
H
N H
H
O
CO2CH2CCl3
28
23
H
NHCO2CH2CCl3
CHO
CH2OAc
O
CO2CH2CCl3
25
24
b. CCl3CH2OH, DCC
26
NHCO2CH2CCl3 H2N
H
CO2H
CO2H
CO2CH2CCl3
H
22
DCC
Me
CO2CH2CCl3
CO2CH2CCl3
a. BH3 [neutral reducing agent]
b. Ac2O,
CO2CH2CCl3
py
O
H
NHCO2CH2CCl3
CHO
S
21
CO2CH2CCl3
N
Me
NaO
20
H
S
CCl3
CHO
HO2C H
HO
HO CO2H a. CCl3CH2OH, pTsOH
b. NaIO4
O
O
19: tartaric acid
NH
H
a. Al/Hg/MeOH
tBuOC(O)N
b. iBu3Al
[SN2 with inversion
of configuration]
OH
[reduction of azide]
N3
Zn, AcOH
NH2
N H
H
H
CO2H
[reductive removal of
the protecting groups]
1: cephalosporin C
Scheme 10. a) Strategic bond disconnections and retrosynthetic analysis of
cephalosporin C and b) total synthesis (Woodward et al., 1966).[30]
retrosynthetic analysis concepts and demonstrated the utilization of the bicycloheptane system derived from a Diels 
Alder reaction as a versatile key intermediate for the synthesis of several of the prostaglandins. A large body of
Angew. Chem. Int. Ed. 2000, 39, 44  122
Scheme 11. a) Strategic bond disconnections and retrosynthetic analysis of
()-PGF2a and b) the total synthesis (Corey et al., 1969).[80]
synthetic work[8183] followed the initial Corey synthesis and
myriad prostaglandin analogues have since been synthesized,
aiding both biology and medicine tremendously.
Coreys original strategy evolved alongside the impressive
developments in the field of asymmetric catalysis, many of
which he instigated, which culminated by the 1990s, in a
refined, highly efficient and stereocontrolled synthesis of the
prostaglandins.[84] Thus, in its original version, the Corey
synthesis of prostaglandins F2a and E2 was nonstereoselective
and delivered the racemate and as a mixture of C15 epimers.
Then, in 1975, came a major advance in the use of a chiral
auxiliary to control the stereochemical outcome of the crucial
Diels  Alder reaction to form the bicyclo[2.2.1]heptane
system in its optically active form.[85] The theme of chiral
auxiliaries to control stereochemistry played a major role in
the development of organic and natural products synthesis in
the latter part of the century. In addition to the contributions
59
REVIEWS
K. C. Nicolaou et al.
of Corey, those of A. I. Myers,[86] D. A. Evans,[87] W. Oppolzer,[88] and H. C. Brown[89] as well as many others helped shape
the field.
Finally came the era of catalyst design and here again the
prostaglandins played a major role in providing both a driving
force and a test. In a series of papers, Corey disclosed a set of
chiral aluminum- and boron-based[90, 91] catalysts for the
Diels  Alder reaction (and several other reactions) that
facilitated the synthesis of an enantiomerically enriched
intermediate along the route to prostaglandins. And, finally,
the problem of stereoselectivity at C15 was solved by the
introduction of the oxazaborolidine catalyst (CBS) by Corey
in 1987.[92] These catalysts not only refined the industrial
process for the production of prostaglandins, but also found
uses in many other instances both in small scale laboratory
operations and manufacturing processes of drug candidates
and pharmaceuticals. For a more in-depth analysis of the
Corey syntheses of prostaglandins F2a and E2 and other
advances on asymmetric catalysis, the reader is referred to
ref. [4] and other appropriate literature sources.
Progesterone (1971)
Progesterone (1 in Scheme 12), a hormone that prepares
the lining of the uterus for implantation of an ovum, is a
member of the steroid class of compounds that is found
ubiquitously in nature. Its linearly fused polycyclic carbon
framework is characteristic of numerous natural products of
steroidal or triterpenoid structures. A daring approach to
progesterones skeleton by W. S. Johnson[93] was inspired by
the elucidated enzyme-catalyzed conversion[94] of squalene
oxide into lanosterol or to the closely related plant triterpenoid dammaradienol. This biomimetic strategy was also
encouraged by the Stork  Eschenmoser hypothesis, which
was proposed in 1955[35] to rationalize the stereochemical
outcome of the biosynthetic transformation of squalene oxide
to steroid. According to this postulate it was predicted that
polyunsaturated molecules with trans CC bonds, such as
squalene oxide, should cyclize in a stereospecific manner, to
furnish polycyclic systems with trans,anti,trans stereochemistry at the ring fusion.
This brilliant proposition was confirmed by W. S. Johnson
and his group through the biomimetic total synthesis of
progesterone (Scheme 12). A tertiary alcohol serves as the
initiator of the polyolefinic ring-closing cascade, in this
instance, but other groups have also been successfully
employed in this regard (for example, acetal, epoxide). The
methylacetylenic group performed well as a terminator of the
cascade in the original work. A number of new terminating
systems have since been successfully employed (for example,
allyl or propargyl silanes, vinyl fluoride). The work of W. S.
Johnson was complemented by that of van Tamelen[95] and
others[3, 4] who also explored such biomimetic cascades.
Tetrodotoxin (1972)
Tetrodotoxin (1 in Scheme 13) is the poisonous compound
of the Japanese puffer fish and its structure was elucidated by
60
Scheme 12. a) Strategic bond disconnections and retrosynthetic analysis of
progesterone and b) total synthesis (Johnson et al., 1971).[93]
Woodward in 1965.[96] By 1972 Kishi and his group had
published the total synthesis[97] of this highly unusual and
challenging structure. This outstanding achievement from
Japan was received at the time with great enthusiasm and
remains to this day as a classic in total synthesis. The target
molecule was reached through a series of maneuvers which
included a Diels  Alder reaction of a quinone with butadiene,
a Beckman rearrangement to install the first nitrogen atom,
stereoselective reductions, strategic oxidations, unusual functional group manipulations, and, finally, construction of the
guanidinium system. As a highly condensed and polyfuncAngew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
HO
C-N Bond
formation
N O
H
HO
NH2
AcHN
O
O
1: tetrodotoxin
H
CH2OH
HN
H2N
OH
OH
OAc
CH2OAc
AcO H
OH
OAc
trans-Esterification/
epoxide opening
Orthoester
formation
Epoxide opening/
cyclization
HO
AcO
OAc
AcNH
, SnCl4
Me
Me
[Lewis acid catalyzed N
Diels-Alder
HO
reaction]
O
Me
a. MsCl, Et3N
b. H2O, 
(61%)
[Beckmann
rearrangement]
AcN O
H
Me
(83%)
HO
O
AcNH
Diels-Alder
reaction
CH2OAc
O
O
b)
Baeyer-Villiger
oxidation
Me
Me
[regio- and stereoselective reduction] a. NaBH4, MeOH
(72%)
[epoxide-mediated etherification] b. mCPBA, CSA
a. SeO2
b. NaBH4
(100%) O
H
OH
O
O AcN
H OAc
9
a. mCPBA
b. Ac2O, py
c. TFA, H2O;
Ac2O, py
O
O
AcO AcN OAc
H
10
O
AcHN
OH
14
OH
HO
H2N
AcHN
O
H
OAc
OAc
CH2OAc
H
O
S
H2N
OH
AcN O
H
O
OAc
a. KOAc, AcOH
b. Ac2O, CSA, 
CH2OAc
OAc
N
H
AcO
H O
H
13
a. H5IO6
b. NH4OH
(9% overall)
OAc
15
OH
OAc
OAc
AcO
Me
O
O
O
AcHN
O
(100%)
c. vacuum,
H O
[Baeyer-Villiger O
300 C
AcO
oxidation]
AcO AcN OAc [acetate elimination]
H
H
O
(80%)
11
3
a. OsO4, py
(65%)
b. (MeO)2CMe2, CSA
c. Et3O BF4 , Na2CO3; AcOH
BF4 ;
Ac2O, py
b. acetamide
(50%)
a. BF3, TFA
b. TFA, H2O
HO
c. Al(OiPr)3, iPrOH, 
d. Ac2O, py
(86% overall)
mCPBA
H O a. Et O
3
AcO
H
HO
OAc
AcO-
CH2OAc
H
OAc
N
AcHN
OH
HO
8
d. (EtO)3CH, CSA; Ac2O, py [diethylketal formation]
e. 
[ethyl enol ether formation]
f. mCPBA, K2CO3
[epoxidation]
g. AcOH
[epoxide opening and acetylation]
(53% overall)
OAc
Me
O AcN
H OAc
a. CrO3, py
b. BF3Et2O,
CH2OAc
H
OAc
CH2OAc
H
OAc
H2N
H O
a. BrCN, NaHCO3 AcO
H
b. H2S
O
(100%)
12
HO
H
H
OH
CH2OH
HN
H2N
N O
H
HO H
H
O
O
OH
1: tetrodotoxin
Scheme 13. a) Strategic bond disconnections and retrosynthetic analysis of
tetrodotoxin and b) total synthesis (Kishi et al., 1972).[97]
tional molecule, tetrodotoxin was certainly a great conquest
and elevated the status of both the art and the practitioner,
and at the same time was quite prophetic of things to come.
Vitamin B12 (1973)
The total synthesis of vitamin B12 (1 in Scheme 14),
accomplished in 1973 by a collaboration between the groups
of Woodward and Eschenmoser,[3, 32] stands as a monumental
achievement in the annals of synthetic organic chemistry.
Angew. Chem. Int. Ed. 2000, 39, 44  122
Rarely before has a synthetic project yielded so much
knowledge, including: novel bond-forming reactions and
strategies, ingenious solutions to formidable synthetic problems, biogenetic considerations and hypotheses, and the seeds
of the principles of orbital symmetry conservation known as
the Woodward and Hoffmann rules.[98] The structure of
vitamin B12 was revealed in 1956 through the elegant X-ray
crystallographic work of Dorothy Crowfoot-Hodgkin.[99] The
escalation of molecular complexity from haemin to chlorophyll a to vitamin B12 is interesting not only from a structural
point of view, but also in that the total synthesis of each
molecule reflects the limits of the power of the art and science
of organic synthesis at the time of the accomplishment.
One of the most notable of the many elegant maneuvers of
the Woodward  Eschenmoser synthesis of vitamin B12 is the
photoinduced ring closure of the corrin ring from a preorganized linear system wrapped around a metal template,
which was an exclusive achievement of the Eschenmoser
group. The convergent approach defined cobyric acid (2 in
Scheme 14) as a landmark key intermediate, which had
previously been converted into vitamin B12 by Bernhauser
et al.[100] The synthesis of vitamin B12 defined the frontier of
research in organic natural product synthesis at that time. For
an in depth discussion of this mammoth accomplishment, the
reader is referred to ref. [4].
Erythronolide B (1978)
The macrolide antibiotics, of which erythromycin is perhaps
the most celebrated, stood for a long time as seemingly
unapproachable by chemical synthesis. The origin of the
initial barriers and difficulties was encapsulated in the
following statement made by Woodward in 1956, Erythromycin, with all our advantages, looks at present hopelessly
complex, particularly in view of its plethora of asymmetric
centers.[101] In addition to the daunting stereochemical
problems of erythromycin and its relatives, also pending was
the issue of forming the macrocyclic ring. These challenges
gave impetus to the development of new synthetic technologies and strategies to address the stereocontrol and macrocyclization problems.
The brilliant total synthesis of erythronolide B[102] (1 in
Scheme 15), the aglycon of erythromycin B, by Corey et al.
published in 1979, symbolizes the fall of this class of natural
products in the face of the newly acquired power of organic
synthesis. Additionally, it provides further illustration of the
classical strategy for the setting of stereocenters on cyclic
templates. The synthesis began with a symmetrical aromatic
system that was molded into a fully substituted cyclohexane
ring through a short sequence of reactions in which two
bromolactonizations played important roles. A crucial Baeyer  Villiger reaction then completed the oxygenated stereocenter at C6 and rendered the cyclic system cleavable to an
open chain for further elaboration.
As was the case in many of Coreys syntheses, the total
synthesis of erythronolide B was preceded by the invention of
a new method, namely the double activation procedure for the
formation of macrocyclic lactones employing 2-pyridinethiol
esters.[103] This landmark invention allowed the synthesis of
61
REVIEWS
K. C. Nicolaou et al.
Scheme 14. a) Strategic bond disconnections and retrosynthetic analysis of ()-vitamin B12 , b) key synthetic methodologies developed in the course of the
total synthesis, c) and final synthetic steps in the Woodward-Eschenmoser total synthesis of vitamin B12 (Woodward  Eschenmoser, 1973).[32]
62
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
Me
O
Me
Me
Me
Me
O
Me
OBz
O
HO
OH
Me
OH
OTBS
O
OTBS
OBz
Me
Me
Me
Me
1: erythronolide B
Bromolactonization
Me
Br
Me
Bromolactonization
Me
Me
Me
NaOMe
(72%)
Me
10
Me
Me
O
13
a. H2, Raney-Ni
b. BzCl
12
OBz
OBz
a. LDA
Me
b. MeI
(75%
O overall) BzO
Me
Br2, KBr
Me
Me
(91%)
Me
Me
O
Me
11
[bromolactonization]
CO2H
OBz
Me
Me
BzO
Me
Me
O
Br
Me
a. KOH, H2O (98%)
b. resolution
(93%)
Me
O
Me
nBu3SnH
Me
AIBN
Me
CO2H
(76%)
a. LiOH
Me
b. CrO3, H2SO4
(80%)
OBz
Me
Me
Me
CH3CO3H
BzO
Me
(70%) BzO
Me
Me
CO2H
[Baeyer-Villiger
oxidation]
Me
16
14
5
a. H2O2, Na2WO4
b. resolution
c. ClCO2Et
Me d. NaBH4 OMe
e. POCl3,
(76% overall)
O
Me
18
15
a.
Li
b. Amberlyst IRC-50
c. ArSO2Cl, py
Me d. Me2CuLi
Me
I
O e. TBSCl, imid.
Me
f. LDA; MeI
OMe g. [Cp2ZrHCl]
OTBS
Me h. I2, CCl4
Me
19
Ph3P
17
N
S S
(65%)
OBz
Me
Me
BzO
Me
O O O
S
tBuLi, MgBr2
Me
(90%)
OH
Me
Me
Me
Me
a. AcOH
HO
b. LiOH
OBz
H2O2 Me
Me
BzO
Me
O O O
Me
Me
OH
iPr
Me
Me
OH
tBu
N
N
S S
23
Ph3P;
Me
iPr
PhMe, 
(50% )
a. MnO2
(98% )
b. H2O2, NaOH
10
OH
Me
OH
OH
OH
Me
24
a. H2, Pd/C [epoxide reduction]
b. K2CO3, MeOH
[epimerization at C-10]
c. HCl
Me
1: erythronolide B
Me
Me
O
Me
Me
OH
Me
O
Me
O
Me
O
Me
Me
25
Scheme 15. a) Strategic bond disconnections and retrosynthetic analysis of
erythronolide B and b) total synthesis (Corey et al., 1978).[102]
Angew. Chem. Int. Ed. 2000, 39, 44  122
Monensin[105] (1 in Scheme 16), isolated from a strain of
Streptomyces cinamonensis, is perhaps the most prominent
member of the polyether class of antibiotics. Also known as
ionophores, these naturally occurring substances have the
ability to complex and transport metals across membranes,
thus exerting potent antibacterial action.[106, 107] These structures are characterized by varying numbers of tetrahydropyran, tetrahydrofuran, and/or spiroketals. Kishis total synthesis
of monensin,[108] which followed his synthesis of the simpler
ionophore lasalocid,[109] represents a milestone achievement
in organic synthesis (Scheme 16). This accomplishment demonstrates the importance of convergency in the total synthesis
of complex molecules and is one of the first examples of
stereoselective total synthesis through acyclic stereocontrol,
and elegantly marked the application of the Cram rules within
the context of natural-product synthesis. By unraveling the
spiroketal moiety of the molecule Kishi was able to adopt an
aldol-based strategy to couple monensins two segments. A
series of daring reactions (for example, hydroborations,
epoxidations) on acyclic systems with pre-existing stereocenters allowed the construction of the two heavily substituted fragments of the molecule which were then successfully
coupled and allowed to fold into the desired spiroketal upon
deprotection. Kishis beautiful synthesis of monensin also
provided a demonstration of the importance of 1,3-allylic
strain in acyclic conformational preferences, which in turn can
be exploited for the purposes of stereocontrolled reactions
(for example, epoxidation).
A second total synthesis of monensin was accomplished in
1980 by W. C. Still and his group (Scheme 17).[110] Just as
elegant as Kishis synthesis, the Still total synthesis of
monensin demonstrates a masterful application of chelationcontrolled additions to the carbonyl function. A judicious
choice of optically active starting materials as well as a highly
convergent strategy that utilized the same aldol  spiroketalization sequence as in Kishis synthesis allowed rapid access to
monensins rather complex structure.
O
O
Me
Me
Me
O
OH
Me
Me
Me
Me
O
Me
22
Me
Me
Me
Me
Me Me
20
tBu
Me
OH
Me
OTBS
Me
Me
Me
HO
OTBS
d. Amberlyst IRC-50
e. KOH
(61% overall)
Me
Me
Me
Me
OH
Me
Me
Me
OMe
Me
Zn(BH4)2
OBz
21 HO
a. KOH
b. CH2N2
c. HBr,
Me
OBz
OH
Me
OH
OBz
OBz
Me
Me
Me
CO2H
HO2C
5
O
(96%)
Me
HO
O [bromolactonization]
Br
Me
Br2, KBr Me
Me
Br
Me Al/Hg
BzO
Me
a. BH3THF;
Me
H2O2, NaOH
b. CrO3, H2SO4
Me
Me
Me
Me
Me
OH
Monensin (1979, 1980)
OBz
Br
Me
Me 7
S
Me
Me
O O O
Baeyer-Villiger
oxidation
8 Me
b)
Me
Alkylation
Me
Me
Me
BzO
Me
C-C bond formation
Lactonization
OH
Me
Me
OH Functionalization
several macrolides including erythronolide B and, most
significantly, catalyzed the development of several improvements and other new methods for addressing the macrocyclization problem.[104] Soon to follow Coreys synthesis of
erythronolide B was Woodwards total synthesis of erythromycin A.[33]
Me
Me
Me
OH
Me
OBz
Endiandric Acids (1982)
The endiandric acids (Scheme 18) are a fascinating group of
natural products discovered in the early 1980s in the
Australian plant Endiandra introsa (Lauraceae) by Black
et al.[111] Their intriguing structures and racemic nature gave
rise to the so called Black hypothesis for their plant origin,
which involved a series of non-enzymatic electrocyclizations
from acyclic polyunsaturated precursors (see Scheme 18).
Intrigued by these novel structures and Blacks hypothesis for
their biogenetic origin, we directed our attention towards
their total synthesis. Two approaches were followed, a
63
REVIEWS
K. C. Nicolaou et al.
a) Aldol condensation
Spiroketalization
O
HO
Me
Me
Me
O
Me
Me H
Me
CO2H
a.
OMe
Me
Me
Ph3P
Me
H Me
CO2Me
HO O
MeO
Me
H
BH3;
KOH, H2O2
(85%)
Me
OH
Me
BH3
O
Me
Me
[8:1 mixture]
MeO
a. O
(MeO)2P
a. KH, MeI
b. H2, 10% Pd/C
c. resolution
d. PCC
(77% overall)
OBn
H Me
HO O
OBn
b. LiAlH4
c. BnBr, KH
(66% overall)
CO2Et
Me
Me
Et
MeO
Me
H Me
1: monensin HO
b)
a. nBuLi, MeI
CN
b. KOH
c. LiAlH4
5
d. PCC
Me
Et
Me
O OH
OBn
H
HO O
OMe
Me
Et
OMe O
Me
CO2Me
OMe
Me
Me
O
Me
b. LiAlH4
(73%)
Me
O
Me
Me
(80%)
Me a. mCPBA
Me
Me
Me
b. KOH aq.
c. resolution
CO2H
OH
(35% overall)
PPh3
14
13
15
a. PhCHO, CSA
b. LiAlH4-AlCl3 (1:4)
OH c. resolution
HO
HO
CH3C(OEt)3
CH3CH2CO2H, 
Et
H
(93%)
OBn
a. PCC
b.
Et
HO
[Johnson
orthoester Claisen
rearrangement]
16
Me
Me
Me
Ar
O
Et H
[bromoetherification]
26
KO2,
[18]crown-6
DMSO
Me
Ar
H
Et H
H H
OH
27
Me
Me
MeO OH
OH
Ar
OH
H
Et H
Me
OH
Me
11
[12:1 mixture]
Et
21 OH
O
Et
Et
Ar
mCPBA
OH
(36%)
[7:2 mixture]
24
(78%)
OH
[hydroxyl-directed
epoxidation]
22
23
a. NaOMe, MeOH
b. (CH3O)3CH
MeOH, CSA
Me
Me
Me
a. Cl3CCOCl, py
Me
b. OsO4, py
Ar
OBz
O
c. BzCl, py
O
O
H
Et H
H HO
d. CrO3, H2SO4
CCl3
28
O
Me
H
Me
PPh3
[Wittig reaction]
25
20
a. pTsCl
O
b. LiAlH4
c. CSA
Ar
d. OsO4, NaIO4
Me
a. LiAlH4
Ar
b. PCC
OBn c. MeOC H MgBr
6 4
H
d. CrO3, H2SO4
e. BCl3
(31% overall)
EtO2C
OBn
OMe OH
(47%)
Me
15
Me
Me
NBS Ar
O
OH
(57%)
H
Et H
Br
Me
19
Me
Me
Me
18
17
EtO
BH3; H2O2
Et
Et
OBn
MgBr
a. MOMBr,
OMe OBn O
OMe OBn OMOM
a. CH2N2
PhNMe2
MeO2C
HO2C
H
b. BnBr, KH O
b. HCl
c. O3 , MeOH
Me Me Me
Me Me Me
c. PCC
12
2
(33% from 11)
Me
Me
12 steps
OH
10
Me
(53% overall)
Me
Me
Me
MeMgBr
O
Et H
H H
OMe
(22% from 4)
OHC
MeO O
Me
Et H
H H
Li, EtOH
NH3 (l)
OH
OMe
[Birch reduction]
Me
OH
Me
MeO
H O Et H O H H O OMe
31
OH
30
a. (CH3O)3CH
MeOH, CSA
b. O3 , MeOH
c. MgBr2
Me
Me
Me
MeO
H
Et H
H H
OH
OMe
29
a. O3 , MeOH
b. HCl, MeOH
c. MeLi
OH
H
Me
Me
O OH
Et
O
HO
Me
iPrNMgBr, 2
H Me
(21%, 92% based on recovered SM)
OBn
Me
OMe
Me
HO O
Et
Me
Me
Me
OH
O H
O
a. H2 , 10% Pd/C
b. CSA, H2O
Me
c. NaOH-MeOH (1:5)
Me
H Me
Me
[8:1 mixture]
MeO
32
Et
O
Me H
H
OMe
Me
HO O
CO2Me
MeO
HO
Me
H Me
H
HO
CO2Na
HO
Me
Me
1-Na: (+)-monensin sodium salt
Scheme 16. a) Strategic bond disconnections and retrosynthetic analysis of monensin and b) total synthesis (Kishi et al., 1979).[108]
stepwise (Scheme 19 b) and a direct one-step strategy
(Scheme 19 c). Both strategies involve an 8-p-electron electrocyclization, a 6-p-electron electrocyclization, and a Diels 
Alder-type [42] cycloaddition reaction to assemble the
polycyclic skeletons of endiandric acids. The total synthesis[112]
of these architecturally interesting structures demonstrated a
number of important principles of organic chemistry and
verified Blacks hypothesis for their natural origin. In
particular, the one-pot construction of these target mole64
cules from acyclic precursors from the endiandric acid cascade
is remarkable, particularly if one considers the stereospecific
formation of no less than four rings and eight stereogenic
centers in each final product.
Efrotomycin (1985)
Efrotomycin (1 in Scheme 20; see p. 67), the most complex
member of the elfamycin class of antibiotics[113] that includes
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
Scheme 17. a) Strategic bond disconnections and retrosynthetic analysis of monensin and b) total synthesis (Still et al., 1980).[110]
aurodox, was isolated from Nocardia lactamdurans. [114] Its
molecular structure, which contains nineteen stereocenters
and seven geometrical elements of stereochemistry, presented
considerable challenge to the synthetic chemists of the 1980s,
particularly in regard to the oligosaccharide domain and the
all-cis-tetrasubstituted tetrahydrofuran system. The total synAngew. Chem. Int. Ed. 2000, 39, 44  122
thesis of efrotomycin, accomplished in 1985 in our laboratories,[115] addressed both problems by devising new methodologies for the stereoselective construction of glycosides and
tetrahydrofurans. Scheme 20 summarizes this total synthesis
in which the two-stage activation procedure for the synthesis
of oligosaccharides utilizing thioglycosides and glycosyl
65
REVIEWS
K. C. Nicolaou et al.
CO2R
CO2R
Ph
Ph
a CO2R
CO2R
Ph
Ph
CO2R
RO2C
CO2R
Ph Ph
H
H
HO2C
endiandric acid D
Ph
Ph
endiandric acid E
Ph
H
H
CO2H
HO2C
endiandric acid F
Diels-Alder
Ph
endiandric acid G
Diels-Alder
H
HO2C
H
H
endiandric acid A
H
H
CO2H
Ph
Diels-Alder
Ph
H
H
H
H CO H
2
Ph
Ph
RO2C
H
H
endiandric acid B
CO2H
H
H
Ph
endiandric acid C
Scheme 18. The endiandric acid cascade (Black et al., R  Me, H). a) Conrotatory 8-p-electron cyclization; b) disrotatory 6-p-electron cyclization.[111]
Scheme 19. a) Strategic bond disconnections and retrosynthetic analysis of endiandric acids A  C, b, c) total synthesis, and d) biomimetic synthesis of
endiandric acid methyl esters A  C (Nicolaou et al., 1982).[112]
66
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
OMe
Glycosidation
H
O
Me
O
Me
Wittig
olefination
OH
Me
OMe H
H
N
Me
O
Me
OH
OMe
OTBS
Me
OMe H
H
N
Me
Me
O
Me
OMe
OH
Me
Me
Me
Me
Me
Ph3P
OH
1: efrotomycin
Me
OH
TBSO
OH
Me
Me
O
O
Me
N
PhS
Me
HO OH
Me
Amide
formation
CCl3
OMe Me
OMe
OH
OMe
HO
Glycosidation
Me
Br
OBn
b)
a. LiCuMe2; TMSCl
b. O3; Me2S
c.
OMe
a. KCH2S(O)CH3
b. TBSCl, imid.
MeO2C
OMe H
OTBS
CuLi
MeO2C
O
7
Me
Me
OH Me
OMe
OH
a. nBu2SnO, 
b. BnBr
c. KH, MeI
O
Me
OMe
OBn
Me
(55%)
OMe Me
d. NBS, DAST
12
MeO
Me
a. H2, 5% Pd/C
b. TBSCl, imid.
c. PhSTMS, ZnI2
OMe Me
OTBS
Me
Me
5, 6
Me
TMSO
10
Me
OTMS
OMe
OMe
OTBS
a. AgClO4, SnCl2
b. NBS, DAST
O
O
O
HO
NBS, AIBN
Ph
(100%)
c. PhSTMS, ZnI2;
K2CO3, MeOH
(70%)
14
a. Swern [O]
b. tBuOK,
Me
O
a. [Rh], H2
b. LiAlH4
c. CSA, acetone
Me
O
Me
15
OH
Me Me
(70%)
17
18
OMe
O
(80%)
OH
AcO
16
Me
a. (-)-DET, Ti(iPrO)4
tBuOOH
b. BnOC(O)Cl, py
c. AlCl3; H2O
(65%)
HO
O
O
c. DIBAL-H
(85%)
Me
a. AcOH, H2O
b. NaOH/EtOH
Me Me
19
Me
O
Me
Me
(85%)
O
H
OMe
Me
(85%)
Me
OH
O
O
a. (MeO)2CMe2,
CSA
b. K2CO3, MeOH;
CSA
c. RuO2, NaIO4
O
Me Me O
20
a. AcOH, H2O
b. PCC
c.
Me
22
Me
Me
O
Me
a. AlMe3, 10
b. HFpy
c. DDQ, MeOH
OH
24
Me
OMe H
H
N
O
Me
OH
OMe
OH
Me
Me
(26% overall)
21
Me
HO
O
Me Me
Me
OMe
O
Me
P(O)Ph2
(59%)
OMe
Me
Me
CO2H
O
O
Me
OMe
OH
(86%)
Me
Me
, nBuLi
Me
Me
Me
OH
Me
Me
Me
O
O
HO
O
CH3CH2CH2CO2Et,
LDA
Me
O
Me
OEt
O
23
c. 16, AgClO4, SnCl2
d. K2CO3, MeOH
OMe
(86%)
Me
Me
OH
OH
OMe
OAc
Me
Me
Me
Me
OMe
OH
Me
CO2Me
F
Me
TBSO
Me
MeO3P(O)
SPh
OPMB
TBSO
(63%)
a. nBu3SnH, AIBN
b. TBSCl, imid.
Br
OBz
HO
13
Me
OMe
OMe
OTBS
OMe
OMe
OMe
Me
a. TBAF
b. Ac2O, 4-DMAP
OMe
Me
OMe
(66%)
Me
O
H2N
d. KH, MeI
e. AcOH, H2O
(90%)
11
MeO
Me
Me
OMe H
1: efrotomycin
Me
Me
HO OH
Me
OH
Scheme 20. a) Strategic bond disconnections and retrosynthetic analysis of efrotomycin and b) total synthesis (Nicolaou et al., 1985).[115]
fluorides[116] as well as the base-induced zip-type diepoxide
opening were highlighted as powerful methods for organic
synthesis. Numerous applications and extensions of these
synthetic technologies have since followed.[117]
Okadaic acid (1986)
Okadaic acid[118] (1 in Scheme 21) is a marine toxin isolated
from Halichondria Okadai. Besides its shellfish toxicity,
Angew. Chem. Int. Ed. 2000, 39, 44  122
okadaic acid exhibits potent inhibition of certain phosphatases and is a strong tumor promotor. With its three spiroketal
moieties and seventeen stereogenic centers, the molecules
polycyclic structure presented a serious challenge to synthetic
chemistry. The first total synthesis of okadaic acid was
achieved in 1984 by the Isobe group in Japan[119] and was
followed by those of Forsyth[120] and Ley.[121] The Isobe
synthesis of okadaic acid, summarized in Scheme 21, highlights the use of sulfonyl-stabilized carbanions in synthesis, the
67
REVIEWS
K. C. Nicolaou et al.
Scheme 21. a) Strategic bond disconnections and retrosynthetic analysis of okadaic acid and b) total synthesis (Isobe et al., 1986).[119]
control of stereochemistry through chelation, and the power
of the anomeric effect to exert stereocontrol in spiroketal
formation.
Amphotericin B (1987)
The polyene macrolide family of natural products is a
subgroup of the macrolide class, which poses formidable
challenges to synthetic organic chemistry. Among them,
68
amphotericin B[122] (1 in Scheme 22), isolated from Streptomyces nodosus, occupies a high position as a consequence of
its complexity and medical importance as a widely used
antifungal agent. Its total synthesis[123] in 1987 by our group
represented the first breakthrough within this class of complex molecules. This total synthesis featured the recognition
of subtle symmetry elements within the target molecule that
allowed the utilization of the same starting material to
construct two, seemingly unrelated, intermediates and the
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
Horner-Wadsworth-Emmons;
a)
hydrogenation
Ester bond formation
OH
HO
Me
OH
OH
OH
OH
Me
OH
OTHP
TBSO
O
H
O
Me
OH
OTBS
Ph
TBSO
CO2Et
(EtO)2P
O
NH
TBSO
Cl3C
Ketophosphonate-aldehyde
macrocyclization
1: amphotericin B
4
O
NH2
OH
O
O
Me
Glycosidation
Phosphonate-aldehyde
condensation
Me
O
CO2H
Me
OBn O
(MeO)2P
MeO
Me
Phosphonate-aldehyde
condensation;
ring closure
OAc
Me
OTBS
N3
b)
HO
TPSO
O
OH
OH
(+)-8: (+)-xylose
OH
O
HO
HO
OH
7 steps
a. acetonide
formation
b. TPSCl, imid.
c. PhOC(S)Cl, py
d. nBu3SnH, AIBN
OBn O
(38% overall)
9a
BnO
(32% overall)
O
HO
(MeO)2P
OTBS
9b
()-9: ()-xylose
OH
OR1
a. PPTS [cyclization]
OMe
a. H2, Pd/C
O
Ph b. NBS, MeOH
(63%)
b. imid.
BnO
O
O
AcO
O
O
OR2 OR3 O
O
c. TBSOTf
c. 5 steps (53%)
d. LiOH
MeO
12
13
e. CH2N2
O
f. PDC
g. CH2N2
mixture of R1, R2 = acetonide, R3 = TBS and R1 = TBS, R2, R3 = acetonide
h. K2CO3,
OR1
MeOH
OMe
a. Et2AlC CH2OTPS
OTBS
HO
i. PDC
b. NaH, BnBr
2 OR3
j. (MeO)2P(O)CH2Li
O
O
O
OR
O
c. TBAF
CO2Me
(16% overall)
14
HO
OTPS
PCl5
BnO
(86%)
BnO
Cl
11
(67% overall)
OH
BnO
a. KSAE
b. Red-Al
c. TBSCl, imid.
d. H2, Pd(OH)2/C
Ph
O
O
16
17
LiCuMe2
BnO
e. PhCH(OMe)2, CSA
f. SO3py
TBSO
(47% overall)
a. H2, 10% Pd/C
b. Me2C(OMe)2, CSA
OBn c. CSA, MeOH
d. PCC
OH
BnO
OBn
Me
18
20
B(nBu)2
O
O
O
O
OTHP
Me
Me
O 21
Me
a. LDA, 6
b. DIBAL-H
c. MnO2
OTHP
TBSO
Me
Me
(86% overall)
Me
TBSO
26
Me
Me
(69%)
(60%)
22
TBSO
Me
OH
TBSO
Me
14
O
Me
O
HO
Me
OR2
Me
OR3
O
N
Me
23 Ph
OTBS
a. K2CO3, [18]crown-6
b. NaBH4
CO2Me
(MeO)2P
28
(70%)
Me
OMe
DCC, 4-DMAP
27
24
25
Ph
(72%)
Me
OCO2tBu
OR1
Me
a. LiBH4
b. tBuCOCl, py
c. TBSOTf, lut.
d. AcOH, THF, H2O
e. PhSSPh, nBu3P
OH
Me
(48% overall)
TBSO
SPh
a. Raney Ni
b. DHP, CSA
c. DIBAL-H
d. PCC, NaOAc
Me
[Evans' aldol]
a. LDA, 6
b. MeOH, PPTS
c. DIBAL-H
d. MnO2
Ph
TBSO
19
(88%)
P(OMe)2
HO
K2CO3 ,
OCHO MeOH
OEt
O
OTBS
H
O
(65% overall)
a. LDA; MeSSMe
Ph b. LDA; 5
c. TBAF
SMe
d. Red-Al
(MeO)2P
a. (EtO)3CH, AcOH
EtO2C
OH
b. LiAlH4
BnO
c. BnBr, NaH
BnO
OH
EtO2C
(87%)
15: (+)-diethyl-L-tartrate
a. H2, Pd/C
b. L-Selectride
(75% overall)
c. TPSCl, imid.
d. TBAF
BnO
O
e. MsCl, Et3N
f. NaI, acetone
g. (MeO)2P(O)H, NaH
10 steps
(68% overall)
10
OTPS
O
NaH, DME
(67% overall)
O
OH
Me
HO
Me
OH
OH
OH
MeO
OH
OH
O
H
CO2H
Me
1: amphotericin B
O
OH
Me
OH
NH2
Me
a. HFpy
b. HS(CH2)3SHEt3N
[azide reduction]
c. MeOH, CSA
d. LiOH, THF, H2O
(54% overall)
7
PPTS (cat.)
[glycosidation]
(40% overall)
TBSO
OMe
O
Me
O TBSO
OTBS
O
H
CO2Me
Me
29
OH
Scheme 22. a) Strategic bond disconnections and retrosynthetic analysis of amphotericin B and b) total synthesis (Nicolaou et al., 1987).[123]
Angew. Chem. Int. Ed. 2000, 39, 44  122
69
REVIEWS
employment of the then newly discovered Sharpless asymmetric epoxidation reaction[124] to stereoselectively construct
the 1,3-diol systems.
The Horner-Wadsworth-Emmons process[125] emerged as
the most valuable reaction of the synthesis, having been
utilized five times to construct carbon  carbon double bonds.
Particularly striking was the application of an intramolecular
ketophosphonate  aldehyde condensation to construct the
38-membered ring of amphotericin B. A further, notable
feature within this total synthesis is the strategy through which
the carbohydrate moiety was installed stereoselectively on a
derivative of amphoteronolide B to construct the challenging
b-1,2-cis-glycoside bond of the target molecule. Important in
this field is also Masamunes elegant synthesis of 19-dehydroamphoteronolide B.[126]
K. C. Nicolaou et al.
a)
Epoxidation
Epoxide opening
and lactonization
O
HO
HO
HO
Aldol
reaction
C-C bond
formation
Ring closure
MeO
Baeyer-Villiger
oxidation
O
OMe
O
OMe
tBu
H
Tandem vicinal
di-functionalization
tBu
OH
4 O
Intramolecular ketene-olefin
[2+2] cycloaddition
a.
b)
OMe
Ginkgolide B (1988)
OMe
OMe
OMe
a. [tBu2Cu(CN)Li2]
b. TMSCl, Et3N
OMe
b. 6N HCl
(75%)
OMe
a. Cy2BH
b. AcOH; H2O2
c. 1N HCl
d. pH 11; pH 3
MeO
tBu
O
12
(65%)
b. LDA; PhNTf2
(86%)
tBu
a. TiCl4, O
MeO
tBu
TMSO
Ginkgolide B (1 in Scheme 23) is a highly functionalized
natural substance isolated from the Ginkgo biloba tree, widely
known for its medicinal properties.[127] The structural elucidation of ginkgolide B in 1967 was a major accomplishment of
the Nakanishi group.[128] Its total synthesis by the Corey group
in 1988[129] stands as a landmark achievement in organic
synthesis. Despite its relatively small size, ginkgolide B
proved to be stubborn in its defiance to chemical synthesis,
primarily because of its highly unusual bond connectivity.
Among its most striking structural features are the tert-butyl
group which occurs rather rarely in nature, the eleven
stereogenic centers of which two are quaternary, and its six
five-membered rings. The Corey synthesis of ginkgolide B
abounds with brilliant strategies and tactics, but most
impressive is, perhaps, the intramolecular [22] ketene cycloaddition reaction, which contributed substantially to the
construction of the required carbon framework by delivering
two of the most challenging rings.
11
MeO
10
[Pd(PPh3)], CuI, nPrNH2
[Sonogashira coupling]
(76-84%)
tBu
TfO
CO2H
a. (COCl)2
(80%) b. nBu N, 
3
MeO
[ketene-olefin
[2 + 2]
cycloaddition]
[Baeyer-Villiger
oxidation]
(86%)
Ph3COOH, NaOH
tBu
tBu
13
O 4
tBu
OH
14
a. HS(CH2)3SH, TiCl4
(75%)
b. PDC, AcOH
H OMe
a. LiNEt2
b.
N
PhO2S O
H
tBu
MeO
then (MeO)3P
(72%)
OH
18
(68%)
H
tBu
LDA, HMPA
O
OH
tBuO
tBuO
15
O O
O
O
Me
HO
Me
tBu
OH
Ph3COOH,
(80%)
OH
H
tBu BnMe3N-OiPr; O
tBu
a. HIO4, MeOH, H2O
b. CSA, MeOH
OMe
16
17
a. NBS, hv
(40%) b. AgNO3
c. PPTS, py
Palitoxin (1989, 1994)
Ph
c. CSA
(75%)
OH
70
OMe
Isolated from soft corals of the Palythoa genus, palitoxin (1
in Scheme 24) is endowed with toxic properties exceeded only
by a few other substances known to man.[130] Both its
structural elucidation and total synthesis posed formidable
challenges to chemists. While the gross structural elucidation
of palitoxin was reported independently by the groups of
Hirata[131] and Moore[132] in 1981, its total synthesis had to
await several more years of intense efforts. Finally, after
heroic efforts from Kishi and his group the synthesis of
palitoxin carboxylic acid was published in 1989[133] and that of
palitoxin itself in 1994[134] (see Scheme 24). The synthesis of
palitoxin holds a special place in the history of total synthesis
in that palitoxin is the largest secondary metabolite to be
synthesized in the laboratory, both in terms of molecular
weight and number of stereocenters. Most importantly, this
mammoth endeavor led to the discovery and development of
a number of useful synthetic reactions. Amongst them are the
improvement of the NiCl2/CrCl2-mediated coupling reaction
OH
Hydroxylation
1: ginkgolide B
H
tBu
O
O
OH
Oxidation
H
tBu
Me
H
tBu
OH
19
20
CSA (92%)
[lactol oxidation]
O
O
HO
HO
Me H
HO
O
O
H
tBu
OH
1: ()-ginkgolide B
a. I2, CaCO3
O
b. BF3Et2O
(89%)
HO
TBSO
H
O
Me H
HO
O
O
22
OH
OH
O
H
tBu
a.TBSOTf
O
b. OsO4, py
(65%)
HO
Me H
HO
O
O
H
tBu
OH
21
Scheme 23. a) Strategic bond disconnections and retrosynthetic analysis of
ginkgolide B and b) total synthesis (Corey et al., 1988).[129]
between iodo-olefins and aldehydes, a modified, refined
method for the Suzuki palladium-catalyzed coupling reaction
leading to conjugated dienes, and a new synthesis of N-acyl
ureas.
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
84
a)
O
O
OH
O
HO
85
98
OH
HO
d
e
N
H
N
H
OH
OH
HO
HO
OH
OH
OH
OH
OH
23
Me
THPO
Me
37
Me
OPMB
Me O
TBS
Me
PPh3
11
AcO
a. CrCl2, NiCl2, 11
b. Ac2O
c. PPTS, MeOH
d. [RuCl2(PPh3)3]
OMe
OPMB
OPMB
PMBO
OPMB
22
Me
OPMB
OMe
O
38
115
OBz
HO
N
H
NH2
SePh
12
j. camphor sulfonyl
oxaziridine
[cis-trans isomerization] k. hv
[Suzuki coupling]
OTBS
Me
OTBS
OTBS TBSO
TBSO
77
HO B
(7.5% overall)
a. [Pd(PPh3)4], 2
b. LiCH2P(O)(OMe)2
84
OH
OTBS
(72% overall)
51
O
OBz
BzO
BzO
OTBS
TEOCNH
Me
37
OTBS
85
a. Ketophosponate 10,
NaH; then 3
b. LiBH4
c. Ac2O
d. DDQ, Ac2O
e. HClO4
f. LiOH
g.TBAF
h. AcOH
O
i. py,
23
51
OBz
Me
OH
OBz
BzO
BzO
Me
a. 7, nBuLi, THF; then 8
Me
37
OPMB
OPMB
OPMB
OMe
O
Me
(64-46% overall)
51
O
OBz
38
PMBO
PMBO
PMBO
Me
99
98
TBSO
TBSO
OPMB
22
84
O
O
PMBO
b. H2, 10% Pd/C
c. PPTS, MeOH
d. Swern [O]
(ca. 55% overall
from 14)
37
Me
Me
OPMB
O
OAc
23
BzO
BzO
OPMB
OPMB
OPMB
OPMB
OPMB
PMBO
TBS
Me PMBO
PMBO
MeO
OBz
22
OTBS
H
OTBS
MeO
53
Me
PMBO
Me
OTBS
O
TBSO
OPMB
38
23
TBSO
51
OBz
AcO
OPMB
Me
Me
OH
OBz
BzO
BzO
Wittig reactions;
hydrogenation
a. 5, nBuLi, THF, -78 C; then 6
b. H2, 10% Pd/C
c. TBAF, THF, 25 C
d. MsCl, Et3N
e. NaI, 2-butanone
f. Ph3P, DMF
OPMB
OMe
O
Me
OPMB
OTBS
OTBS
37
MeO
OPMB
22
OPMB
22
THPO
OTBS
OPMB
PMBO
PMBO
O
OTBS
PMBO
PMBO
PMBO
OPMB
PPh3
O
OAc
OTBS
PMBO
PMBO
PMBO
28
Me
Horner-WadsworthEmmons reaction
1: palytoxin
75
OPMB
23
OH
OH
Me
Me
H
OH
53
51
b)
O
OAc
OH
52
37
HO
HO
NiCl2 /CrCl2
coupling
HO
Me
OH
38
PMBO
TBS
Me PMBO
PMBO
MeO
AcO
HO
Me
OPMB
OH
23
Me
OH
OH
22
Me
HO
Me
OH
OH
NiCl2 /CrCl2 coupling
OH
77
HO B
OH
HO
Me HO
Me HO
OTBS
Suzuki coupling
HO
Me
OTBS
TEOCNH
76
75
OH
H2N
Amide bond
formation
f
HO
OH
Me
OH
HO
TBSO
OTBS
97 93
OTBS TBSO
77
OTBS
Wittig 98
reaction
O
115
O
115
OH
OTBS
85
99
OH
HO
OH
99
84
TBSO
TBSO
99
98
a. CrCl2, NiCl2
b. PDC
c. Ph3P=CH2
d. PPTS
e. Swern [O]
f. LiCH[B(OCH2CH2CH2O)]2;
then EtOAc, brine/1N HCl
O
115
TEOCNH
TBSO
TBSO
OTBS
85
TBSO
OTBS
97 93
1: palytoxin
OTBS
O
77
Me
OTBS
OTBS TBSO
OAc
OTBS
OTBS
OTBS
O
OTBS
OTBS
O
O
99
98
TBSO
TBSO
OTBS
Me
OTBS
OTBS
13
TBSO
OTBS
OTBS
O
OTBS TBSO
TEOCNH
85
OTBS
O
115
84
TBSO
TBSO
77
OTBS
OCPh2(C6H4-p-OMe)
MeO
14
MeO
H
OTBS
P
O
10
Scheme 24. a) Strategic bond disconnections and retrosynthetic analysis of palytoxin and b) highlights of the total synthesis (Kishi et al. 1989, 1994).[133, 134]
Angew. Chem. Int. Ed. 2000, 39, 44  122
71
REVIEWS
Cytovaricin (1990)
Cytovaricin (1 in Scheme 25) is a 22-membered macrolide,
isolated from Streptomyces diastatochromogenes in 1981,[135]
K. C. Nicolaou et al.
which is endowed with impressive antineoplastic activity and
complex molecular architecture. Possessing seventeen stereogenic centers on its main framework, a spiroketal, and a
glycoside moiety with four additional stereocenters, cytovar-
Scheme 25. a) Strategic bond disconnections and retrosynthetic analysis of cytovaricin, b) key asymmetric alkylation and aldol reactions, and c) outline of
the total synthesis (Evans et al., 1990).[137]
72
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
icin presented a considerable challenge to synthetic chemistry
in the 1980s. Its structural elucidation by X-ray crystallographic analysis in 1983[136] opened an opportunity for Evans
et al. to apply their elegant alkylation and aldol methodology
for acyclic stereoselection to the solution of the cytovaricin
problem. Indeed, by 1990 the group reported a beautiful total
synthesis[137] that clearly demonstrated the new concepts of
stereochemical control by acyclic stereoselection as opposed
to the classical methods applied previously to solve such
problems. It is instructive to compare this synthesis to the
cyclic-template strategy used by Corey,[102] Woodward,[33] and
Stork[138] to achieve stereochemical control in their syntheses
of the erythromycin macrolide framework. This impressive
use of acyclic stereocontrol through the use of the Evans
chiral oxazolidone certainly propelled the area of polyketide
synthesis, a class of compounds that are rather readily
accessible synthetically by todays standards.
Calicheamicin g I1 (1992)
The arrival of calicheamicin g I1 [139] (1 in Scheme 26) and its
relatives, collectively known as the enediyne anticancer
antibiotics,[140] on the scene in the 1980s presented an entirely
new challenge to synthetic organic chemistry. Isolated from
Micromonespora echinospora ssp calichensis, this fascinating
natural product provided a unique opportunity for discovery
and invention in the areas of chemistry, biology, and medicine.
Its novel molecular structure is responsible for its powerful
biological properties, which include strong binding to duplex
DNA, double-strand cleavage of the genetic material by
formation of a benzenoid diradical, andas a consequence
potent antitumor and antibiotic activity.
The structure of calicheamicin g I1 is comprised of a carbohydrate domain and an enediyne core carrying a trisulfide
moiety that acts as a triggering device for the cascade of
events which leads, via a Bergman cycloaromatization,[141] to
the diradical species and DNA rupture. The oligosaccharide
domain of calicheamicin g I1 is endowed with high affinity for
certain DNA sequences, and acts as the delivery system of the
molecule to its biological target. The highly strained 10membered enediyne system, the novel oligosaccharide fragment, and the trisulfide unit are but some of the unusual and
challenging features of calicheamicin g I1 . Even more challenging, of course, was the chartering of the proper sequence for
assembling all these functionalities into the final structure.
Two groups rose to the challenge, ours (1992)[142] and that of
S. J. Danishefsky (1994).[143]
Notable features of our total synthesis of calicheamicin g I1
(Scheme 26) are the installment of the sulfur atom in the
carbohydrate domain through a stereospecific [3,3]-sigmatropic rearrangement and the [32] olefin  nitrile oxide
cycloaddition reaction employed in the construction of the
enediyne core. That a molecule of such complexity could be
assembled in the laboratory in less than five years after its
structural elucidation in 1987 is an accurate reflection of the
high level of the state-of-the-art in the early 1990s. Just as
impressive is Danishefskys synthesis of calicheamicin, which
can be found in the original literature.[143]
Angew. Chem. Int. Ed. 2000, 39, 44  122
Strychnine (1993)
Although ()-strychnine had succumbed to the ingenuity
of Woodward in 1954 (see Scheme 4) it can still be considered
a target of choice to demonstrate the application of new
reactions and novel strategies by virtue of its abundant
stereochemical features densely packed in a heptacyclic
framework. Almost 40 years after Woodwards seminal
synthesis, Overmans synthesis of strychnine[58] (Scheme 27;
see p. 76) stands as a testimony to the evolution of organic
synthesis. Indeed, powerful palladium-mediated reactions
were used to expedite the assembly of the crucial intermediate
13 (Scheme 27) in a stereospecific fashion, thereby setting the
stage for the key tandem aza-Cope rearrangement and
Mannich reaction. This tandem reaction proved to be
particularly efficient and well-suited to afford an advanced
tricyclic system with concomitant formation of the quaternary
center stereospecifically, under mild conditions, and in nearly
quantitative yield. The sophisticated sequence of reactions
which ultimately led to Overmans ()-strychnine synthesis
deserves special mention for its elegance.
Rapamycin (1993)
Rapamycin (1 in Scheme 28; see p. 77) is an important
molecule within the field of immunosuppression that was first
isolated in 1975[144] from Streptomyces hygroscopicus, a
bacterial strain found in soil collected in Rapa Nui (Easter
Island), and structurally elucidated in 1978.[145] Its potent
immunosuppressive properties are reminiscent of those of
cyclosporin and FK506, whose biological and medical importance, particularly in the field of organ transplants, became
evident in the 1980s.[146] Although the structures of rapamycin
and FK506 possess striking similarities, the former is considerably more complex and attracted serious attention from the
synthetic chemists in the late 1980s and early 1990s. By 1995
there were four total syntheses of rapamycin,[147150] the first
being reported from this group in 1993 (Scheme 28).[147] This
asymmetric synthesis of rapamycin is an example of high
convergency and acyclic stereoselection, and is perhaps
known best for the way in which the macrocyclic ring was
formed. A palladium-catalyzed reaction based on Stilles
chemistry allowed a stitching cyclization process to proceed, to furnish the required conjugated triene system
concurrently as it formed the 29-membered ring of the target
molecule.[151]
Taxol (1994)
Taxol (1 in Scheme 29; see p. 78), one of the most
celebrated natural products, was isolated from the Pacific
yew tree and its structure was reported in 1971.[152] Its arduous
journey to the clinic took more than 20 years, being approved
by the Food and Drug Administration (FDA) in 1992 for the
treatment of ovarian cancer.[153] Synthetic chemists were
challenged for more than two decades as taxols complex
molecular architecture resisted multiple strategies toward its
construction in the laboratory. Finally, in 1994, two essentially
simultaneous reports[154, 155] described two distinctly different
73
REVIEWS
K. C. Nicolaou et al.
total syntheses of taxol. These first two syntheses, by our
group[154] and that of Holton,[155] were followed by those of
Danishefsky,[156] Wender,[157] Mukaiyama,[158] and Kuwajima.[159] All these syntheses, which are characterized by novel
strategies and brave tactics, contributed enormously to the
advancement of total synthesis and enabled investigations in
biology and medicine.
Amongst the most notable features of our total synthesis of
taxol (Scheme 29) are the boron-mediated Diels  Alder
reaction to construct the highly functionalized C ring, the
application of the Shapiro and McMurry coupling reactions,
and the selective manner in which the oxygen functionalities
were installed onto the 8-membered ring of the molecule.
Because of the great drama associated with cancer, this and
the other syntheses of taxol received headliner publicity. The
art and science of total synthesis was once again brought to
the attention of the general public.
Zaragozic Acid (1994)
A new natural product with unprecedented molecular
architecture often gives impetus to synthetic endeavors
directed at its total synthesis. Such was the case with zaragozic
acid A (1 in Scheme 30; see p. 79) whose structure was
released essentially simultaneously in 1992 by groups from
Merck[160] and Glaxo[161] (the latter naming the compound
squalestatin S 1).[162] Isolated from a species of fungi, zaragozic
acid A exhibits impressive in vitro and in vivo inhibition of
cholesterol biosynthesis by binding to squalene synthase.[163]
Zaragozic acid A, like its many relatives, possesses an unusual
tricarboxylic acid core, whose highly oxygenated nature
added to its novelty and complexity as a synthetic target.
The distinguishing features of our synthesis[164] of zaragozic
acid A (Scheme 30) include the utilization of the Sharpless
asymmetric dihydroxylation reaction[165] to install the first two
oxygen-bearing stereocenters onto a complex prochiral diene
system and a multi-step, acid-catalyzed rearrangement to
secure the zaragozic acid skeleton.
The synthesis of zaragozic acid was also accomplished and
reported at approximately the same time as ours by the groups
of Carreira (zaragozic acid C)[166] and Evans (zaragozic
acid C).[167] In addition, Heathcock et al.[168] reported another
total synthesis of zaragozic acid A in 1996.
Swinholide A (1994)
Swinholide A (1 in Scheme 31; see p. 80), a marine natural
product with antifungal and antineoplastic activity, was
originally isolated from the Red Sea sponge Theonella
swinhoei.[169a] Its structure was fully established in the late
1980s by X-ray cystallographic analysis.[169b] The structure of
swinholide A has C2 symmetry and is distinguished by two
conjugated diene systems, two trisubstituted tetrahydropyran
systems and two disubstituted dihydropyran systems, a 44membered diolide ring, and thirty stereogenic centers. Its
challenging molecular architecture coupled with its scarcity
74
Scheme 26. a) Strategic bond disconnections and retrosynthetic analysis of
calicheamicin g I1 and b) total synthesis (Nicolaou et al., 1992).[142]
and biological action prompted several groups to undertake
synthetic studies towards its total synthesis. Two laboratories,
that of I. Paterson at Cambridge[170] and ours[171] have
succeeded in the task.
Angew. Chem. Int. Ed. 2000, 39, 44  122
Natural Products Synthesis
REVIEWS
Scheme 26. (Continued)
Angew. Chem. Int. Ed. 2000, 39, 44  122
75
REVIEWS
K. C. Nicolaou et al.
elucidated (1981).[177] The beauty of brevetoxins molecular
architecture, which accommodates eleven rings and twentythree stereogenic centers, attracted immediate attention from
the synthetic community. This neurotoxin, whose mechanism
of action involves the opening of sodium channels, shows
remarkable regularity in its structure. Thus, all rings are transfused and each contains an oxygen atom. All ring oxygens are
separated by a CC bond and each is flanked by two synarranged hydrogen or methyl substituentsexcept for the
first which carries a carbonyl to its left and the last which is
flanked by two anti-oriented hydrogens. With its imposing
structure, brevetoxin B presented a formidable and daunting
problem to synthetic organic chemistry. Not only did new
methods need to be developed for the construction of the
various cyclic ether moieties residing within its structure, but,
most importantly, the right strategy had to be devised for
the global assembly of the molecule.
After several abortive attempts, brevetoxin B was finally
conquered, and the total synthesis was reported in 1995 from
these laboratories (Scheme 33).[178] Along with the accomplishment of the total synthesis, this twelve-year odyssey[179]
yielded a plethora of new synthetic technologies for the
construction of cyclic ethers of various sizes. Prominent
among them are (see Scheme 33 b): a) the regio- and stereoselective routes to tetrahydrofuran, tetrahydropyran, and
Patersons total synthesis,[170] shown in Scheme 31 (see
p. 80), came first and was accompanied by the development
and application of a number of various types of asymmetric
boron-mediated aldol reactions to form key CC bonds.
Indeed, this new aldol methodology[172] was utilized to install
three contiguous chiral centers in two steps with high
diastereoselectivity (9 !12 in Scheme 31), and represents a
most welcomed progress in acyclic stereocontrol. Our total
synthesis of swinholide A[171] (Scheme 32; see p. 81) featured
two relatively new, at the time, methods for CC bond
construction in complex-molecule synthesis, namely the
Ghosez cyclization[173] to form a,b-unsaturated b-lactones
from orthoester sulfones and epoxides, and the dithianestabilized anion opening of cyclic sulfates.[174] The macrolactonization was performed by the Yamaguchi reagent[175] in
both strategies. Both total syntheses are highly convergent
and demonstrated the power of the art in acyclic stereoselection and large-ring construction and stand as important
achievements in the field of macrolide synthesis.
Brevetoxin B (1995)
Brevetoxin B (1 in Scheme 33; see p. 82), an active
principle of the poisonous waters associated with the red
tide phenomena,[176] was the first structure of its kind to be
a)
N
H
N
1: ()-strychnine
b)
OH
OtBu
EtO2C
N
H H
HO
N
H
O
OtBu
(89%)
tBuO
HO
15
R2N
[Mannich
reaction]
(98%)
R 2N
O 4
a. LDA, NCCO2Me
b. 5% HCl-MeOH, 
[carboxymethylation;
imine formation;
tautomerization]
OtBu
(70%)
N
H
H
HO
1: ()-strychnine
[epoxide opening]
a. NaH, 
b. KOH, H2O
(62%)
CO2Me
OtBu
TIPSO
[Pd2(dba)3], Ph3As, CO
O
MeN
7
OtBu
NMe
(80%)
11
R 2N
OtBu
a. tBuOOH,
Triton-B
HO b. Ph P=CH
3
2
c. TBAF
(84%)
a. MsCl, iPr2NEt
b. LiCl, DMF
R2N
OtBu c. NH COCF , NaH
2
3
(83%)
N
H
Zn:
N
H H
OtBu
12
N
H
N
H
N
H H
O
OH
OMe
16
ZnO
OMe
OH
17 OH
H
CH2(CO2H)2
Ac2O, 
(65%)
HO
20
TIPSO
R2N
Zn
10% H2SO4,
MeOH, 
N
H
H
H
[isomerizations]
HO2C
OtBu
13
H
N
H H
[lactamization]
H
Me3Sn
OtBu
F3COCHN
R2N
R2N
MeN
NMe
MeN
14
10
(CH2O)n,
Na2SO4,
 HO
HO
TIPSO
I
a. CrO3,
H2SO4
b. L-Selectride;
then PhNTf2 Me3Sn
c. Me6Sn2, [Pd(Ph3P)4]
OtBu
(78%)
tBuO
NMe
tBuO
[3,3]
[aza-Cope
rearrangement]
MeN
N
NMe
3 OH
a. NaCNBH3,
TiCl4
HO
b. DCC, CuCl
H2O
c. DIBAL-H
d. TIPSCl
(57%)
CO2Me
H CO2Et
AcO
O
F3COCHN
O
[chemo-and stereo-selective TIPSO
reduction]
a. MeOCOCl, py
b. NaH, [Pd2(dba)3],
O
AcO
lactone
formation; 2: Wieland- Carboxymethylation;
imine formation;
reduction Gumlich
tautomerization
aldehyde
HO
Tandem Mannichaza-Cope
N rearrangement
Epoxide
opening
19 CO2H
OH
a. NaOMe, MeOH
b. DIBAL-H
H
N
H H
HO
(65%)
H
N
H H
CO2Me
18
OH
Scheme 27. a) Strategic bond disconnections and retrosynthetic analysis of ()-strychnine and b) total synthesis (Overman et al., 1993).[58]
76
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
Epoxide
opening
Me
Me
OMe O
Me
N
H
SnnBu3
H
Me
O
Me
nBu3Sn
OMe
OH
MeMeO
OH
OMe O
OH
I
I
Me
b)
Me
a. nBu3SnH, cat.
Me
TMS
b. I2
OH
Me
(81%)
Me
Me
Me
TMS
O
(80%)
OMe O
Me
,LDA
c. K2CO3, MeOH
(65%)
Li
10
OMe
Me
Me
Me
a. DDQ
OMe OTIPS
(68%)
11
PmBO
b. LiOH
Me
TMS
(88%)
[2-thienylCu(CN)Li]
OTBDPS
NiII/CrII coupling
OMe
a. HO
OMe
Me
(70%)
OH
OH
Esterification
H
a. CSA, MeOH
b. CF3SO2Cl, Et3N
Me
a. LiI, LiAlH4
O b. NaH, MeI
OH
OMe OTIPS
7
O
cat. = [Mo(allyl)Br(CO)2(CH3CN)2]
Me
TMS
MeO
OMe Me
tBuLi;
O
O
Me
OTES
Me
HN
3
Takai reaction
OTES OTIPS
1: rapamycin
TMS
Aldol reaction
HO
OTIPS
Amide bond formation
OH
Stille couplings
"stitching macrocyclization"
Me
Me
b. Swern [O]
(92%)
14
Me
Me
a. TIPSOTf TMS
b. NIS
I
OMe OTIPS PMBO
OMe OH
(95%)
13
Me
PMBO
12
Me
OH
nBuLi, tBuOK;
Me
(+)-Ipc2B
(+)-Ipc2BOMe,
BF3Et2O
15
OTBS
(75%)
16
b. O3; Me2S
17
Me
HO
PmBO
OTBS
CrCl2, NiCl2,
Me
Me
(93%)
Me
OMe Me
Me
PMBO
OMe
OPMB
CHO
Me
Me
OMe Me
Me
Ph
26
Me
Me
20
PMBO
OTIPS
PMB
OH
a. LiBH4
b. pTsCl, Et3N, 4-DMAP
OMe
OMe Me
OTBDPS
O
O
Ph
Me
Me
Me
Me
Me
OTBDPS
O
O
OMe Me
OMe
OH
Me
Me
31
OMe
PMBO
O
Me
Me
(60%)
OMe
OTIPS
I
OMe Me
Me
Me
OTBDPS
PMB
29
Me
Me
Me
O
OH
OMe O
SnnBu3
Me
O
Me
OMe Me
Me
O
OH
N
H
O
OH
OH
OMe O
O
O
Me
(27%)
H
CO2H
DIC, iPr2NEt
b. OsO4, NMO
c. Pb(OAc)4
d. CHI3, CrCl2
N
O
(87%)
2
[PdCl2(CH3CN)2], iPr2NEt
OTBDPS
nBu3Sn
a.
SnnBu3
OMe Me
OMe Me
a. DDQ
b. TESOTf
c. 3, DIC, HOBt
Me
O
Me
Me
30
PMB
OH
Boc
OMe
Me
OH
OMe O
24
Boc
OTES OTIPS
Me
OTIPS
(81%)
Me
OTES
OTBS
iPr2NEt, LiCl
(96%)
OTBS
OH
HO
OTIPS
OMe O
Me
OMe
Me
Me
Me
28
(70%)
Ph
25
27
Me
d. Swern [O]
e. HFpy
f. Swern [O]
g. HF, CH3CN
Me
O
N
P(O)(OEt)2
OMe
Ph
PMBO
c. LiEt3BH
Me
nBu2BOTf, Et3N,
(86%)
[Evans asymmetric aldol reaction]
Me
c. TBDPSCI, imid.
(75%)
OTBDPS
Me
23
Me
a. [RhCl(Ph3P)3], Et3SiH
b. aq. HF
OMe
Cp2ZrHCl; I2
(85%)
OTBS
OTIPS
PMBO
OTBS
Me 19
[Nozaki-Takai-Hiyama-Kishi reaction]
(83%)
22
PMBO
b. nBuLi; MeI
(98%)
21
a. TIPSOTf
b. HFpy
c. Swern [O]
Me
a. CBr4, Ph3P, Zn
18
Me
Me
OTBS
(72%)
PMBO
PMBO
PMBO
a. NaHMDS, PMBBr
OTBS
Me
Me
32
[inter- followed by intramolecular
Stille couplings]
O
OMe
Me
OH
O
Me
OH
OMe Me
Me
OMe
OH
Me
1: rapamycin
Scheme 28. a) Strategic bond disconnections and retrosynthetic analysis of rapamycin and b) highlights of the total synthesis (Nicolaou et al., 1993).[147]
Angew. Chem. Int. Ed. 2000, 39, 44  122
77
REVIEWS
K. C. Nicolaou et al.
a)
AcO
Ph
O
Ph
N
H
silicon-induced hydroxy ketone cyclization to oxepanes;
f) nucleophilic additions to thiolactones as an entry to
medium and large ring ethers; g) thermal cycloadditions of
dimethyl acetylene dicarboxylate with cyclic enol ethers as an
entry to medium size oxocyclic systems; and h) the novel and
unprecedented chemistry of dithiatopazine. For a more
detailed analysis of this total synthesis, the reader should
consult ref. [3].
McMurry coupling
Esterification
O
OH
Me
Me
O
Oxetane formation
OH
O
H
OBz OAc
HO
Oxygenation
Shapiro coupling
1: Taxol
TPSO
TESO
Me
Ph
Diels-Alder reaction
b)
OAc
Me
5
Cl
(85%)
CN
[Diels-Alder
reaction]
OAc
Me
(65%)
O
NNHSO2Ar
Me
OH
12
HO
10
PhB(OH)2
Me
OH
EtO2C
OB
[Diels-Alder
reaction]
OTBS
EtO2C
OEt
Me
a. TBSCl,
imid.
b. H2NNHSO2Ar
(68%)
CN
Cl
OH
OH
KOH, tBuOH
O
Me
Diels-Alder reaction
4
Me
Dynemicin A (1995)
NNHSO2Ar
OBn
Ph
Me
OTBS
[boronate
cleavage]
Ph
HO
OH
11
13
[lactone migration]
Me
TBDPSO
a. LiAlH4
b. CSA, MeO
OBn
OMe
Me
c. TPAP, NMO
TBDPSO
(63% overall)
O
O
15
Me
OTBS
nBuLi
(82%)
16
[Shapiro reaction]
Li
a. [V(O)(acac)2],
TBSO
OTBDPS
tBuOOH
OBn
Me
Me
b. LiAlH4
c. KH, COCl2
(50%)
TBSO
Me
a. TBSOTf
O
OH
b. LiAlH4
Me
c. CSA, MeOH
EtO
H
d. TBDPSCl, imid.
OH
OTBS e. KH, nBu4NI, BnBr
O
(46% overall)
O
O
14
OBn
H
OH
Me
O
O
17
OTBDPS
a. TBAF
HO
b. TPAP, NMO
Me
c. TiCl3(DME)15
Zn/Cu
(17%)
O
[McMurry
O
coupling]
O
18
OH
OBn
Me
OBn
H
O
19
a. Ac2O, 4-DMAP
b. TPAP, NMO
c. BH3THF; H2O2
AcO
OTES
Me
Me
O
O
O 21
OMs
OH
OAc
AcO
a. HCl, MeOH
b. Ac2O, 4-DMAP
c. H2, Pd(OH)2/C
d. TESCl, py
e. MsCl, 4-DMAP
(46% overall)
(48%)
OBn
Me
Me
OH
O
O
O
20
a. K2CO3, MeOH d. PhLi [selective carbonate opening]
e. PCC [allylic oxidation] (34% overall)
b. nBu4NOAc
c. Ac2O, 4-DMAP f. NaBH4
AcO
Me
AcO
OTES
Me
Ph
HO
HO
22
O
H
OBz OAc
Ph
a. NaHMDS, 2
b. HFpy
N
H
Me
OH
Me
O
OH
HO
1: Taxol
O
H
OBz OAc
Scheme 29. a) Strategic bond disconnections and retrosynthetic analysis of
taxol and b) total synthesis (Nicolaou et al., 1994).[154]
oxepane systems employing specifically designed hydroxy
epoxides; b) the silver-promoted hydroxy dithioketal cyclization to didehydrooxocanes; c) the remarkable radical-mediated bridging of bis(thionolactones) to bicyclic systems; d) the
photoinduced coupling of dithionoesters to oxepanes; e) the
78
Dynemicin A[180] (1 in Scheme 35; see page 84), a dark blue
substance with strong antitumor properties and a member of
the enediyne class of antitumor antibiotics that includes
calicheamicin g I1 (Scheme 26), possesses a striking molecular
architecture.[140, 181] Isolated from Micromonospora chersina,
dynemicin includes in its structure a highly strained 10membered enediyne ring, and a juxtaposition of epoxide,
imine, and anthraquinone functionalities. The lure provided
by this fascinating DNA-cleaving molecule resulted in intense
synthetic studies directed towards its total synthesis. In 1993
Schreiber et al. first reported the total synthesis of di- and
trimethoxy derivatives of dynemicin methyl ester (1 in
Scheme 34; see p. 84).[182] This synthesis relies on the powerful
intramolecular Diels  Alder reaction to construct the complex enediyne region of the molecule and a series of selective
follow-up reactions to reach the methylated dynemicin
targets.
Myers et al. reported the first total synthesis of dynemicin
itself in 1995.[183] Their synthesis, summarized in Scheme 35,
highlights a stereoselective introduction of the ene  diyne
bridge, the use of a quinone imine as the dienophile in a regioand stereoselective Diels  Alder reaction, and a number of
other novel steps to complete the total synthesis. The second
total synthesis of dynemicin was reported from the Danishefsky laboratory[184] (Scheme 36; see p. 85) and features a
double Stille-type coupling in its assembly of the enediyne
grouping. All three syntheses project admirable elegance and
sophistication.
Ecteinascidin 743 (1996)
A marine-derived natural substance, ecteinascidin (1 in
Scheme 37) possesses an unusual molecular architecture and
extremely potent antitumor properties. Isolated from the
tunicate Ecteinascidia turbinata, ecteinascidin 743 is comprised of eight rings, including a 10-membered heterocycle,
and seven stereogenic centers.[185] Prompted by its attractive
molecular architecture, impressive biological action, and low
natural abundance, Corey et al. embarked on its total synthesis, and in 1996 they published the first total synthesis[186] of
ecteinascidin 743 based on a brilliant strategy (Scheme 37; see
p. 86).
The plan was inspired, at least in part, by the proposed
biosynthesis of the natural product. Of the many powerful
transformations in Coreys total synthesis of ecteinascidin 743, at least three stand out as defining attributes; an
intramolecular Mannich bisannulation sequence was instrumental in establishing the bridging aromatic core to the
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
Scheme 30. a) Strategic bond disconnections and retrosynthetic analysis of zaragozic acid A and b) total synthesis (Nicolaou et al., 1994).[164]
piperazine ring, which allowed the formation of the desired
aminal functionality, while two asymmetric Pictet  Spengler
reactions played key roles in forming the isoquinoline rings.
The centerpiece of the synthesis is, however, the generation
and biomimetic quinone methide capture by the sulfur atom
to construct the 10-membered lactone bridge. The masterful
use of substrate topology to predict reactivity, inflict asymmetry, and achieve selectivity is amply demonstrated throughout Coreys synthesis.
Finally, the success in recognizing subtle retrosynthetic
clues left by nature and applying them in the context of a
chemical synthesis elevates this total synthesis to a unique
Angew. Chem. Int. Ed. 2000, 39, 44  122
level of brilliance. This impressive accomplishment also
speaks for the efficiency that total synthesis has reached and
the complex natural product analogues which can be synthesized in large quantities.[187]
Epothilone A (1997)
Appearing in the mid-1990s, epothilones A (1 in
Scheme 38; see p. 87) and B[188] stimulated intense research
activities in several laboratories.[189] The impetus for their total
synthesis came not so much from their modestly complex
macrolide structures but more so from their potent tubulin79
REVIEWS
K. C. Nicolaou et al.
a)
OMe
OMe
Me
OH
Me
Me
OH
Me
Me
Yamaguchi
esterification
OH
O
Ar
OH
Me
Me
Me
Dimerization
Me
HO
OTBS
tBu
Me
Me
tBu
CO2Me
OH
Me
Vinylogous Mukaiyama
aldol reaction
Me
Brown's
syn-crotylboration
Mukaiyama coupling
Me
O
HO
Me
Yamaguchi
macrolactonization
TBSO
Me
MeO
O
OH
Me
HO2C
OH
OMe
Me
OH
Me
O
OMe
O
Me
O
Si
MeO
Me
O
Me
Me
O
Ar
Me
Paterson antialdol reaction
3
OMe
OMe
1: swinholide A
b)
[catalytic asymmetric
epoxidation]
a. (+)-DIPT, Ti(OiPr)4,
Me
Me
OMe
Me
[hydroxy-directed
reductive opening of epoxide]
OH
OMe
a. O3; Me2S; HCl
Me
b. Ph3P=C(Me)CHO
H2C=CHCH2TMS
TMSOTf
(96%)
(79%)
b. Red-Al
(34%)
OH
Me
a. O3; Me2S; HCl
Me
b. NaH, MeI
OH
tBuOOH
OMe
OMe
7
Me
Me
Me
tBu
OMe
[hydroboration-oxidation]
a. thexylborane;
OBn
H2O2, NaOH Me
b. (imid)2C=S
c. nBu3SnH
[deoxygenation]
(70%)
Me
Si
tBu
13
(93%)
Me
Me
Me
Me
Me
tBu
OMe
Si
TBSO
25
MeO
Me
[stereocontrolled Mukaiyama coupling/
chelation-mediated 1,3-syn reduction/
1,3-diol protection sequence]
11
Me
]2B
TBSO
HO
Me
TBSO
; H2O2
[Brown's syn
-crotylboration]
24
23
O
Me
[Horner-Emmons reaction] a. (MeO)2P(O)CH2CO2Me, nBuLi
b. TBSOTf
c. K2CO3, MeOH
(87%)
d. Dess-Martin [O]
Me
OAc
(80%)
TMSO
TiCl2(OiPr)2
20
OTBS
BzO
TBSO
a. CH2N2
b. HFpy, py Me
10
B(cC6H11)2
Me
[Paterson anti-aldol coupling]
(84%)
OMe
(97%)
MeO
Me
BzO
(83%)
20
HO2C
Si
OBn
MeO2C
tBu
Me
OBn
OH
12
Me
tBu
tBu
Me
b. tBu2Si(OTf)2
(78%)
Me
a. 25, LiHMDS, TMSCl, Et3N
b. 14, BF3OEt2
c. nBu2BOMe; LiBH4; H2O2
d. p-MeOC6H4CH(OMe)2, CSA
e. NaOH, H2O, MeOH
Me
OBn a. Me4NBH(OAc)3 Me
Me
a. MeOTf
b. PdCl2, MeO2C
CuCl, O2
(74%)
[Wacker oxidation]
MeO2C
14 tBu Si tBu
Me
O
Me
OMe
(cC6H11)2BCl, Me
Et3N
Me
OBn
a. H2, 10% Pd/C
b. Swern [O]
CHO
(82%)
Me
21
[Luche reduction]
a. NaBH4, CeCl37H2O
b. Ac2O, iPr2NEt
Me
OH
BF3OEt2
[vinylogous Mukaiyama
aldol reaction]
(85%)
BzO
22
]2BCl
Me
Me
O
Ar
Me
TMSOTf,
HO
iPr2NEt
(61%) BzO
O
BzO
(94%)
Cl
19
a.
b.
18
OMe
, iPr2NEt
16
Cl
O
Me
CHO
BzO
17
(56%)
[asymmetric aldol reaction]
15
OMe
(65%)
OMe
OMe
Me
Ar
O
OH
Me
OH
OMe
O
Me
Me
Me
O
Ar
2,4,6-Cl3C6H2COCl, Et3N, 3;
4-DMAP, 2
Me
OTBS
Me
OH
O
Me
[Yamaguchi
esterification]
(54%)
Me
OTBS
Me
Me
CO2Me
O
Me
tBu
O
tBu Si
O
Me
2
OTBS
Me
Me
Me
OH
OH
O
OH
Ar
OH
O
Me
Me
Me
O
MeO
Me
O
Me
O
HO
OH
Me
Me
Me
Me
d. 2,4,6-Cl3C6H2COCl, Me
Et3N; 4-DMAP
O
OMe
e. HF/H2O/MeCN
MeO
(27%)
O
[Yamaguchi
Me macrolactonization]
O
OMe
a. TBSCl, Et3N
b. HFpy, py
c. Ba(OH)28H2O,
MeOH
Me
OH
OH
Me
Me
26
O
OMe
OMe
OMe
1: swinholide A
Scheme 31. a) Strategic bond disconnections and retrosynthetic analysis of swinholide A and b) total synthesis (Paterson et al., 1994).[170]
80
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
OMe
OMe
Enders alkylation
Me
OH
Me
Me
Yamaguchi
esterification
OH
O
OH
Me
Ar
Me
Me
Me
Me
Yamaguchi
macrolactonization
TBSO
OTBS
HO
CO2Me
TMSO
Me
OH
Me
Me
MeO
Me
Me
O
HO
OH
HO2C
Me
OMe
MeO
Ghosez
lactonization
Me
OH
Dimerization
Mukaiyama aldol
Me
OTBS
Me
Me
O
Me
O
O
OMe
Me
Dithiane-cyclic
sulfate coupling
OH
TBSO
Me
2
Me
Me
O
Ar
Me
3
OMe
OMe
1: swinholide A
b)
a. Ac2O, Et3N,
Me
Me
4-DMAP
OH
Me
Me
HO
OH
BF3OEt2, TMSOTf HO
c. NaOMe, MeOH
(74%)
5: L-rhamnose
OH
OH
Me
Me
Me
Me
O
TBSO
a. nBu2SnO; CsF, MeI
b. NaH, CS2; MeI
OH
c. nBu3SnH, AIBN
[selective methylation/
Barton-McCombie deoxygenation
sequence]
(35%)
b. CH2=CHCH2TMS,
OBz O
a. H2, 10% Pd/C
b. SOCl2, Et3N Me
c. RuCl3, NaIO4
O
(94%)
12
TBSO
a. TiCl2(OiPr)2,
20 OTMS
b. TBSOTf
c. K2CO3, MeOH
Me
d. Swern [O]
BzO
OMe
Me
Me
Me
H
OMe
(68%)
OMe
d. O3 8
[Enders alkylation]
(67%)
Me
Me
Me
OBz OBn
11
OMe
Me
Me
O
OMe
OMe
OTBS e. TiCl , SH SH
4
f. DIBAL-H
g. TBSOTf
(50%)
21
a. tBuLi, HMPA;
b. H2SO4
a. DIBAL-H
b. BF3OEt2,
c. BzCl, Et3N
d. OsO4, NMO;
Pb(OAc)4
(60%)
Me
a. PhCHO, SmI2
b. TBSOTf
[1,3 anti-reduction;
Evans-Hoveyda modification
of the Tishchenko reduction]
(77%)
Me
Me
Me
Me
O
S
OBz OH
TBSO
OMe
(68% overall)
[selective desilylation]
Me
Me
Me
OH
OMe
Me
Me
OMe
Me
Me
Me
OMe
OTBS
a. NaOH, MeOH/THF/H2O
b. TMSOTf, iPr2NEt
Me
Me
Me
O
TBSO
OTMS O
O
Ar
(84%)
[Ghosez lactonization]
OMe
18
HO
a. PMBCO(NH)CCl3,
CSA
O
b. DIBAL-H
OMe c. (+)-Ipc B(allyl);
PMBO
2
Me
NaOH, H2O2
13
(74%)
OMe
Me
16
O
OH
nBuLi;
CO
2
Me
Me
;
I
14
PMBO
I
15
OMe
[Yamaguchi esterification]
a. 2,4,6-Cl3C6H2COCl, Et3N, 2,
4-DMAP
b. PPTS, MeOH
c. Ba(OH)28H2O
d. 2,4,6-Cl3C6H2COCl, Et3N;
4-DMAP
e. HF/H2O/MeCN
[Yamaguchi
macrolactonization]
Me
OMe
CO2Me
Ar
(82%)
PMBO
OH
Me
OH
OTBS
O
OH
10
OMe
Me
O
TBSO
OBn
a. MnO2
b. (MeO)2P(O)CH2CO2Me, nBuLi
(92% overall)
Me
23
Ar
OH
Me
O
OMe
Me
OTBS
Me
O
TBSO
OBn
O
a. NBS, AgClO4
b. nBu3B; NaBH4; H2O2, NaOH
c. p-MeO-C6H4CH(OMe)2, CSA
d. DIBAL-H
e. HFpy, py
[cleavage of dithiane functionality]
[syn 1,3-selective reduction]
Me
OTBS
22
OMe
Me
K2CO3, MeOH
(52% overall)
Me
Me
PMBO
Me
a. NaH, MeI OMe
OMe
17
b. PhSO2
OMe
DMPU, nBuLi; H2SO4;
pTsOH; Et3N, DBU
TMS
19
(72%)
Me
OBn
Me
OBn
TBSO
OBn
O
4
[aldol condensation]
OMe
TiCl4, Et3N
Me
O
OMe
Me
a. O3; NaBH4
b. I2, Ph3P, imid.
c. LDA,
(7% overall)
CO2H
OH
Me
Me
OH
O
OH
Me
OH
O
Me
OMe
O
Me
Me
O
Me
MeO
O
O
HO
OH
Me
Me
OH
OH
Me
Me
OTBS
OMe 1: swinholide A
Scheme 32. a) Strategic bond disconnections and retrosynthetic analysis of swinholide A and b) total synthesis (Nicolaou et al., 1995).[171]
Angew. Chem. Int. Ed. 2000, 39, 44  122
81
REVIEWS
K. C. Nicolaou et al.
binding properties and their potential to overshadow taxol as
superior anticancer agents. The first total synthesis of
epothilone A came from the Danishefsky laboratories in
1996[190] and was followed shortly thereafter by syntheses from
our laboratories[191] and from those of Schinzer.[192] Danishefskys first total synthesis of epothilone A (Scheme 38) featured a Suzuki coupling reaction to form a crucial CC bond
and an intramolecular enolate  aldehyde condensation to
form the 16-membered macrocyclic lactone. This method as
well as others allowed the Danishefsky group to synthesize
several additional natural and designed members of the
epothilone family, including epothilone B,[193] for extensive
biological investigations.
Chemical biology was also on our minds in devising a
solution and a solid-phase total synthesis[194] of epothilone A
(1). As shown in Scheme 39 (see p. 87) this new solid-phase
paradigm of complex molecule total synthesis relied on a
novel olefin metathesis strategy.[195] Of special note is the
cyclorelease mechanism of this approach by which the 16membered epothilone ring was constructed with simultaneous
cleavage from the resin. Most importantly, this solid-phase
strategy allowed the application of Radiofrequency Encoded
Chemistry (REC; IRORI technology)[196] to the construction
of combinatorial epothilone libraries[197] for chemical biology
studies. The power of chemical synthesis of the 1990s in
delivering large numbers of complex structures for biological
screening was clearly demonstrated by this example of total
synthesis, marking, perhaps, a new turn for the science.
Eleutherobin (1997)
A marine natural product of some note, eleutherobin (1 in
Scheme 40; see p. 88) includes in its structure a number of
unique features. Isolated from an Eleutherobia species of soft
corals and reported in 1995,[198] this scarce natural product
elicited immediate attention from the synthetic community as
a result of its novel molecular architecture and tubulin binding
properties. Among the challenges posed by the molecule of
eleutherobin are its oxygen-bridged 10-membered ring and its
glycoside bond. Solutions to these problems were found in our
1997 total synthesis[199] as well as in Danishefskys total
synthesis,[200] which followed shortly thereafter. Scheme 40
summarizes our strategy to eleutherobin from ()-carvone.
Highlights include the intramolecular acetylide  aldehyde
condensation to give the desired 10-membered ring and the
spontaneous intramolecular collapse of an in situ generated
hydroxycyclodecenone to form eleutherobins bicyclic framework. This total synthesis exemplified the power of chemical
synthesis in delivering scarce natural substances for biological
investigations.
Sarcodictyin A (1997)
Sarcodictyins A and B (1 and 2 in Scheme 41; see p. 88) are
two marine natural products discovered in 1987 in the
Mediterranean stoloniferan coral Sarcodictyon roseum.[201]
82
Scheme 33. a) Strategic bond disconnections and retrosynthetic analysis of
brevetoxin B, b) key synthetic methodologies developed for the formation
of polycyclic ethers and fundamental discoveries, and c) total synthesis of
brevetoxin B (Nicolaou et al., 1995).[178]
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
c)
Me
Me
a. Ac2O, py
O
OH b. BF Et O, TMSOTf,
3
2
O
OH
HO
[Barton-McCombie
deoxygenation reaction]
a. Im2C=S
OH
b. nBu3SnH, AIBN HO
TMS
HO
c. NaOMe, MeOH
OH d. TBDPSCl, imid.;
CSA, OMe
4: D-mannose
c. Amberlyst-15
d. nBu2SnO; BnBr
(35%)
O
H
TBDPSO
a. Swern [O]
OBn
b. AlMe3,
Me
MgBr2Et2O HO
K
(61%)
O
OBn
O
H
TBDPSO
H
TBDPSO
a. O3; Me2S, Ph3P
CO2Me
OBn
Me
b. CH2=CHMgBr
HO
c. TPSCl, imid.
K
d. O3; Me2S, Ph3P TBDPSO
O
H
H
e. Ph3P=CHCO2Me
TBDPSO
(34%)
8
a. NaH
[Intramolecular
conjugate addition]
b. DIBAL-H;
Ph3P=CHCO2Me
(62%)
SEt H
EtS
OTBS
Me
a. EtSH, Zn(OTf)2
b. CSA, MeOH
K
H
(69%)
c. SO3py, Et3N,
DMSO
(68%)
TBDPSO
Me
HO
HO
OH 10 steps
(49%)
H
O
H
H
TBDPSO
12
PPTS
TfO
Ph
b. LiHMDS, HMPA;
PhNTf2
(58%)
OBn
Me
20
J
HO
Me
a. DIBAL-H
b. mCPBA
c. Swern [O]
OBn
Me
Me
O
OH
Me
(58%)
Me
TBSO
OBn
OBn
Me
18
(83%)
(85%)
7 steps
e. NaClO2, NaH2PO4
f. TBAF
19
17
a. TBSO
PPh3
b. H2, Pd/C
c. CSA, MeOH
d. Swern [O]
OBn
Me
Ph
e. TBAF
f. PPTS
(65%)
G
H
Me
O
CO2Et d. CH2PPh3
16
Me
O
H
H
TBDPS TBDPSO
a. DIBAL-H
b. mCPBA
c. SO3py
O
H Me
TBS
(58%)
Me
OBn
Me
MeO2C
O
H
d. Ph3P=CHCO2Me
TBDPSO
F
O
e. TBAF
HO
OH H
OBn
Me
10
Me
a. 2,4,6-Cl3C6H2COCl,
Et3N; 4-DMAP
OBn
MeO2C
c. Swern [O]
Ph
d. Ph3P=C(Me)CO2Et
(77%)
OH
a. TBSCl, imid.
b. 9-BBN;
H2O2, NaOH
Me
15
11 TBDPSO
[6-endo ring closure]
Me Me
O
[(2-thienyl)(CN)CuLi]
[Murai coupling]
H
MeO2C
Me
OH
Me
14
Li
21
OTBS
Me
(89%)
13: 2-deoxy-D-ribose
Me
TBSO
Me
Ph
[6-endo hydroxy
epoxide
OBn
H
H
Me
cyclization]
HO
O
O
12 steps
CSA
K
I
J
(71%)
(55%)
a. LiHMDS, HMPA; PhNTf2
Me
E
R
R=
O
O
TBS
O
C
H
H
O
Me
O
H
Me
CHO
23
PivO
OBn
Me
HO
Me
TBSO
H
O
O
H H
Me
PivO
(64%)
Me
[Ni II/Cr II coupling]
Me
22
Me
b. CrCl2, NiCl2, TBSO
OBn
OBn
G
H
Me Me
O
H
O
O
H H
Me
a. DIBAL-H
b. Ph3P=CHCO2Et
c. DIBAL-H
d. (+)-DET, Ti(OiPr)4
Me H H
O
TBSO
tBuOOH
D
C
e. SO py
OBn
G
O
Me
a. TBAF
b. PPTS
c. TBSOTf
d. O3; Ph3P
e. MeMgCl
f. DMP
Me
O
C
H
Me
TBSO
(72%)
Me
H
O
H
H
CO2Me
OBn f. CH2=PPh3
27
H
O
O
H H
Me
Me
(69%)
OBn
Me
O
H H
Me
OBn
G
O
Me
OBn
26
A
O
PivO TESO
Me
H
O
Me
H O
H
EtS
OH
G
O
H
AgClO4,
NaHCO3,
SiO2, 4  MS
I
O
Me
Me
H
O
Me
G
H
A
O
H O
O
H
Me
H
O
Me
OBn
O
H H
Me
Me
OBn
G
O
Me
a. DIBAL-H
b. BF3Et2O, Et3SiH
c. Li, (l) NH3
d. pTsCl, py
e. NaI
f. TMS-imid.
g. Ph3P
OBn
29
Me
a. nBuLi, HMPA, 3
b. PPTS, MeOH
Me
H
(75%)
Me
H
O
D
H
Me
OTMS
O
H H
Me
Me
PPh3I
2
30
O
E
O
H
H
Me
H
HO
Me
H
O
H
H O
[methylenation]
Me
a. CH2=NMe2 I
b. HFpy
Me
38
(76%)
O
H
HO
Me
Me
H
O
OBn
Me
TBSO
a. Ph3SnH, AIBN [reductive desulfurization]
b. PCC [oxygenation]
c. TBAF
d. DMP
Me
(42% overall)
Me H
H
OH
EtS
O
H H
Me
O
H
H
Me
O
H
[hydroxy dithioketal
cyclization]
31
Me
Me
EtS
Me
OTBDPS
TBSO
25
Me
H
Me
H
O
d. CSA, MeOH
e. KH
(74%)
Me
[intramolecular
Horner-Wadsworth-Emmons
olefination]
OBn
28
Me
a. TBAF
b. BrCH2COCl, py
c. (MeO)3P
d. iPr2NEt, LiCl
OBn
G
H
Me
a. DIBAL-H
b. DMP
c. (MeO)2P(O)CH2CO2Me,
NaHMDS, [18]crown-6 TBSO Me
(65%)
Me
a. KH, CS2; MeI
b. nBu3SnH, AIBN
c. BH3THF
d. TESOTf
(47%)
Me
24
Me
Me
d. 2,4,6-Cl3C6H2COCl,
Et3N; 4-DMAP
OBn
(62%)
Me
21
Me
a. PPTS, H2O
b. BH3THF; H2O2, NaOH
c. LiOH, MeOH, H2O
O
OBn
G
H
Me
Me
Me
O
O
H
O
H
Me
O
H
H
Me
Me
HO
K
O
I
O
O
H
Me
1: brevetoxin B
Scheme 33. (Continued)
Angew. Chem. Int. Ed. 2000, 39, 44  122
83
REVIEWS
K. C. Nicolaou et al.
a)
CO2Me
O
H
O
N
Me
H
HN
OMe O
OMe
CO2Me
O
OCH3
Diastereoselective
OMe
epoxidation
Friedel-Crafts
1: tri-O-methyl dynemicin A
HO2C
methyl ester
OMe O
OMe
H
Br
OMe
CO2Me
Me
Allylic
3 OMe diazene
rearrangement
OBz
Pd-catalyzed
coupling
Me
O
N
MeO
MeO
O
H
Br
H
N
Stereoselective
imine attack
OH
MeO
Me
Pd-catalyzed
coupling
OMe
Tandem
macrolactonizationDiels-Alder
b)
a. ClCO2Me,
N
[Pd(PPh3)4]
MeO
TBSO
BrMg
MeO
Me
SiR3
OTBS b. TBAF
SnnBu3
Br
[Stille coupling]
(85%)
c. BrCH=CHCO2Me, (12%)
[Pd(PPh3)4]
[Sonogashira coupling]
Me
MeO2C
OBz
Me
H
O
H
N
9
H
a. LiOH
b. 4-DMAP,
H
N
Me
a. KOH
O b. py, MeO
Cl
OBz
(82%)
OMe 4
OMe
Cl
O
S NHNH2
O
H N
NH N
Me
O
O
OMe
O
H
N
[-N2]
H
HH
O
11
(57%)
OMe
a. AgOTf
b. K2CO3,
Me2SO4
[Friedel-Crafts]
H
OMe
OMe
O
OMe
a. MeAlCl2,
Et3SiH
b. SOCl2
CO2Me
O
H
N
O
CO2Me
OH
Br
Me
O
H
N
O
OMe O
Me
CO2Me
OMe
CO2Me
a. TMSOTf
b. DDQ
[Friedel-Crafts]
(51%)
OMe
H
OMe OH
OMe
13
OMe
H
HN
Me
MeO2C
Me
CO2Me
O
OMe
H
OMe O
OMe
OMe O
O O
11 O
a. DMP
b. NaClO2
(ca. 20%) c. LiOH
d. CH2N2
e. NaIO4
CO2Me
O
H
OMe O
N
COCl
OMe 12
OH
OMe
OMe
(82%)
Me
H
(ca. 50%)
10
(ca. 80%)
CO2Me
O
H
Me
Me
O
MeO
O
a. KHMDS,
H
MoOPh O
N
b. NaBH4
O
c. NaOMe
O d. (Cl3CO)2CO
OMe
9
[allylic diazene rearrangement]
CO2Me
O
H
O
N
OH
HO
BzO
O
Me
H
MeO
(33%)
[tandem Yamaguchi
macrolactonizationDiels-Alder]
a. CAN [oxidation of C-9]
b. MeAlCl2; then
O(CH2)3OBz
O
N
COCl
Cl
MeO
Cl
[oxidation at a and
deprotection at b]
a. CAN
b. Cs2CO3, MeI
[reprotection of b]
OMe
1: tri-O-methyl dynemicin A methyl ester
(50%)
a. mCPBA
b. DBU, MeOH
Me
OMe O
H
HN
CO2Me
O
OMe
a
3
OMe OH
OMe
14
Scheme 34. a) Strategic bond disconnections and retrosynthetic analysis of
tri-O-methyl dynemicin A methyl ester and b) total synthesis (Schreiber
et al., 1993).[182]
84
Scheme 35. a) Strategic bond disconnections and retrosynthetic analysis of
dynemicin A and b) total synthesis (Myers et al., 1995).[183]
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
Ring stitching
Carbonylation
Me
H
HN
OH
Me
MOMO
CO2H
O
OMe
OH
MOMO
1: dynemicin
CO2MOM
O
H
OH
H
N
OMe
H
Oxidation
Diels-Alder
Stereoselective I Me3Sn
imine attack
+
Diels-Alder
Imine formation
OH
Me
TMS
O
Me
O O
SnMe3
Me I
OH
[O]
OH
H
6
O
OTBS
4
TBSO Diastereoselective
OTBS
epoxidation
b)
a. K2CO3,
Br
OH
b. NaH,
CHO
EtO
ZnCl2
CHO
O
CO2Et
P
OEt
c. DIBAL-H
d. Swern [O]
(82%)
OMe
OH
(60%)
Me
Me
Me
Ph a. OsO4, NMO
Ph
BrMg
OTBS
O
Ph
Ph
10
Me
OMe
a. NH4OAc, HOAc,  (87%)
b. TBSCl, imid.
TIPS
(90%)
[Diels-Alder]
OMe
O O
CAN
CHO
TIPS
Me
Cl
b. Ph2C(OMe)2;
TBSCl, imid.
(80%)
OTBS
OTBS
12
TBSO
OTBS 5
11
Resiniferatoxin (1997)
(80%)
TIPS
TIPS
Me
H
R
a. HCl
O
Me
H
R
Ph b. Swern [O]
c. Ph3P, CBr4
O Ph d. nBuLi
[Corey-Fuchs
OTBS
homologation]
13
(54%)
OTBS
Ph b. HCl
OAc
Ph c. NaH, TBSCl
d. Ac2O, Et3N
(60%)
OAc
14
OTBS
[selective triflation at C-5]
a. Tf2O
b. DMP
c. CrCl2
Me
[triflate
R H
CO2MOM
R H
N
removal]
N
O
O
d. MgBr2,
OMe
Et3N, CO2
H
e. MOMCl
17
f. CH2N2
OTBS
OTBS
(29%)
a.
TBAF
(60%)
2
b. PhI(OAc)2
TMS
TMS
O
R=
Me
OH
5
OH
O
R
a. AgNO3, NIS
16
CO2MOM
O
+
O
OMe
H
MOMO
18
OH
O
b. [Pd(PPh3)4],
OH
H
SnMe3
(74%)
OTBS
Me
[Tamura
homophthalic
O anhydride
protocol]
MOMO
Me
Me3Sn
(78%)
Cl
c. NH3, MeOH
d. mCPBA
LiHMDS
H
N
15
OTBS
a. [Pd(PPh3)4],
morpholine
O
b. NaH,
Me
Me
a. TBAF
R=
H
HN
MOMO
CO2H
O
OMe
H
-[CO2]
MOMO
OH
19
a. PhI(OCOCF3)2, THF
b. air, daylight
O
Me
OH
H
HN
O
H
A structural relative of phorbol ester,[206] resiniferatoxin (1
in Scheme 43; see p. 92)[207] was isolated from the E. resinifere
cactus species and exhibitsunlike phorbol but like capsaicin[208]binding affinity to the vanilloid receptor present in
sensory neurons. Besides its potential in biology and medicine, resiniferatoxin offers opportunities to the synthetic
chemist, among which is the application of new methods of
synthesis to the construction of the molecule. The structure of
resiniferatoxin contains an ABC ring skeleton with two trans
fusions. The C-ring carries five contiguous stereocenters, three
of which bear hydroxyl groups which are engaged in a benzyl
orthoester system. Following their success with phorbol
ester[209] the Wender group at Stanford reported the total
synthesis of resiniferatoxin in 1997.[210] This synthesis
(Scheme 43) brilliantly blends classical synthetic methods
with modern methodological advances in a strategy that
stands as a hallmark to the progression of natural product
synthesis. Highlights include an intramolecular [32] dipolar
cycloaddition reaction between an oxidopyryllium ion and a
terminal olefin to construct the BC framework, and a
transition metal-induced ring closure of an eneyne to form
the cyclopentane system (ring A).
Me
CO2H
OMe
OH
Their potent antitumor properties are due, at least in part, to
their tubulin-binding properties, resembling both eleutherobin and taxol in this regard.[202, 203] While the structural
similarities of the sarcodictyins to eleutherobin are apparent,
the correspondence of these molecules to taxol is not so
obvious.[203] Nevertheless, the excitement generated from
their taxol-like properties, coupled with their scarcity, led to
the launching of programs directed toward their total synthesis.
It is noteworthy that the impetus for the chemical synthesis
of these molecules in the 1990s was provided not only from
their structural novelty, but also from the desire to apply
organic synthesis as an enabling technology for chemical
biology. Thus, the total synthesis of sarcodictyins A and B,
accomplished in these laboratories in 1997,[204] went further
than delivering the natural substances. It was applied,
particularly in its solid-phase version (Scheme 41; see p. 88),
to the construction of combinatorial libraries for the purposes
of biological screening.[203, 205] That complex natural products
such as the sarcodictyins could be synthesized, at least
partially, on a solid phase is testament to the power and
potential of the recent advances in solid-phase chemistry.
Even more telling is the ability of synthetic chemistry at the
turn of the century to deliver combinatorial libraries of
complex natural or designed products such as those synthesized in this program and in the one described above for the
epothilones.
MOMO
MgBr2, Et2O
H
HN
CO2H
O
OMe
(15%)
OH 1: dynemicin
H
MOMO
OH
20
Scheme 36. a) Strategic bond disconnections and retrosynthetic analysis of
dynemicin A and b) total synthesis (Danishefsky et al., 1996).[184]
Angew. Chem. Int. Ed. 2000, 39, 44  122
Brevetoxin A (1998)
Within the polluted red tide waters often resides a more
powerful neurotoxin, and that is brevetoxin A (1 in
Scheme 42; see p. 90). Isolated from the dinoflagellate species
Ptychodiscus brevis Davis (Gymnodium breve Davis), breve85
REVIEWS
K. C. Nicolaou et al.
a)
HO
NH
MeO
Esterification
Spiro tetrahydroisoquinoline
formation
OMe
O
AcO
Me
HO
S H
H
Mannich bisannulation
Me
OH
Curtius rearrangement
1: ecteinascidin 743
Fl =
TBSO
O
OAllyl
O H
HN
Me
N
H
TBSO
Fl
H
NH
NHCO2All
CN
19
MOMO
OH
(87%)
OMOM
a. nBuLi
b. DMF Me
a. CH3SO3H
CHO b. NaH, Me
BnBr
OMOM
(64%)
(86%)
BOPCl;
OH
CO2All
OMe
HO
10
O
CO2All
OMe
11
12
a. piperidine
Me
AcOH, 9
OMe
b. [Pd(PPh3)4]
OMe
Et3N/HCO2H O
(93%)
Me
O
N
15
OMe
OMe
[Curtius
rearrangement]
[-N2]
O
HN
O
O
OBn
16
[Rh(cod)-(R,R)-dipamp}] BF4
Me
H2
[asymmetric
hydrogenation]
(97%, 96% ee)
OH
Me
23
Me
CN
Fl
NHCO2All
OBn
O
AcO
OMe
O
HN
OMe
O
O
Me
S H
O H
Me
H
H
a. 5
b. CF3CO2H
c. AgNO3 - H2O
(high yield)
Me
Me
N
H
O
OH
O
AcO
Me
24
CN
MOM OMe
O
Me
S H
O H
N
Me
N
O
H
O
1: ecteinascidin 743
17
O
S H
H
N
O
OBn
O
AcO
Me
NH MOM OMe
OMe
HO
CN
21
a. nBu3SnH, [PdCl2(Ph3P)2]
(70%)
O , DBU
b.
25
NH
CO2All
H
CO2All
N
MeO
N
N
HO
OH
Me N
OMe
(79%)
[tandem quinodimethane formation,O
deprotection and cyclization]
HO
Tf2O, DMSO; iPr2NEt; tBuOH;
(Me2N)2C=NtBu
[deprotects thiol]; Ac2O Me
OMe
OMe
OMe
20
Me
Me
(PhO)2P(O)N3,
Et3N
OBn
14
Me
O
OMe
OH
MOMO
OMe
13
(93%) BnOH
OBn
CN
HO
a. Tf2NPh, Et3N, 4-DMAP
b. TBDPSCl, 4-DMAP
AllylO
c. MOMBr, iPr2NEt
Me
d. [PdCl2(Ph3P)2], nBu3SnH
e. formalin, NaBH3CN
O
f. Me4Sn, [PdCl2(Ph3P)2],LiCl
O
(55% overall)
HO
OMe
O
CN
Me
H
22
[position-selective
angular hydroxylation]
a. (PhSeO)2O
(68%)
b. TBAF
c. EDCHCl, 4-DMAP, 2
CHO
O
OBn
O
TBDPSO
OBn
[-N2]
OBn
OMe
Me
a. nBuLi,
TMEDA Me
b. MeI
CO2All
H
OMe
NH2
MeO
N
OMOM
N
N
HO
Me
b)
a. DIBAL-H
b. KF2H2O, MeOH
c. CH3SO3H
[Mannich bisannulation]
(55%)
OH
Me
CO2All
OTBS
H
N
AllO
AllylO
OH
Me
HO
OTBS
OMe
OH
OMe
OMe
a. 4 , AcOH, KCN
b. Cs2CO3, allylbromide
(53%)
Me
CN
26
BF3Et2O, H2O
O
OH
O
Me
H
NH
O
O
OBn
a. BF3Et2O, 4 MS
b. H2, Pd/C
(73%)
Me
H
NCO2Bn
O
O
18
Scheme 37. a) Strategic bond disconnections and retrosynthetic analysis of ecteinascidin 743 and b) total synthesis (Corey et al., 1996).[186]
toxin A was structurally elucidated in 1986.[211] With its ten
fused ring structure and its twenty-two stereocenters, brevetoxin A rivals brevetoxin B in complexity, but as a synthetic
target it arguably exceeds the latter in difficulty and challenge
because of the presence of the 9-membered ring. Indeed, with
rings ranging in size from 5- to 9-membered, all sizes in
between included, brevetoxin A can be considered as the
ultimate challenge to the synthetic chemist as far as mediumsized ring construction is concerned. After a ten-year
campaign, our group reported the total synthesis of brevetoxin A (Scheme 42) in 1998.[212] As in the case of brevetoxin B,
this program was rich in new synthetic technologies and
strategies, which emerged as broadly useful spin-offs
(Scheme 42 c). Amongst the most important synthetic technologies developed during this program was the palladiumcatalyzed coupling of cyclic ketene acetal phosphates gen86
erated from lactones with appropriate appendages to afford
cyclic enol ether diene systems[213] suitable for a cycloaddition
reaction with singlet oxygen (24 !26 in Scheme 42). This
method provided the crucial turning point in solving the
problems associated with the 7-, 8-, and 9-membered rings of
the target and opened the gates for the final and victorious
drive to brevetoxin A.
Manzamine A (1998)
Manzamine A (1 in Scheme 44; see p. 93) is a spongederived substance (genera Haliclona and Pellina) with potent
antitumor properties. Disclosed in 1986,[214] the structure of
manzamine A, and those of its subsequently reported relatives,[215] attracted a great deal of attention from synthetic
chemists. The interest in the manzamines as synthetic targets
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
Suzuki coupling
a)
S
HO
O
Me
O
OH
HO
Me
BnO
O
TBSO
Me
OH
O
a. DHP. PPTS
b. TMS Li
BF3Et2O
c. MOMCl, iPr2NEt
d. PPTS, MeOH
e. Swern [O]
f. MeMgBr
g. TPAP, NMO
(36%)
TMS
a. nBuLi,
Ph2(O)P
Me
O
OMOM
a. TiCl4, MeO
Me
b. CSA
Me
OH
6 O
Br
Me
Me
TPSO
(78%)
H
O
a. LiAlH4
b. Et2Zn, CH2I2
Me
Me
(85%)
Me
a. Ph3P=CHOMe
(59%) b. pTsOH
c. Ph3P=CH2
d. PhI(OCOCF3)2, MeOH
(88%)
EtO2C
HO
O
O
OH
CO2H
O
HO
Me
(61% overall)
(+)-Ipc2B(All)
(96%)
NaHMDS; 10
16
17
Me
OTBS
Me
OH
13
O
I PPh3 (>70%)
Me
Me
OH
15
Me
OTBS
14
BnO
CO2H
O
12
a. HFpy
(ca. 95%)
b. Swern [O]
OTBS
LDA
ZnCl2
HO
S
Me
TBSO
N
O
Me
Me
Me
(84%)
OTBS
a. 1,4-butanediol, NaH
b. Ph3P, I2, imid.
c. Ph3P
(>90%)
Cl
a. nBu3SnH, AIBN
b. TPSCl, imid.
MeO
c. HS(CH2)3SH, TiCl4
[Suzuki coupling]
TPSO
O
O
15
(64%)
[Aldol macrocylization] a. KHMDS
(47%)
b. HFpy, py
c. TBSOTf
a. Dess-Martin [O]
S
S
b. HFpy
c. O O
TBSO
13
11
BnO
OMe
OMe
O
3 TPS
a. O3; Ph3P
b. NaClO2
Me
10
TBSO
OH
a. 9-BBN, 4; [PdCl2(dppf)],
Cs2CO3, Ph3As
b. pTsOH
Me
b. O3 ; Me2S
(85%)
Me
a. (+)-Ipc2B(All)
b. TBSOTf
(73%)
Me
Me
a. DIBAL-H
b. Ph3P=C(Me)CHO
Me
MgBr
TBSO
12
BnO
TPSO
14
TBSO
a. TBSCl, imid.
b. NaI, acetone
(98%)
11
Esterification
OTBSO
Me
O
Me
OTMS
OTBS O
NIS, MeOH
Me
Aldol reaction
a. Li2CuCl4 ,
HO
Me
N
O
b)
(34%)
BnO
a. TBSOTf
b. DDQ
c. Swern [O]
TBSO
OH
10
(87%)
[hetero Diels-Alder
reaction]
S
HO
BnO
Me
8
b. NIS, AgNO3
c. Cy2BH, AcOH
I
d. PhSH, BF3Et2O
e. Ac2O, py
3
S
OH
Emmons-type
homologation
OMe
O
TPS
b)
Me
OMe
Me
Me
Me
OH
1: epothilone A
Aldol reaction
Hetero Diels-Alder reaction
Me
O
1: epothilone A
HO
Me
O TBSO
Me
Epoxidation
S
TBSO
Olefin
metathesis/
cyclorelease
a)
Epoxidation
(41%)
1: epothilone A
CO2H
18 O
OH
O
O
TBS
HO
N
O
Me
Cl
PCy3
Ru
PCy3 Ph
HO
[olefin metathesis
reaction]
(52%)
O
O
TBS
Me
O
O
O
TBS
19
TFA
CH2Cl2
4 products [2 from the aldol reaction and
2 from the olefin metathesis reaction, ratio 3:3:1:3]
Scheme 38. a) Strategic bond disconnections and retrosynthetic analysis of
epothilone A and b) total synthesis (Danishefsky et al., 1996).[190]
(91%)
O
S
HO
Angew. Chem. Int. Ed. 2000, 39, 44  122
Cl
Me
O
OTBS
was heightened by a hypothesis put forward by Baldwin et al.
in 1992 for their biosynthesis.[216] By early 1999 two total
syntheses[217, 218] of manzamine A and evidence[219] supporting
the biosynthetic hypothesis had been reported.
Baldwins intriguing hypothesis for the biosynthesis of the
manzamine alkaloids postulates four simple starting materials
and an intramolecular Diels  Alder reaction as the key
process to assemble the polycyclic framework (see
Scheme 45). The first total synthesis of manzamine A appeared from the Winkler group in 1998,[217] proceeded through
ircinal (2 in Scheme 44), itself a natural product, and involved
(ca. 80%) DCC, 4-DMAP, 5 [esterification]
Me
(ca. 90%)
(two diastereoisomers)
[Aldol reaction]
N
O
Me
O
OH
O O
Me
CF3
(85%)
HO
N
O
Me
[5:1 mixture of
diastereoisomers]
1: epothilone A
OH
chemistry employed to synthesize
combinatorial libraries
Scheme 39. a) Strategic bond disconnections and retrosynthetic analysis of
epothilone A and b) total synthesis (Nicolaou et al., 1997).[194, 197]
a photoinduced [22] cycloaddition reaction, a Mannich
closure, and an intramolecular N-alkylation to assemble the
polycyclic skeleton. In early 1999 the Baldwin group provid87
REVIEWS
K. C. Nicolaou et al.
Martin et al. in 1999 (Scheme 46; see p. 94)[218] on the other
hand involved an intramolecular Diels  Alder reaction and
two olefin metathesis ring closures to construct the pentacyclic framework of the target molecule. All three approaches
a)
R'
O
Me
R'
Me
Me trans-Ketalization
O
Me
Cleavage
O
O
H
Me
OH
R''
Me
OH
H
OH
Me
OTIPS
Me
Resin
Me
Me
OTIPS
7
a. TIPSOTf
b. LiHMDS
c. Dess-Martin [O]
d. Et3N3 HF
OTES
Me
OTES
CHO
H
Me
OH
Me
Me
OH
(65%)
H
OH
Me
Me Loading
b)
H
R'
O
6
+
Me
R'''
Ester or carbonate
formation
Linker
Me
H
Me
Me
Functional group
3
manipulations
Me
R'''
Me
Me
Me
9
(>80%)
H2, [Rh(nbd)(dppb)]BF4
OAc
Me
a. Ac2O, py
b. PPTS, HO
11
Me
H
O
H
Me
Me
I PPh3
14
Me
Me
OAc
Me
Me
OTIPS
15
OH
OTIPS
O
O
Me
H
Me
10
O
H
Me
H
O
a. 1,4-butanediol,
NaH
Cl
13
b. Ph3P, I2,
imid.
Me
c. Ph3P
H
(>90%)
OAc
H
OH
Me
O
NaHMDS
(>95%)
OH
Me
c. Dess-Martin [O]
(85%)
OTIPS
12
Me
OTIPS
OTIPS
15
a. NaOMe
b. LG
c. TBAF
Me
(>81%)
R1
16
O
Me
R1
R1
Me
a. LG
R3
HO
Me
20
R3
19
Me
O
Me
21
R4
R1
d. CSA,
HO
Me
OH
(49-73%)
c. LG
25
or
DCC, 4-DMAP,
H2N
Me
17
a. (PhO)2P(O)N3,
DEAD, Ph3P
b. Ph3P, H2O
a. Dess-Martin [O]
b. NaClO2
c. DEAD, Ph3P,
HO
(42-86%)
R2
Me
18
b. PPTS,
O
H
Me
Me
R2
R5
d. PPTS, HO
R4
R1
22
R3
R3
26
O
Me
23
Me
(46-70%)
O
Scheme 40. a) Strategic bond disconnections and retrosynthetic analysis of
eleutherobin and b) total synthesis (Nicolaou et al., 1997).[199]
Me O
24: X = O, N
ed
evidence for their hypothesis through synthetic studies
culminating in the synthesis, albeit in low yield, of keramaphidin B (Scheme 45; see p. 93). The synthesis reported by
[219]
88
H
Me
R4
R3
H
Me
chemistry employed to synthesize
combinatorial libraries
Me
27
R3
HN
R5
Scheme 41. a) Strategic bond disconnections and retrosynthetic analysis of
a solid-phase sarcodictyin library and b) total synthesis (Nicolaou et al.,
1998).[205]
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
are elegant in their conception and brilliant in their execution,
demonstrating once again the ability of organic synthesis to
swiftly respond to new challenges posed by novel structures
from nature.
Vancomycin (1999)
Vancomycin (1 in Scheme 47 and 48; see p. 95), a representative of the glycopeptide class of antibiotics,[220] was
isolated in the 1950s and used for over four decades as a
weapon of last resort to combat bacterial disease. Isolated[221]
from the actinomycete Amycolatopsis orientalis, vancomycin
finally yielded to structural elucidation in 1982.[222] Within a
few years, it became the subject of synthetic investigations,
primarily as a consequence of its novel molecular architecture, important biological action and medical applications,
and intriguing mechanism of action. As a synthetic target,
vancomycin offered a unique opportunity to synthetic chemists to develop new synthetic technologies and strategies.
Among the most intriguing structural features of the molecule
were its two 16-membered bisaryl ether macrocycles and its
12-membered bisaryl ring system, each of which is associated
with an atropisomerism problem. The attachment of the two
carbohydrate moieties onto the heptapeptide aglycon system
added to the challenge presented by this target molecule.
By 1998 two groups, that of D. A. Evans[223] and ours,[224] had
reported independent total syntheses of the vancomycin
aglycon and by early 1999 the first total synthesis[225, 226] of
vancomycin itself appeared in the literature followed by
another report of the aglycon synthesis by the Boger group.[227]
Emanating from these laboratories, the total synthesis of
vancomycin is summarized in Scheme 48 (see p. 96). During
the vancomycin campaign, a number of new methods and
strategies were designed and developed, among which,
perhaps, the triazene-driven biaryl ether synthesis[228] is the
most prominent. The strategy employed modern asymmetric
reactions for the construction of the required amino acid
building blocks, which were then assembled into appropriate
peptides and cyclized to form the desired framework. While
the two biaryl ether macrocycles were formed by the triazenedriven cyclization, the bisaryl ring framework was assembled
by a sequential Suzuki coupling and a macrolactamization
reaction. Finally, the sugar units were sequentially attached
onto an appropriately protected aglycon derivative, which
afforded a protected vancomycin system in a stereoselective
manner from which free vancomycin was obtained.
The Evans synthesis of vancomycins aglycon, shown in
Scheme 47,[223] featured the stereocontrolled construction of
the amino acid building blocks and assembly to the heptapeptide backbone through a vanadium-mediated CC bond
forming reaction to construct the 12-membered biaryl ring
system and two nucleophilic aromatic substitutions activated
by o-nitro groups to form the two bisaryl ether macrocycles.
The synthesis of vancomycins aglycon[227] by Boger et al.
(Scheme 50; see p. 100) is distinguished by extensive studies
to determine the activation energy required to atropisomerize
each macrocycle, thereby allowing selective atropisomerization of the AB ring system in the presence of the COD
framework. These total syntheses added yet another distinAngew. Chem. Int. Ed. 2000, 39, 44  122
guished chapter to the annals of total synthesis and placed the
glycopeptide antibiotics on the list of conquests of synthetic
organic chemistry.
CP Molecules (1999)
CP-263,114 and CP-225,917 (1 and 2, respectively, in
Scheme 49; see p. 98), isolated from an unidentified fungus
by Pfizer scientists in 1997,[229] inhibit squalene synthase and
ras farnesyl transferase, and as such, represent important new
leads for cholesterol-lowering and anticancer drugs. Nature
molded within these structures an exotic display of delicate
and rare functionalities that beckoned to synthetic chemists
worldwide. The total synthesis of these compounds was finally
accomplished in 1999 in our laboratories after a relentless
campaign through a daunting synthetic labyrinth plagued with
manifold and unexpected obstacles.[230] This total synthesis is
retrosynthetically blueprinted in Scheme 49 a. A critical
disassembly maneuver called upon an intramolecular
Diels  Alder reaction to simplify the bicyclic structure 6 of
the CP molecules to the open-chain precursor 7. Although this
retrosynthetic analysis serves as a conceptual overview of the
synthesis, it should be noted that it is actually the culmination
of several unsuccessful retrosyntheses by which the conversion of ketone 6 into the CP molecules was planned.
Commencing with dimethyl malonate (8), the synthesis of
the CP molecules proceeded smoothly through several
intermediates and finally yielded the desired acyclic precursur
7 stereoselectively (Scheme 49 b). When compound 7 was
treated with Me2AlCl in dichloromethane at  20 8C,
complete conversion to 6 through a Lewis acid catalyzed
intramolecular Diels  Alder reaction was observed within
two minutes. The formidable task of stereoselectively installing the remote stereocenter at C7 was addressed by utilizing
dithiane chemistry (6 !15). The reason for such a high level
of diastereoselectivity (ca. 11:1) could possibly be a consequence of a shielding effect of the CP skeleton. Indeed, the
surprisingly close proximity of this side chain to the rest of the
molecule was quite apparent throughout the synthesis. The
stage was now set for the installation of the fused maleic
anhydride moiety. The synthesis of this delicate moiety was in
itself a great challenge due to unique environment surrounding ketone 15. The development of novel chemistry to
construct the anhydride was a result of persistence in the
face of several failed strategies.[231] Thus, ketone 15 was
smoothly converted to the enol triflate followed by palladiumcatalyzed carboxymethylation and exchange of the dithiane
for a dimethoxy ketal leading to the unsaturated ester 16.
After reduction with DIBAL-H, a Sharpless hydroxyldirected epoxidation of the allylic alcohol led to epoxide 17
selectively (ca. 10:1). Introduction of this electrophilic species
allowed for the placement of an additional carbon atom with
the correct oxidation state for the ensuing cascade sequence.
This carbon atom, in the form of a cyanide, was added to
epoxide 17 using Et2AlCN and proceeded with complete
regio- and stereospecificity (see 17 b). It was after considerable experimentation that we discovered that it was possible
to convert diol 18 in one synthetic operation. Thus, selective
mesylation of diol 18, followed by treatment with base and
89
REVIEWS
a)
K. C. Nicolaou et al.
Me
H
O
Me
O H
Lactonization
Me
H
OH
Lactonization H O
H
H
O Me
F
HO
H
H
TPSO
OH
HO
OH
TBDPSO
4: D-mannose
Ph
EtS
OBn
Ph
PPh3I
11
SEt
12
TBDPSO
H
H
(74%)
Ph
H
O Me
[acting as
Lewis acid and
nucleophile]
O
O
AlMe3
TBDPSO
Me
OH
HO
12 steps
OH
BnO
(18%)
Me
C
OH
HO
D
O
e. Ac2O, 4-DMAP
f. TFA
(91%)
O
H
22
Me
e. (+)-DET, Ti(iPrO)4
tBuOOH
f. SO3py
g. CH2=PPh3
OBn
I
TBSO
a. TBAF
b. PPTS
c. O3; NaBH4
d. PPTS,
Me2C(OMe)2
e. TBAF
(76%)
TBDPSO
a. SO3py, DMSO
b. MeO2C PPh3
Me
f. K2CO3, MeOH
g. TPAP, NMO
h. EtSH, Zn(OTf)2;
d. H2, Pd(OH)2/C
e. TBSOTf
PPTS
i. SO3py, DMSO
Me
c. H2, Raney Ni (W2)
d. LiAlH4
e. TBDPSCl, imid.
(81%)
a. Zn(OTf)2, EtSH
b. TBSCl
c. Ac2O
MeO2C
BnO
17
EtS
Me
H
TBDPSO
Me
Me
B
(65%)
Me
Me
B
OH
PivO
Me
H
OAc
D
H
23
Me
H H
O
OH
H
a. TPAP, NMO
b. Ph3P=(CH2)3CO2Me
O
H
Me
H
c. [{Ph3PCuH}6] TBDPSO
(65% overall)
H
TBDPSO
B
OH
H
TrO
Me
H H
O
D
H
OH
OH
H
Me
a. CH2=C(OMe)CH3, POCl3
b. Al2O3
H
TBDPSO
c. MsCl
d. Ph2PLi; H2O2
TrO
(78%)
Me
Me
Me
OH
D
H
Me
H
O
Me
O H
O
H
H O
H
OH
H
a. (PhO)2P(O)Cl,
KHMDS
b. nBu3SnCH=CH2
c. O2, hv
Me
Me
H
[reductive TBDPSO
cleavage of
endoperoxide]
OH
H
OH
H
PivO
a. nBuLi, 3
PPh2
Me
H
O
O
O
H
O
H
25
OMe
(49%)
b. KH, DMF TBDPSO
c. AcOH-THF
Me
O H
B
O
H
H
TrO
H O
H
Me
H
OH
F
HO
H
1: brevetoxin A
H
O Me
G
H
I
H
H
TBDPSO
O
MeO
O
H
H O
H
Me
H
OH
D
E
F
HO
H
30
OH
EtS
29
Me
O H
OH
J
H
EtS
Me
c. CH2=N(Me)2I
[Eschenmoser's salt]
(52%)
Me
H
OH
24
D
O
19
Me
H
TBDPSO
OH
(69%)
SnMe3
26
Me
H H
O
a. HFpy
b. Dess-Martin [O]
(94%)
Me
a. KHMDS, (PhO)2P(O)Cl
b. Me3SnSnMe3, [Pd(Ph3P)4]
a. H2, [RhCl(Ph3P)3]
b. H2, 10% Pd/C
18
Al(Hg)
O
Me
28
OH
Me
H
O
PivO
Me
O
OTBS
Me
O
H
OH
H
TBSO
H
HO
Me
D
H
20
Me
a. TBSCl, imid.
b. TPAP, NMO
27
PivO
G
H
Me
c. LiOH
OH d. 2,4,6-Cl C H COCl
3 6 2
PivO
[Yamaguchi lactonization]
Me
Me3Sn
H
TBDPSO
OH
(70%)
Me
(70%)
OBn
TBSO
Me
Me
(70%)
a. DIBAL-H
b. TrCl4-DMAP
c. TPAP, NMO;
DIBAL-H
OHC
H
EtS
O Me
c. 2,4,6-Cl3C6H2COCl
d. HFpy
e. [PhC(CF3)2O]2SPh2
OBn CO2Me
nBuLi; Cu-CCnPr
TfOCH2CH2OBn
OBn
a. LiOH
b. Li, NH3 (l)
OTBS
D
H
TBDPSO
21
a. PivCl, 4-DMAP
c. CSA, MeOH
d. TrCl4-DMAP
Me
H
O
(48%)
Me
Me
C
OH
BnO
Me
Me
OTBDPS
TBDPSO
c. IZn(CH2)2CO2Me,
[Pd(PPh3)4]
(68%)
Me
14
OBn CO2Me b. NaHMDS, Tf2NPh
(65%)
OTBS
OBn
a. Hg(OAc)2;
Li2[PdCl4], CuCl2,O2
OTBS
16
a. hexylborane;
H2O2, NaOH
b. TBDPSCl, imid.
c. H2, Pd/C
OMe
d. PPTS,
OMe
Me
15: D-glucose
H
TBDPSO
(94%)
OH
Epoxide opening
TBDPSO
13
TBDPSO
O 2
OBn
H
O SEt H O H
a. PPTS, MeOH
OBn
b. TBSCl, imid.
Me H
H
H
O
O
c. TPAP, NMO
Me
I
H
J
d. EtSH, BF3Et2O
O
O
O
e. SO3py, DMSO
H
H
H
(73%)
9
OBn
10
a. TBAF
Ph
b. AgClO4, NaHCO3
c. mCPBA
[hydroxy dithioketal
cyclization]
EtS
EtS
(55%)
TBDPSO
HO
EtS
nBuLi
(88%)
OMe
H
Me
O
a. 9-BBN; H2O2
b. SO3py, DMSO
c. MeO C PPh
2
3
d. DIBAL-H
OTBS
TBS
SEt
TBSO
(86%)
H
O
OHC
OBn
[6-endo hydroxy
epoxide cyclization]
a. TBAF; TPSCl, imid.
b. TBSOTf
(17%)
OH
Epoxide opening
PPh2
bis-Lactonization
OBn
TESO
15 steps
OH
OH
Me
H
O
1: brevetoxin A
b)
Me
TrO
Me
Horner-Wittig coupling
Dithioketal cyclization
HO
Dithioketal cyclization
Conjugate addition
H
O Me
G
H
I
H
OTBS
H
O Me
a. AgClO4, NaHCO3
b. mCPBA
c. BF3Et2O, Et3SiH
d. Dess-Martin [O]
e. NaClO2
f. CH2N2
OTBS
H
H
OTBDPS
TBDPSO
(48%)
Scheme 42. a) Strategic bond disconnections and retrosynthetic analysis of brevetoxin A, b) total synthesis (Nicolaou et al., 1998),[212] and c) key synthetic
methodologies developed in the course of the total synthesis (Nicolaou et al., 1998).[212]
90
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
c) Cyclic ketene acetal phosphates for the construction of medium and large cyclic ethers
O
Ph
H
O
O
H
Ph
H
O
O
H
(75%)
H
O
O
H
P(OPh)2
O
SnMe3
H
O
tri-n-butyl(2-ethoxyvinyl)tin
[Pd(PPh3)4], LiCl
(81%)
tri-n-butyl(1-ethoxyvinyl)tin
[Pd(PPh3)4], LiCl
(84%)
Ph O
H OEt
O
O
H
Ph
nBu3Sn
Ph O
[Pd(PPh3)4], LiCl
O
H
(96%)
Ph
hexamethylditin
[Pd(PPh3)4], LiCl
O
OTBS
(90%)
Ph
Ph
KHMDS
(PhO)2POCl
H
O
O
H
Me3Sn
[Pd(PPh3)4], LiCl (89%)
O
OTBS
Ph
H
O
O
H
OEt
Enol-phosphates and thioketal-mediated etherification for the
construction of the EFGH ring skeleton of brevetoxin A
H
O
O
Ph
O a. KHMDS,
(PhO)2P(O)Cl
O
H
Ph
H
O
O
Ph
b. nBu3SnCH=CH2,
[Pd(PPh3)4]
H
OH
O
H
b. H2,
Lindlar's
cat.
O
O
H
H
OH
a.
H
OH
F
HO
H
G
H
OH
H
O
O
a. O2, TPP Ph
O
H
H
HO
AgClO4
Ph
H
O
H H
O
b. Ph3SnH, AIBN
O
H
H EtS
OH
EtS
Novel stereocontrolled synthesis of the nonacene ring system
of brevetoxin A. Conformational-reactivity effects in nine-membered rings
S
O
1,4-diiodobutane
THF, 
S O
O
O
O
Li
O
H
H
O
O
H
Synthesis of N-heterocycles via lactam-derived ketene aminal phosphates.
Asymmetric synthesis of cyclic amino acids
N
Boc
N
Boc
a. Me3SiCH2MgCl
Ni0
h. PhZnBr
0
Pd
g. Et3Al, Pd0
N H
Boc
f. nBu3Sn
Pd0
N
Boc
N
R
SiMe3
N CO Me
2
CO2Ph
Pd0
b. CO,
MeOH
O
O P(OPh)2
Pd0
N
Boc
d. Me3SnSnMe3
Pd0
e. Me3Si
CuI, Pd0
N SnMe
3
Boc
N
Boc
SiMe3
Scheme 42. (Continued)
c. nBu3Sn
O
H
finally acidic workup afforded the maleic anhydride 5. The
course of this dizzying domino sequence undoubtedly
involves formation of the unprecedented carbocyclic imino
butenolide 21 (a proven intermediate and new chemical
entity isolated for the first time) whereupon facile tautomerization to the electron rich and easily oxidizable 2-aminofuran 22 occurs.
Stepwise oxidation of the furan 22 followed by nitrogen
extrusion leads to anhydride 5. The remarkable efficiency
with which this reaction takes place (56 % overall yield,
seven transformations in one operation) is a testament to
the utility of tandem reactions in organic synthesis. After
some brief protecting group manipulations, the stage was set
for the aplication of another cascade reaction. It was found
that treatment of 23 with Dess-Martin-periodinane in
refluxing benzene led to the desired g-hydroxy lactonol in
63 % yield. This tandem reaction was based on the simple
ring  chain tautomerization of hydroxy ketones and permitted the crucial oxidation to take place.[232]
The next key step involved the one-carbon elongation of
intermediate 4 by the classic Arndt  Eistert reaction.
Because of the extreme steric hindrance of the carboxylic
acid derived from 4, a new method specifically tailored for
the preparation of hindered a-diazoketones was developed.[233] This new synthetic technology was based on the
expected extreme reactivity of the acyl mesylate species. In
the event, acyl mesylate 25 successfully activated the
hindered carboxylic acid for attack by diazomethane thus
leading to the requisite a-diazoketone for the ensuing Wolff
rearrangement. The final stage in the synthesis required
conversion of indole 27 into the CP molecules. Although the
conversion of 2 into 1 was known, the counterintuitive
conversion of the seemingly robust 1 into its hydrated
counterpart 2 appeared unlikely. We reasoned that LiOH
might be useful for effecting this conversion by virtue of its
unique solubility and reactivity. Not only did this LiOHmediated cascade reaction succeed in hydrolyzing the indole
amide of 27 to the corresponding carboxylic acid, it was also
able to induce ring opening of the stable pyran motif to
provide 2 directly. The conversion of 2 into 1 using acid
catalysis proceeded smoothly, thus completing the total
synthesis of the CP molecules.
In summary, the first total syntheses of these (racemic)
compounds was accompanied by a plethora of fundamental
discoveries, cascade reactions, and new synthetic technologies among which the following are, perhaps, most notable
(see Scheme 49 c, d): 1) the design and execution of a
cascade reaction involving no less than seven steps traversing through previously unknown chemical entities to construct the fused maleic anhydride moiety;[231] 2) the enlistment of another tandem sequence predicated on the ring 
chain tautomerization of hydroxy ketones to sculpt the ghydroxy lactone moiety onto the bicyclic skeleton;[232]
3) development of a mild and effective method for the
construction of extremely hindered diazoketones using acyl
mesylates (Scheme 49 d, top);[233] 4) a new paradigm for the
two-step construction of strikingly complex natural-productlike heterocycles from commercially available chemicals (Scheme 49 d, middle);[234] 5) a new method for the
Angew. Chem. Int. Ed. 2000, 39, 44  122
91
REVIEWS
K. C. Nicolaou et al.
Scheme 43. a) Strategic bond disconnections and retrosynthetic analysis of resiniferatoxin and b) total synthesis (Wender et al., 1997).[210]
one-carbon
homologation
of
hindered
aldehydes
(Scheme 49 d, bottom);[235] and 6) the daring and counterintuitive conversion of the structurally robust CP molecule 1
into its hydrated CP derivative 2 passing through a multiplycharged intermediate in yet another cascade sequence.[230] The
total synthesis of the CP molecules stands as an instructive
example of how total synthesis can act as a driving force for
the discovery and development of new concepts and methods
in chemistry.
Aspidophytine (1999)
For over 25 years aspidophytine (1 in Scheme 51; see p. 101)
has remained an unanswered challenge for organic synthesis.
Best known for its use as an anticockroach/insecticidal
92
powderat least since the Aztec era in parts of Mexico and
Central America[236]its complex structure was not elucidated until 1973 by the groups of M. P. Cava, P. Yates, and D. E.
Zacharias.[237] The first total (enantioselective) synthesis of
this molecule was finally completed in 1999 by E. J. Corey and
co-workers and featured a rapid assembly of the aspidophytine core via a novel cascade sequence.[238] The hallmark of the
synthesis is the tandem sequence uniting dialdehyde 3 and
indole 2 in a one flask tandem operation. Also notable is the
conversion of acid 9 into lactone 11 by attack of the iminium
species 10. It is impressive that all four stereocenters (three
quatenary) of 1 are derived from one chiral center secured
early in the synthesis using the CBS reduction (see p. 58).
Aside from developing a breathtaking new domino sequence
to assemble the aspidophytine skeleton, this work raises the
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
a)
Pictet-Spengler cyclization
NH
N
Photoaddition
SN2 Displacement
CHO
N
H
H
OH
Mannich closure
H
1: manzamine A
N
H
H
redox exchange
CHO
H
N
N
HN
HN
N
OH
H H
N
N
Boc
N
H
b)
H H
N
1: manzamin B
NH2
(99%)
BocN
[Michael addition]
N
Boc
N
HO
OH
NH3
HO
HO
BocN
HO
b)
a. pTsOH,
I
Ph3P
b. KHMDS,
CO2Me
BocN
(20% overall)
a. TBSCl
b. LHMDS,
MeOCOCN
c. NaBH4
d. MsCl
e. DBU, C6H6
(62%)
H
HO
10
CO2Me
CO2Me
OH
14
a. TBAF
b. pTsCl
H
BocN
c. TFA
d. iPr2NEt
H
e. Lindlar's cat.
(76%)
OH
BocN
CO2Me
BocN
N
H
N
H
OH
TFA, 4
N
OH
DDQ
(50%)
[Pictet-Spengler]
(58%)
H
15
OH
16
1: manzamine A
Scheme 44. a) Strategic bond disconnections and retrosynthetic analysis of
manzamine A and b) total synthesis (Winkler et al., 1998).[217]
standards for the concise synthesis of extremely complex
alkaloids from simple starting materials.
Sanglifehrin A (1999)
Sanglifehrin A (Scheme 53; see p. 104) was originally isolated by a team of Novartis scientists from an actinomycete
Angew. Chem. Int. Ed. 2000, 39, 44  122
H
(0.2-0.3%)
N
N
H
H
a. DIBAL-H
b. Dess-Martin [O] (75%)
[Diels-Alder]
12
TBSO
HN
12
13
CHO
MeOH/
pH 7.3
DBU,
C 6H 6
b. Tf2O
(98%)
6
11
a. mCPBA
b. NaOMe
(69%)
(50%)
a. mCPBA
N
TBSO
TBSO
a. HCl
b. pTsCl
c. NaI
d. NaBH4
10
(77%)
BocN
N
11
CHO
N
OTHP
OH
py, AcOH
HO
O NH3
BocN
BocN
4: keramaphidin B
4: keramaphidin B
Scheme 45. a) Strategic bond disconnections and retrosynthetic analysis of
manzamine B and b) biomimetic total synthesis of keramaphidin B (Baldwin et al., 1998).[219]
strain found in a soil sample collected in Malawi.[239] This
molecule was found to display a very strong affinity for
cyclophillin A (20-fold higher than cyclosporin A) and significant immunosuppressive activity (10-fold lower than
cyclosporin A). Its mode of action seems to differ from other
cyclophillin binders such as cyclosporin A and thus it raises a
high interest for the understanding of immunosuppression
mechanisms.
Sanglifehrins chimeric structure is formed by a unique
[5.5]-spirolactam fragment, linked to a 22-membered macrolactone ring that contains two unusual amino acid residues
(piperazic acid and meta-tyrosine) as well as l-valine. Its
unprecedented molecular features as well as its novel biological properties made sanglifehrin A a prime target for total
synthesis. The first total synthesis of sanglifehrin A was
93
REVIEWS
K. C. Nicolaou et al.
Everninomicin 13,384-1 (1999)
a)
PictetSpengler
cyclization
N
H
N
N
Ring-closing
olefin metathesis
CO2Me
Tandem Stille/
Diels-Alder
reaction
OH
NBoc
Organolithium
addition
NH2
Wittig
2
1: manzamine A
N
H
Br
CO2Me
CO2Me
Br
O
NBoc
NBoc
NH
OTBDPS
OTPS
OTBDPS
OTBDPS
b)
NBoc
OTBDPS
Br
CO2 Na
a. LHMDS, CO2
(COCl)2;
O b. NaBH4
c. Na2CO3
(95%) TBDPSO
OH
N
Boc
CO2Me
N
CO2Me
NBoc
Br
5
+ Et3N
TBDPSO
OTBDPS
(79%)
SnnBu3
(68%) [Pd(Ph3P)4],
toluene, 
MeO
OMe
H
H
O
N
a. DIBAL-H
b. Dess-Martin [O]
c. HC(OMe)3,H+ N
d.
Li
[stereocontrolled
alkyl lithium addition]
(26%)
[tandem StilleDiels-Alder]
CO2Me [allylic oxidation]
a. CrO3
b. HCl
H
c. Swern [O]
O
d. PPh3=CH2
NBoc
[double Wittig]
(30%)
2
Cl
Ru
PCy3 Ph
MeO
[olefin metathesis
reaction]
NBoc
OTBDPS
OTBDPS
8
(67%)
MeO
OMe
OMe
[olefin metathesis
reaction]
a.
Cl
a. KOH, MeOH
b. Et3N,
10
OH
O
Cl
CO2Me
H
PCy3
Cl
OTBDPS
NH
(75%)
11
Cl
N
H
PCy3
Ru
PCy3 Ph
b. HCl
c. DIBAL-H
d. Dess-Martin [O] H
e. TFA,H
OH
NH2
1: manzamine A
f. DDQ
(ca. 5% overall)
Scheme 46. a) Strategic bond disconnections and retrosynthetic analysis of
manzamine A and b) total synthesis (Martin et al., 1999).[218]
achieved in our laboratories in 1999.[240] As indicated in
Scheme 53, the two main domains of the molecule were
assembled by an intermolecular Stille coupling. The construction of the sensitive iodomacrocycle fragment was
performed by an esterification, two peptide couplings, and
eventually a regioselective intramolecular Stille coupling. The
synthesis of the spirolactam moiety involved the use of
Paterson aldol reactions to establish the first five stereocenters, while the spirolactam fragment was formed by
intramolecular cyclization of a suitable 9-hydroxy-5-ketoamide precursor. The developed chemistry demonstrated
once again the power of the Stille coupling reaction in the
synthesis of complex molecules and opened the way for the
construction of possible libraries for biological screening
purposes.
94
Everninomicin 13,384-1 (Ziracin; 1 in Scheme 52; see
p. 102),[241] a member of the orthosomicin class of antibiotics[242] and currently in clinical trials, is a promising new
weapon against drug-resistant bacteria including methicillinresistant Staphylococci and vancomycin-resistant Streptococci and Enterococci.[243] Isolated from Micromonospora carbonacea var africana (found in a soil sample collected from the
banks of the Nyiro River in Kenya), everninomicin 13,384-1
possesses a novel oligosaccharide structure containing two
sensitive orthoester moieties, a 1,1'-disaccharide bridge, a
nitrosugar, several b-mannoside bonds, and terminates with
two highly substituted aromatic esters.[244]
As a consequence of its unusual connectivity and polyfunctional and sensitive nature, everninomicin 13,384-1 constituted a formidable challenge to organic synthesis. After several
generations of glycosylation and protecting group strategies
had been explored and new synthetic methodologies were
developed, the total synthesis of everninomicin 13,384-1 was
finally completed in our laboratories in 1999.[245] Highlights of
this synthesis include: 1) the tin acetal-based stereocontrolled
formation of the 1,1'-disaccharide linkage;[246] 2) the 1,2migration of selenophenyl groups leading to selective orthoester formation based upon a modification of Sinay's
method;[247] and 3) the stereocontrolled formation of eight
unique glycoside bonds using a variety of techniques including
sulfur-, selenium-, and ester-based neighboring group participation.
Additional examples of natural products synthesized in the
twentieth century are given in Figures 5  8 (see pp. 105 
108),[350458] but even this listing does not do justice to the
science of those whose brilliant contributions are not mentioned here as a result of the limited space available and
unintentional oversight. For a more complete picture, the
reader should consult the primary literature.
4. What Have We Learned from a Century of
Organic and Natural Product Synthesis?
During the twentieth century, we have come, through the
electronic theory and understanding of the nature of the
chemical bond and mechanistic insights, to adopt the arrow to
designate bond making and bond breaking. During this
revolutionary period for organic synthesis, we have also come
to understand and use conformational analysis, and to use
pericyclic reactions, anions and cations, as well as carbenes
and radicals in controlled ways to form and break chemical
bonds. The Woodward and Hoffmann rules brought understanding and generalization to pericyclic reactions such as the
Diels  Alder reaction, the photoinduced [22] cycloadditions, and the various 1,3-dipolar cycloaddition reactions.
We have discovered new continents of chemistry and an
amazing number of synthetic reactions based on heteroatoms
and organometallic reagents and catalysts. Among the former
are the chemistries of nitrogen, phosphorous, boron, sulfur,
and silicon. Organometallic chemistry came a long way from
the sodium and Grignard reagents to cuprates and titanium
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
SNAr-driven ring closure
OH
HO
OH
H
N
O
O
H
N
H
NH
NHMe
N
H
HO
MeO
OAll
OH
HO
O
Cl
H
N
H
N
NH2
H
N
HO
Addition of oxygen
MeO
Atropisomerization
NO2
F
HO
NH
OMs
Cl
H
N
O
O
NO2
OAll
HO
NHBoc
O
N
H
21
OPiv
a. AlBr3; then EtSH
OMs b. MeOH, 55 C
[atropisomerization and
transoid to cisoid
isomerization]
[>95:5 ratio of
NHTfa
atropisomers]
Cl
H
N
O
N
H
O
NH
(P)-23
NO2
N
Br
Bn
NO2
a. nBu2BOTf, Et3N
b. TMGA [N3 source]
c. LiOOH
(50%)
HO
O
HO
KHMDS;
then TsN3
N3
(78%, 80% de)
Bn
Bn
MeO
OMe
MeO
13
N
NCS
NO2
Sn(OTf)2
MeO
F
NO2
Bn
14
25
OAll
HO
HOAt, EDC
(86%)
NH2
TMSEO
O
O
HO
O
NHDdm
16
a. EDC,
HOBt
b. Ph3P-H2O
Boc
15 O
(53%)
NO2
N
H
OBn
OBn
Boc
N
Me
O
O
O
H
H
NH
N
H
NHDdm
OH
OBn
11
TFA
Cl
a. EDC,
HOBt
b. Li2CO3
c. TFA
15
a. N2O4
HO
b. LiOOH
H
c. [Pd(PPh3)4], morpholine
N
d. Pd/C, 1,4-cyclohexadiene
e. TFA
O
H
OH
O
OMe
18
d. EDC,HOBt
e. TFA; then
TFAA
(54%, 6 steps)
MeHN
O
NH
N
H
NHTfa
OBn
NH
OMe
Cl
OH
Cl
O
H
H
N
O
N
H
H
N
O
N
H
NHMe
(24%)
HO
HO
MeO
27
NO2
NMe
N
H
OBn
OBn
BnO
(62%)
Boc
H
N
NHDdm
NHBoc
26
OH
O
H
N
MeHN
3
HO2C
Boc
NMe
a. CsF [ca. 5:1 ratio of atropisomers]
b. Zn, AcOH
c. HBF4, tBuONO, CuCl, CuCl2
Cl
Cl
H
N
O
N
H
NHDdm
OAll
HO
OH
O
H
N
HO
a. HOBt, EDC
b. TBAF
(72%)
N
H
H
N
BnO
17
H
NH
O
N
NMe
OH
O
H
N
MeHN
(46%)
Boc
HO
NO2
F
Cl
O
H
N
c)
OH
HN
12
OBn
OBn
NO2
Cl
a. Boc2O; then
HCO2H, H2O2
b. LiOOH
Bn
OMe
F
Cl
c. AllBr, Cs2CO3
d. LDA
e. LiOH
11
a. BnBr, Cs2CO3 (M)-24
b. LiSEt
NH2
(65%)
BnO
10
Cl
H
N
MeHN
NHBoc
MeHN
(91%)
OMe
a. H2, Pd/C;
then Boc2O
b. LiOH
c. MeNH2,
EDC, HOBt
OH
OH
HO
O HN
MeHN
Cl
N3
H
N
OH
NHTfa
O
O HN
OH
OMs
H
N
OAll
O
OPiv
Cl
H
N
OMe
OMe
MeO
(54%)
O
HO
Oxidative biaryl coupling
OMe
OMe
MeO
OMe
b)
O
OH
5
OMe
NHBoc
N
H
MeHN
a. Zn, HOAc
b. NaNO2, H3PO4,Cu2O
c. [PdCl2(dppf)]CH2Cl2,
Et3N, HCO2H
HO
d. PivCl
e. TFA; then TFAA O
(68%)
OAllyl
OMs
HO
Cl
H
N
O
NH
OTf
OBn
HO
[ca. 5:1 ratio of
atropisomers] O
NHBoc
(79%)
O
OMe
OMe
22
Na2CO3;
then PhNTf2
MeHN
MeO
OMe
OMe
NHTfa
N
H
NH
Peptide bond formation
4
MeO
MeHN
OH
MeHN
OH
O
Cl
H N
H
Cl
MeHN
NO2
OMs
H
N
(55%)
OAll
NO2
O
NH
OBn functionality for oxidative
biaryl coupling
OBn
BnO
NHBoc
O
O
OMe
OMe
19
a. NaHCO3
b. 20, HOAt, HATU, collidine
c. HFpy
HO
O
NHDdm
20
Boc
N
Me
N
H
O HN
MeHN
OH
O
OH
MeHN
MeO
NHTfa
N
H
NH
OMs
HO2C
O
O
OMe
OMe
NO2
OH
Cl
[95:5 ratio of
atropisomers]
(65%)
OBn
OAllyl
TBSO
SNAr-driven
ring closure
NHTfa
N
H
NH
MeHN
NH2 Peptide bond formation
OH
1:
vancomycin
aglycon
OH
HO
VOF3, BF3Et2O,
AgBF4, TFA;
then NaHB(OAc)3
OH
O
Cl
H
N
N
H
Cl
O
NO2
NO2
Cl
NH2
OH
1: vancomycin aglycon
OH
OMe
Scheme 47. a) Strategic bond disconnections and retrosynthetic analysis of vancomycin aglycon, b) key methodology for unnatural amino acid synthesis, and
c) total synthesis (Evans et al., 1998).[223]
Angew. Chem. Int. Ed. 2000, 39, 44  122
95
REVIEWS
K. C. Nicolaou et al.
a)
HO
HO
HO
H2N
MeO
Glycosidation
Triazene
H
NH
N
H
Cl
TBSO
O
EtO2C
NHBoc
OC(NH)CCl3
BnO
BnO
Triazene-driven ring closure
Cl
TBSO
Macrolactamization
NH
H
N
OMe
N
H
HO
OMe
OMe
HO2C
Peptide bond formation
OH
nBuLi,
B(OMe)3;
then HCl
7
NHBoc
a. TMSCl, MeOH
a. MeI, K2CO3
b. Boc2O, K2CO3
b. I2, CF3CO2Ag
(84%)
NHCbz
EtO2C
NH2
Br
Br
N
Br
Br
NHDdm
Br
18
NHDdm
OMe
OMe
(53%)
19
OH
21
Boc
NMe
a. EDC,
HOBt
b. LiOH
(92%)
NH2
EtO
Cl
HO
HO
O
O
c. EDC, HOAt
HO
O
DdmHN
H
N
N
O
Boc
OH
O
Cl
H
N
O
O
TBS
23
d. TBSOTf
e. H2, Pd(OH)2/C
f. SO2Cl2
g. LiOH
(46%)
NH2
O 21
NHDdm
Cl
O
ONos
O
MeO
O
OH
OH
O 20
c.
[atropisomerization]
(M,M,P)-4: R1=H, R2=Cl
c. H2, Pd/C
a. NaI, I2, TMSCl
d. MeI, Cs2CO3
b. MeMgBr, iPrMgBr; then
e. Dess-Martin [O]; KMnO4
B(OMe)3; then H2O2
f. AlBr3
(34%)
(21-35%)
BnO
a. NaN3
b. SnCl2
(81%)
EtO
CO2Et
(P,M,P)-4: R1=Cl, R2=H
a. AD (95% ee)
b. TBSCl, imid.
c. DPPA, DEAD,
Ph3P
(66%)
Boc
NMe
N
H
BnO
MeO
N3
N
H
OTBS
O
H
N
16
Br
17
BnO
a. AD- (92% ee)
b. NosCl, Et3N
BnO
H
N
TBSO
NHBoc
HO2C
R1
O
Cl
O
H
NH
R2
O
TBSO
N
Br
NMe
N
H
OMe
30
OMe
MeO
N
Br
(52%)
22
H
N
a. Ph3P, H2O
b. Boc2O, Et3N
c. TBAF
d. TEMPO, NaOCl
H
N
24
EDC, HOAt
(86%)
Boc
15
N
HO
HO
14
OTBS
O
N
H
CuBrSMe2, py, K2CO3
[3:1 mixture of
(P,M,P):(M,M,P)]
(74%)
EtO2C 13
(61%)
OMe
OMe
OMe
29
Cl
NH2
a. NaNO2, HCl;
pyrrolidine, KOH
b. PCC
c. PPh3=CH2
(93%)
O
OH
TBSO
12
NH2
a. Br2, AcOH
b. LiAlH4
c. SO2Cl2
(76%)
HO
NH2
O
Br HO
H
N
10
Cl
a. TBSOTf
b. H2, Pd(OH)2/C
11
H
NH
BnO
OMe
, KOH
H
NH
OBn
c. AA
(41%, 87% ee)
H
N
O
9
a. BnBr, K2CO3
O
O
b.
Cl
NHBoc
OH
OH
OEt
TBSO
MeO
H
N
MeO
OMe
O
(93%)
OMe
N
MeO
OMe
MeO
BnO
MeO
B(OH)
(EtO)2
H
N
OMe
BnO
OH
a. FDPP
b. TBSOTf
c. TMSOTf
(70%)
NHBoc
Cl
(M,P)-28
NH2
(55%)
MeO
NH2
TBSO
N
Br
Br
BnO
HO
Suzuki biaryl coupling
H
N
N
H
26
N
N
Cl
O
NHDdm
(75%)
(68%)
O
a. PPh3=CH2
b. AD- (96% ee) BnO
c. nBu2SnO;
then BnBr
MeO
Boc
NMe
MeO
b. TBAF
c. Et3P-H2O
d. LiOH
[1:1 mixture of
atropisomers]
(67%)
MeO
H
N
N
H
BnO
OTBS
O
Cl
H
N
b)
a. CuBrSMe2,
py, K2CO3
27
MeO
OMe
OMe
OMe
OMe
Triazene-driven ring closure
NH2
N
H
OH
N3
AllocO
EtO2C
(85%)
AcO
AcO
NHCbz
18 , EDC, HOAt
H
N
N
H
AcO
OH
Br
TBSO
OTBS
(78%)
Cl
OH
Br
13
a. EDC, HOAt
b. TMSOTf
10
NH2
OH
1: vancomycin
OH
HO
NH2
(P)-25
OMe
HO
EtO2C
OMe
OMe
I
NHMe
N
H
N3
b. (PhO)2P(O)N3,
DEAD, Ph3P (95%)
MeO
c. LiOH (99%)
OH
O
H
N
OH
TBSO
BnO
Cl
H
N
MeO
Cl
O
HO
NHBoc
Cl
NHBoc
HO
a. [Pd(Ph3P)4],
Na2CO3
(56% plus 28%
(M)-atropisomer)
OMe
O 7
O
O
O
B(OH)
OH
O
H
N
BnO
H
NH
O
H
HO
H
N
O
N
H
NHMe
HO
NMe
H
N
OH
OH
NH2
26: vancomycin aglycon
24
Scheme 48. a) Strategic bond disconnections and retrosynthetic analysis of vancomycin aglycon, b) key methodology for unnatural amino acid synthesis, and
c) total synthesis of vancomycin (1) (Nicolaou et al., 1999).[224226]
96
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
c)
OH
HO
O
H
N
O
O
Cl
H
N
H
NH
Cl
N
H
NH2
OH
26: vancomycin aglycon
OH
HO
c. CbzCl
(36%)
d. Al2O3KF
a. TBSOTf
b. CH2N2
OH
TBSO
Cl
OTBS
Cl
H
N
O
H
H
NH
H
N
N
H
MeO
Cbz
NMe
N
H
NH2
OTBS 27
OTBS
a. BF3Et2O
TBSO
b. nBu3SnH, [Pd(PPh3)4]
AcO
AcO
(70%)
AllocO
H
N
TBSO
O
NHMe
N
H
HO
O
O
OH
O
H
N
OC(NH)CCl3
AcO
AcO
OTBS
HO
O
O
O
O
TBSO
OTBS
Cl
H
N
O
O
O
H
H
NH
H
N
H
N
N
H
Cbz
NMe
N
H
MeO
F
Cl
NH2
OTBS 28
OTBS
TBSO
(84%)
BF3Et2O
O
NHCbz
AcO
AcO
AcO
AcO
CbzHN
OTBS
O
O
O
O
O
TBSO
OTBS
Cl
H
N
O
O
Cl
O
H
H
NH
H
N
N
H
H
N
O
N
H
Cbz
NMe
MeO
OTBS
OTBS
TBSO
NH2
29
a. HFpy c. Raney N:
b. K2CO3 d. LiOH
(65%)
HO
HO
HO
H2N
OH
O
O
O
O
HO
H
N
O
O
H
NH
HO
HO
Cl
H
N
N
H
Cl
O
NH2
OH
1: vancomycin
OH
Angew. Chem. Int. Ed. 2000, 39, 44  122
OH
O
H
N
O
N
H
NHMe
reagents. Of particular importance are the recent advances
made in catalysis using transition metals both for the
formation of carbon  carbon bonds and for asymmetric
synthesis. The retrosynthetic analysis principles introduced
by Corey revolutionized strategy design in total synthesis,
while the many metal-catalyzed processes discovered during
the second half of the century facilitated the construction of
complex molecules in impressive ways. Most prominent
among these catalytic processes are the various palladiumcatalyzed reactions for carbon  carbon bond formation[248]
and the olefin metathesis reaction[249] made synthetically
useful by the Grubbs[250] (ruthenium) and Schrock[251] (molybdenum) catalysts. During this period, we have also
witnessed the introduction of enzymes[252] as important tools
for organic synthesis and of catalytic antibodies[253] as
promising and useful reagents for synthetic and mechanistic
studies, and the application of genetic engineering to total
synthesis.[254]
In terms of stereochemical control, a journey through the
twentieth century reveals the dramatic progress from stereochemically random reactions to stereocontrolled processes,
first carried out in a reliable manner on cyclic templates and
later on acyclic systems. Acyclic stereoselection, both via
internal chiral auxiliaries and external catalysts, brought us
not only to diastereoselective processes, but also to asymmetric synthesis. Particularly impressive have been the
advances in asymmetric catalysis by which many building
blocks and final targets can nowadays be synthesized at will.
Classical optical resolution methods that characterized the
early total syntheses are being replaced by stereoselective
processes delivering only the desired enantiomer in high
enantiomeric excesses. Such processes include the Hajos 
Wiechert cycloaldol/dehydration reaction catalyzed by optically active amino acids,[255] the Knowles asymmetric hydrogenation process for the industrial production of l-DOPA
employing soluble rhodium catalysts carrying chiral phosphane ligands,[256] the Takasago process for the production of
l-menthol via an asymmetric catalytic amino  enamine
isomerization employing a rhodium  BINAP catalyst,[257] the
Noyori asymmetric catalytic hydrogenation of ketones ((S)or (R)-[RuBr2(binap)] catalyst),[258] the Katsuki  Sharpless
asymmetric catalytic epoxidation ((l)-()- or (d)-()-diethyl
tartrate/Ti(OiPr)4 catalyst),[259] the Sharpless dihydroxylation
reaction (OsO4 catalyst),[165] the Corey oxazaborolidinecatalyzed reduction of ketones,[92] and the Shibasaki carbon  carbon bond forming reactions employing bimetallic
catalysts.[260]
Cascade reactions in which several transformations are
carried out in one reaction vessel in tandem have assumed
increasing importance in total synthesis.[261] Such cascades can
be defined as one-pot sequences involving fleeting intermediates, each of which leads to the formation of the next until a
stable product is formed, or pathways marked with distinct
intermediates that can be isolated if so desired, but which are
allowed to proceed to the next stage until the desired product
is obtained. By expanding the definition of cascade reactions
one can include the various one-pot reactions in which a
number of reagents and/or components are added sequentially to form a final product without isolation of intermediate
97
REVIEWS
K. C. Nicolaou et al.
Scheme 49. a) Strategic bond disconnections and retrosynthetic analysis of the CP molecules (1 and 2) and b) total synthesis (Nicolaou et al., 1999).[230]
c) New cascade reactions: the anhydride cascade, which features the first use of a highly unstable 2-aminofuran in the synthesis. The g-hydroxylactonal
cascade was developed as a mild method to construct the precursor to the fused g-hydroxylactone moiety, the g-hydroxylactonal. The pyran rupture cascade
traverses through a sequence of intermediates, including the tetraanion C. d) New synthetic technologies. (For further information see the text.)
98
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
5. The Impact of Total Synthesis
In tracing the evolution of organic synthesis and total
synthesis to its present state, it is instructive to also consider
its impact on other scientific disciplines and on society.
Simply stated, this impact has been enormous and it boils
down to profoundly shaping our world by providing the
myriad synthetic materials we have around us today. To be
sure, total synthesis has been aided by its own appeal and
advances, but also by developments in analytical and
purification techniques and spectroscopic methods.
5.1. Driving and Testing the State-of-the-Art in Organic
Synthesis
Scheme 49. (Continued)
compounds or work-ups. Examples of cascade reactions
include the Robinson synthesis of tropinone,[16] the biomimetic synthesis of steroids,[262] the endriandric acid synthesis,[112] the Ugi three-component reaction,[263] the Vollhardt
synthesis of estrone,[358h] the synthesis of the CP molecules and
the many radical-based[264] and palladium-catalyzed[265] tandem sequences for the formation of polycyclic carbon frameworks.
Angew. Chem. Int. Ed. 2000, 39, 44  122
As the flagship of organic synthesis, total synthesis often
guides and demands new synthetic methods and strategies. It
also becomes the testing ground where new technologies and
strategic concepts are tested and judged for their applicability, efficiency, and practicality. In a way, total synthesis
provides the tough and real challenges to new synthetic
methods, often before they are passed over to those who use
them extensively in their daily research and/or for their
manufacturing needs. Indeed, the total synthesis of complex
natural products is frequently given as the reason for the need
to develop a new synthetic method to achieve a goal
unattainable by existing methods. Furthermore, newly appearing synthetic methods become convincingly useful once
they have been successfully applied to total synthesis.
Examples here include the Diels  Alder reaction,[266] the
Wittig reaction,[267] the hydroboration reaction,[268] the Corey
dithiane reaction,[269] the Sharpless asymmetric epoxidation
reaction,[259] the various palladium-catalyzed coupling reactions,[270] the olefin metathesis reaction,[271] and last but not
least, the multitude of protecting groups available to the
synthetic chemists.[272]
It is important to note that total synthesis not only drives
organic synthesis forward in terms of synthetic technologies
and strategies, but also frequently leads to fundamental
theories and concepts. Thus, it was within the realm of the
total synthesis of natural products that the theories of
conformational analysis[273] (Barton and Hassel), the Woodward and Hoffmann rules,[98] and the Corey principles of
retrosynthetic analysis[3, 4, 34] crystallized.
Today our desire and ability to make contributions to
biology and medicine is driven to a large extent by total
synthesis, which can deliver not only scarce natural products
but also combinatorial libraries of related substances for
biological evaluation purposes.
Total synthesis not only dictates and demands the invention and development of new synthetic strategies, but it also
provides opportunities for the discovery of such methods and
techniques. Such discoveries are made either through rational
pursuit or simply by serendipity. Indeed, some of the most
dramatic and influential discoveries of our century are fruits
of serendipity. A remark made by Pasteur: Serendipity,
however, appears to be most generous to those positioned to
99
REVIEWS
K. C. Nicolaou et al.
a)
SNAr driven ring closure
OH
HO
O
O
O
H
N
H
NH
TBSO
OH
O
Cl
O
H
N
N
H
NHMe
N
H
MeO2C
HO
O
H
N
O
H
NH
Macrolactamization
16
OMe
Ea = 30.4 kcal mol1
OMe
MEMO
TBSO
NO2
O
NHBoc
H
N
N
H
NMe
MeO
MeO
MeO
BnO
OMe
a. Dess-Martin [O]
b. NaClO2
(64%, >99% ee)
(76%)
HO
NHCbz
HO2C
H
NH
MeO
OMe
NO2
N
MeO
HO
OH
O
H
N
NHBoc
HO
Boc
NMe
N
H
NC
MEMO
OMe
a.
NHCbz
OMe
OMe
ZrClCp2
NO2
NO2
OH
Cl
H
N
H
N
OBn
(M,M)-16
(50%)
HO
OMe
OBn
AD, BocCl
NHCbz
H
OMEM
OMe
(M,P)-16
a. nBu4NF-HOAc
b. LiOH
c. H2, Pd/C
d. EDC, HOBt
NHBoc
O
OMe
OMe
OMe
BnO
H
N
N
H
Ea = 25.1 kcal mol1
OBn
MeO2C
NHBoc
NHCbz
b)
OMe
Cl
O
MEMO
Suzuki biaryl coupling
BnO
TBSO
3:1
O
OMe
OMe
MeO
H
N
OH
120 C
Boc
N
H
HO
NC
MeO2C
OH
O
OMe
OH
Cl
O
OMe
Br
OH
Cl
H
N
(88%)
MeO
(M)-15
OMe
O
[Pd2(dba)3], (o-tolyl)3P
Na2CO3, toluene
NHBoc
SNAr driven ring
closure
B(OH)2
+
O
OH
1: vancomycin aglycon
OH
HO
NHCbz
MEMO
H
N
N
H
NH2 Peptide bond formation
HO
OH
Cl
H
N
OMe
Cl
17
a. HCO2H
b. EDC, HOBt
(58%)
OH
F
TBSO
9
b. TBSOTf
O
MeO2C
(45%)
8
O
10
HO2C
NH2
NH2
HO
OH F
NHBoc
HO
Cl
H
N
a. Boc2O
b. Br2-pyHBr
c. NaH, MeI
NO2
OMe
O
NHBoc
HO
H
N
H
NH
N
H
MEMO
Br
OH
11
MeO
12
(65-75%, 6:1 ratio of atropisomers)
CsF, DMSO
c)
NO2
NO2
OH
HO
TBSO
OMe
OMe
F
TBSO
10
a. EDC,
HOBt
HO
O
b. TBSOTf
(79%)
NHBoc
HO
EDC,
HOBt
(91%)
MeO2C
H
N
N
H
H
N
NHBoc
O
O
Br
O
MeO2C
N
H
OMe
NO2
OH
OH
140 C
TBSO
B Br
1:1.1
NHBoc
MeO2C
N
H
Boc2O
NHBoc
Br
(M)-14 R = NO2
(M)-15 R = Cl
a. H2, Raney Ni
b. tBuONO
(87%)
c. CuCl-CuCl2
N
H
Boc
NMe
d. Dess-Martin [O]
e. NaClO2
f. TMSCHN2
(9-11%)
g. H2O2, K2CO3
h. nBu4NF-HOAc
i. AlCl3, EtSH
OH
Ea = 26.6 kcal mol1
OMe
H
N
O
Br
N
H
OH
O
H
N
OMe
19
OMe
a. H2. Pd/C; tBuONO,
HBF4, CuCl2/CuCl
b. CF3CONMeTBS
c.
(50-60%)
O
NC
MeO
OMe
R
H
N
Cl
H
N
NO2
MEMO
K2CO3, CaCO3
TBSO
OMe
OMe
H
NH
13
Br
12
Boc
NMe
18
OMe
OMe
OMe
NH2
N
H
NC
(43%)
MeO2C
OH
O
H
N
HO
OMe
H
N
(P)-14
O
O
H
NH
HO
HO
O
H
Cl
H
N
N
H
Cl
OH
O
H
N
O
N
H
NHMe
O
NH2
OH
OH 1: vancomycin aglycon
Scheme 50. a) Strategic bond disconnections and retrosynthetic analysis of vancomycin aglycon, b) key methodology for unnatural amino acid synthesis, and
c) total synthesis (Boger et al., 1999).[227]
100
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
a)
Oxidation
Cationic
cascade
reaction
NH2
CHO
OHC
O
N H
Me
MeO
OMe
+
N
MeO
Me
OMe
1: aspidophytine
b)
O
CeCl3,
THF
Br
TMS
OAc
a. R-CBS reduction
b. Na(Hg), MeOH
Br
TMS
MgBr
(82%)
OHC
b. NaIO4
Me 2
OMe
OiPr
OiPr
MeO
TMS
Me
7 OiPr
N
OiPr
OMe
TMS
(56%)
N:
a. OsO4, NMO
+
N
MeO
a. LDA, TBSCl,
-78oC, then 
b. iPrOH, EDC
(57%)
CHO
NH2
CH3CN, then TFAA, 0C;
NaBH3CN
MeO
TMS
c. Ac2O, Et3N, 4-DMAP
(75%)
MeO
Br
N H
Me
MeO
TMS
Me
OMe
OMe
H+
N
OiPr
NaOH
OH
BH3CN
OiPr
(66%)
N
MeO
OMe
Me
N H
OMe Me
MeO
MeO
OMe
N H
Me
wishing to pursue the science of drug discovery and development process.
The pharmaceutical industry applies the knowledge gained
to discovering and manufacturing new drugs for the benefit
of society. That medicinal and combinatorial chemists have
so many tools at their disposal today in their quests for huge
numbers of novel and diverse small molecules is primarily
the result of the contributions of total synthesis and of
organic synthesis as a whole. A reminder of the importance
of chemical synthesis as one of the two main arms of the drug
discovery processthe other being identification of appropriate biological targetswill help appreciate total synthesis
within a larger perspective. Just as advances in molecular
biology facilitate drug discovery today by allowing the
elucidation of the human genome and proteome, so does
progress in total synthesis, which enables the construction of
the molecules needed to bind and modulate the function of
disease-associated biological targets.
The challenging and rewarding features of total synthesis
invite competition, which, like in any other human endeavor,
is both inevitable and healthy. Fortunately, and unlike many
other sciences, the creative nature of organic and natural
product synthesis allows equal opportunity for brilliant
contributions to all practitioners, whether they are the first
to finish or the last. And there are many things to discover
and invent in this science; only our imagination is the limit.
K3[Fe(CN)6], NaHCO3
OH
O
(81%)
6. Future Perspectives
a. OsO4
b. Pb(OAc)4
O
O
(71%)
MeO
N H
OMe Me
MeO
10
N H
OMe Me
11
N
O
MeO
OMe
H
Me
12
a. KHMDS,
PhNTf2
b. [Pd(PPh3)4],
nBu3SnH
(47%)
MeO
N H
OMe Me
1: aspidophytine
Scheme 51. a) Strategic bond disconnections and retrosynthetic analysis of
aspidophytine and b) total synthesis (Corey et al., 1999).[238]
detect and exploit the accidental, is worthy of remembering.
Serendipity will, no doubt, continue to be part of our science.
5.2. Drug Discovery and Development
While it is wonderful that total synthesis has made such
great leaps from the beginning of the twentieth century, its
greatest impact has been on the drug discovery and development process.[274] Indeed, the evolution of the drug discovery
and development process parallels closely that of total
synthesis. The two disciplines must be considered in unison,
for they are very synergistic and complementary. Academic
research focuses on organic and natural product synthesis,
which provides highly relevant basic knowledge and offers
superb education and training to young men and women
Angew. Chem. Int. Ed. 2000, 39, 44  122
The science and art of organic synthesis attracts many who
practice invention, discovery, and development of new
synthetic reactions and reagents for wider use. Such new
processes and engineered reactions are of paramount
importance to research chemists and manufacturers of
chemical products including pharmaceuticals. Other synthetic chemists adopt total synthesis as their main endeavor, with
the aim of designing and executing elegant strategies toward
complex targets. In judging such accomplishments, one has to
give credit not only to the beauty and efficiency of the
strategies and tactics, but also to the value of the exercise in
providing access to the target molecule and its analogues for,
usually but not always, biological studies. Yet, there are
others who attempt to combine target-oriented synthesis with
the discovery and development of new synthetic technologies.
And finally, there are those who aim to incorporate biology
into their total synthesis programs as well as methodology
development, thus elevating natural products to opportunities
for creative science in total synthesis, synthetic methodology,
and chemical biology.
All sub-disciplines of organic natural product synthesis are
to be equally respected as important to the advancement of
knowledge and the benefit of humankind. Furthermore, one
can choose which of these dimensions he or she will adopt in
their research programs, for all three have their place in
science. Indeed, the beauty of total synthesis lies in the
challenge and opportunities that it provides to make creative
and useful contributions to many other disciplines. It is,
therefore, up to the practitioner to imagine new directions and
101
REVIEWS
K. C. Nicolaou et al.
Scheme 52. a) Strategic bond disconnections and retrosynthetic analysis of everninomicin 13,384-1 and b, c)important synthetic methods; b) orthoester
formation by 1,2-migration of the phenylselanyl group followed by glycosylation (I !II !III !IV), and ring closure after syn-elimination
(V !VI !VII !VIII); c) stereoselective construction of 1,1'-disaccharides; d) synthesis of the building blocks and completion of the total synthesis of
everninomicin 13,384-1 (Nicolaou et al., 1999).[245]
102
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
NH
a. TMSOTf
b. MeI, NaH
c. NaOH, MeOH
d. BnBr, NaH
(55%)
OMe
O
OBn
OAll
F
OBn
PhSe
OH
O
OMe
TIPSO
OCA
Me
Me
OMe
OH
MeO
O
PMBO
HO
OPMB
41
OMe
OR
O
OMe
HO
HO
MeO
O
Me
O
F
O
OMe
TBSO
OBn
OPMB
a. CH2Br2, NaOH
(66%) b. DDQ
c. NaH, ArC(O)F
d. nBu4NF, THF
OBn
O
F
MeO
O
CAO
O
OMe
TBSO
H
O
HO
OPMB
Me
Me
SPh
D
O
Me
OPMB
MeO
O
O
D
HO
O
OTBS
Me
Me
Me
Me
Me
PMBO
D
HO
Me
MeO
O
O
OTBS
OTIPS
Me
OTIPS
BnO
OTBS
D
Me
A2
OTBS
Me
O
OMe
A2
O O
TBSO
OTBS
OTBS
Me
O A
Me
O
O
Me
A2
O O
TBSO
OTBS
OTBS
O
F
OTBS
OTBS
OTBS
O
O
OMe
Me
O
O
A2
O O
TBSO
OTBS
OTBS
a. H2, 10% Pd/C, NaHCO3
b. nBu4NF, THF
Me
Me
MeO
O
O
D
C
HO
55
O
OMe
OMe
O
O
Me
(75%)
Me
O
O
O
a. NaIO4, MeOH
b. 
OMe
Me
NO2
O
OAc
HN
Me
Me
OMe O
MeO
O
Cl
BnO
Me
Me
O O
OTBS
O
OTBS
(65%)
OMe
54
Me
O A
HO
O
OAc
OTBS
O
Me
Me
Me
A1
HO
Me
TBSO
OTBS
OTBS
OMe
Cl
OTBS
Me
MeO
O
O
O
H
O O
NO2
Me
Cl
PMBO
D
HO
SePh
Me
O
A1
46
a. LiI, DMF
b. nBu3SnH (53%)
c. nBu2SnO;
PMBCl
Me
O
OMe
MeO
O
BnO
OMe O
Cl
OTBS
47
a. nBu4NF
b. Ac2O
(69%)
c. nBuNH2
d. CCl3CN
OMe
Me
Me
O
Cl
O
OTBS
BnO
Me
D
OH
OTBS
MeO
O
F HO
OTBS
HO
OTBS
45
MeO
O
HO
OTBS
Me
Me
HO
A2
O O
OMe
Me
OMe O
OTIPS
pTs O
NO2
O A
a. TPAP, NMO
(74%) b. MeLi, Et2O
c. H2, 10% Pd/C
d. pTsCl, py
Me
a. TBSOTf
b. K2CO3, MeOH
Cl
a.Tf2O,
2,6-tBuPy
b. DDQ
(70%) SnCl , Et O
2
2
OH
(67%)
OTBS
SePh HO
BnO
Me
OTBS
26
Me
O
OMe
OMe
Me
O
C
Me
BnO
A1
O
O
O
OH
Me
O
OTIPS
MeO
23
Ph
OH
Me
OTBS
OBn
A1
44
Ph
OH
HO
Cl
A2
DDQ
(CA)2O, Et3N
OH
MeO
O
HO
O A
Me
BnO
D
H
OBn
OH
OMe O
OBn
O
O
H
O O
OMe
(55%)
A2
BnO
O
OMe
(78%)
Me
O
O
53
OBn
OBn
K2CO3, MeOH
OBn
Cl
O
OMe
HO
Me
Me
O
BnO
OBn
OBn
Me
OBn
A2
O O
OBn
OPMB
42
OMe
Me
(79%) H2, 10% Pd/C, EtOAc
H
43
OMe
Me
O
OMe
a. Dess-Martin [O]
b. Li(tBuO)3AlH
c. NaOH, MeOH
O
O
50: R = PMB
51: R = H
52: R = CA
OBz
OMe
(73%)
OBn
OBn
(75%) BnBr, NaH
Me
HO
A2
BnO
OBn
(90%)
HO
OBn
OMe
OR
OBn
O
a. TBSCl, NaH
(54%) b. OsO , NMO
4
c. nBu2SnO; BzCl
OBn
O
Me
a. nBu4NF, THF
b. Martin
sulfurane
c. K2CO3, MeOH
Me
48: R = Ac
49: R = H
40
OTBS
OBn
39
a. 34, SnCl2,
Et2O
b. K2CO3,
MeOH
O
O
(55%) BF3Et2O
Me
O
OMe
NH
RO
OBn
OBn
OPMB
O
OMe
O
OMe
HO
OAc
Cl3C
BzO
OTBS
OAc
O
Me
OBn
O
OBn
OMe
OBn
OBn
O
OMe
O
31
(69%)
a. NaIO4, MeOH
b. 
TIPSO
c. nBu4NF
d. BzCl, E3N
(75%)
OBz
Me
MeO
O
PMBO
OAll
a. DDQ
b. TIPSOTf
c.[RhCl(Ph3P)3]; OsO4
d. nBu2SnO; CACl
Me
CCl3
HO
AllO
28
OMe
nBu
OBn
38
OMe
Sn
PMBO
OAll
O
OMe
PMBO
nBu
OBn
O
MeO
Me
OH
OMe
OH
O
F
O
O
OH
O
O
OMe
Me
O
H
O O
HO
A2
OH
OH
NO2
Me
OMe
1: everninomicin 13,384-1
CCl3
Scheme 52. (Continued)
Angew. Chem. Int. Ed. 2000, 39, 44  122
103
REVIEWS
K. C. Nicolaou et al.
Scheme 53. a) Strategic bond disconnections and retrosynthetic analysis of sanglifehrin A and b) total synthesis (Nicolaou et al., 1999).[240]
to constantly raise the bar to higher and higher expectations for
the art and science of organic and natural products synthesis.
Throughout its history the art and science of total synthesis
has demonstrated its nature as an aesthetically appealing
endeavor and as a scientifically important discipline. As a
science and an art, it has attracted some of the most creative
104
minds of the twentieth century and its impact on society is
paramount, if not fully appreciated by the general public. As
we close the chapter of the twentieth century and move into
the twenty-first century many may be wondering of the fate of
total synthesis. The best guides we have are history and the
present state-of-the-art. They both speak volumes of the vigor
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
H
O
Me
O
H
Me
HO
quinine
[Woodward, 1944]
[Gates, 1970]
[Uskokovic, 1970]
[Taylor, 1972]
[Hanaoka, 1982]
HN
Me
NH
[Gates, 1952]
[Ginsburg, 1954]
[Morrison, 1967]
[Kametani, 1969]
[Schwartz, 1975]
[Rice, 1980]
[Evans, 1982]
[Fuchs, 1987]
[Parker, 1992]
[Overman, 1993]
[Mulzer, 1996]
MeO2C
[Woodward, 1954]
[Julia, 1969]
[Ramage, 1976]
[Oppolzer, 1981]
[Rebek, 1984]
[Ninomyia, 1985]
OMe
HO
MeO
OH
estrone[358]
colchicine
H
Me
H Me
H
lupeol[360]
O
O
[Stork, 1971]
N
N
H
MeO2C
H 2N
O
HN
OH
N
MeO
R = Me: vinblastine[375]
R = CHO: vincristine[375]
H H
N
OAc
NH
HN
CO2Me
NH
OH
OH
Me
HO
HO
O
NH2
H
OMe
N
Me
cytochalasin B
[Stork, 1978]
Cl
MeO
Me
Me
Me
Me
MeO
N
HO H
Me
H
Me
O
N-methylmaysenine[373]
[Corey, 1978]
[Meyers, 1979]
[Isobe, 1984]
HO
Me
Me
Me
Me
OH
fumagillol
illudol[368]
[Matsumoto, 1971]
[Semmelhack, 1980]
[Vollhardt, 1991]
[Malacria, 1997]
OH
OMe O
OH
O
OH
OH
[361]
MeO
N
Me
OAc
CO2Me
vindoline[363]
Me
OH
daunomycinone[362]
[Bchi, 1975]
[Kutney, 1978]
[Ban, 1978]
[Danieli, 1984]
[Langlois, 1985]
[Rapoport, 1987]
[Kuehne, 1987]
[Wong, 1973]
[Hauser, 1981]
[Kende, 1976]
[Kimball, 1982]
[Swenton, 1978]
[Reddy, 1983]
[Kelly, 1980]
[Vogel, 1984]
[Kallmerten, 1980] [Rodrigo, 1984]
[Braun, 1980]
[Garland, 1988]
NH2
H Me
Me
thienamycin[371]
Me
HO
H
quassin[380]
[Grieco, 1980]
[Watt, 1990]
[Valenta, 1991]
[Shing, 1998]
H
MeO
aphidicolin[377]
[Trost, 1979]
[McMurry, 1979]
[Corey, 1980]
[Ireland, 1981]
[van Tamelen, 1983]
[Bettolo & Lupi, 1983]
[Tanis, 1985]
[Holton, 1987]
[Fukumoto, 1994]
[Iwata, 1995]
hirsutene[374]
OMe
MeO
Me
CO2H
ryanodol[376]
[372]
[Kishi, 1977]
[Fukuyama, 1987]
OH
H
OH
X = OMe: mitomycin A[369]
X = NH2: mitomycin C[369]
OH
OH
[Christensen, 1978] [Shibasaki, 1985]
[Kametani, 1980] [Hart, 1985]
[Hiraoka, 1986]
[Shiozaki, 1980]
[Hanessian, 1982] [Buynak, 1986]
[Deslongchamps, 1979]
[Evans, 1986]
[Ikegami, 1982]
[Fleming, 1986]
[Shinkai, 1982]
HO
[Yoshikoshi, 1982] [Georg, 1987]
CH2OH [Koga, 1982]
[Hatanaka, 1987]
[Ohno, 1988]
Me
[Grieco, 1984]
[Jacobi, 1996]
[Ley, 1985]
NH
Me
NH
Me
[Barton, 1962]
[Kametani, 1969]
[Koga, 1977]
[Corey, 1970]
[Mander, 1980]
[Yamada, 1989]
[Corey, 1972]
[Kim, 1997]
[Sorensen, 1999]
[Taber, 1999]
OH
galanthamine[357]
N
OMe O
CO2H
OH OH
HO HO
MeO
gibberellic acid[366]
OH
H H
[Kishi, 1977]
[Jocobi, 1984]
OH
Me
Me
OH
saxitoxin[370]
[Potier, 1976]
[Yamada, 1972]
[Inubushi, 1974]
[Kende, 1974]
[Roush, 1978]
[Martin, 1991]
[Williams, 1992]
[Uesaka, 1994]
[Sha, 1997]
OH
O
Me
Me
Me
dendrobine[367]
[Woodward, 1962]
[Muxfeldt, 1965]
Me
HO
[Harley-Mason, 1968]
[Saxton, 1969]
[Schlessinger, 1976]
[Winterfeldt, 1979]
[Takano, 1985]
[Fuji, 1987]
Me
H
Me Me
OC
eburnamine[382]
HO
OH
OH
O
HO
[Inubushi, 1969]
[Kametani, 1972]
[Wallace, 1979]
[Schultz, 1998]
Me
cepharamine[359]
H
Me
MeN
biotin
[Review[364]]
[Quinkert, 1980]
[Torgov, 1963]
[Bryson, 1980]
[Smith, 1963]
[Saegusa, 1981]
[Johnson, 1973]
[Ziegler, 1982]
[Cohen, 1975]
[Jung, 1984]
[Danishefsky, 1976]
[Money, 1985]
[Kametani, 1977]
[Posner,
1986]
[Oppolzer, 1980]
[Rao, 1991]
[Vollhardt, 1980]
[Oyasawara, 1992]
[Grieco, 1980]
[355]
[Echenmoser, 1961]
[van Tamelen, 1961]
[Nakamura, 1962]
[Scott, 1965]
[Woodward, 1965]
[Martel, 1965]
[Kaneko, 1968]
[Tobinaga, 1974]
[Kato, 1974]
[Evans, 1981]
[Boger, 1986]
[Magnus, 1987]
[Banwell, 1992]
[Cha, 1998]
[van Tamelen, 1958]
[Szntay, 1965]
[Stork, 1972]
[Kametani, 1975]
[Brown, 1980]
[Wenkert, 1982]
[Ninomiya, 1983]
[Martin, 1987]
[Tanol, 1994]
MeO
CO2H
OH
6-demethyl-6
-deoxytetracycline[356]
NHAc
yohimbine[354]
H
S
OH
NH2
OH
lysergic acid[353]
NMe2
MeO
HO
H
H
morphine[352]
NH
OMe
MeO
HO
Me O
H
Me
N
H H
[Woodward, 1951]
[Sarett, 1952]
[Kuwajima, 1986]
[Fukumoto, 1990]
[350]
HO2C
cortisone[351]
HO
H
H
MeO
OH
OH
OH
HO
[Hua, 1985]
[Tatsuta, 1979]
[Cossy, 1987]
[Hudlicky, 1980]
[Lacroix, 1989]
[D. R. Little, 1981]
[Sternbach, 1990]
[Mehta, 1981]
[Greene, 1990]
[Magnus, 1981]
[Rao, 1990]
[Wender, 1982]
[Paquette, 1990]
[Ley, 1982]
[Cohen,
1992]
[R.D. Little, 1983]
[Fukumoto, 1993]
[Curran, 1983]
[Oppolzer, 1994]
Me
CHO
OMe
HO
N Me
Me
O
MeO H
O
OMe
delphinine[378]
[Wiesner, 1979]
HO
O
OAc
NMe2
O
Me
OH
O
carbomycin B[383]
Me
O
Me
[Nicolaou, 1979]
[Tatsuta, 1980]
Figure 5. Selected natural product syntheses from the twentieth century.
of this art and science, and of its potential for further advances
and contributions. For one, nature has not yet finished
revealing its secrets to us, and many more novel, and presently
unimaginable, structures are destined to dazzle our eyes,
boggle our minds, and challenge our creativity. Furthermore,
the state of the art is comparatively only in its early stages of
development in light of natures seemingly magical and
powerful biosynthetic schemes. To be sure, the competitive
nature of the pharmaceutical and biotechnology industries
and their drive to discover and produce new cures for disease
Angew. Chem. Int. Ed. 2000, 39, 44  122
will demand new and sharper tools for organic synthesis.
Fueled by these and other industries, the discipline of total
synthesis will be there to attract talented individuals as
practitioners and to deliver the new tools needed for yet
higher efficiencies and selectivities.
Targeting more complex structures will demand more
effective reactions in terms of accomplishing bond constructions and functional-group transformations. The overall
efficiency has to be pushed higher and so does selectivity.
Cascade reactions and other novel strategies will have to be
105
REVIEWS
K. C. Nicolaou et al.
Me
OH
Me
Me
Me
Me
Me H
OH
coriolin[379]
MeO
Me
Me
Me
O
O
O
Me HO
N
H
N
NH
rifamycin S[387]
N
H
O
OH
O
[385]
Me
NH2
OH
HO
HO
[Kishi, 1985]
[Stork, 1990]
[Holmes, 1999]
N
H
cyanocycline
Me
daphnilactone A[399]
[Heathcock, 1989]
Me
O
HO
[Kishi, 1989]
Me
H
H
Me
Me
O
O
Me
OH
[Smith, 1989]
N
O
NH
Me
N
FK506[401]
[Merck, 1989]
[Schreiber,
1990]
[Danishefsky,
1990]
[Sih, 1990]
[Smith, 1994]
[Ireland, 1996]
CC-1065[396]
[Kelly, 1987]
[Boger, 1988]
H
N
H H
NH2
Me
O
H
H
Me
H H
huperzine[400]
NH
ikarugamycin[397] O
[Kozikowski, 1989]
Me
OMe
OMe
Me
Me
OH
O
OMe
OH
N
H
OH
O
H
O
NH
Me
echinosporin[388]
O
O
OMe
Me
CONH2
O
Me
OH
OH
MeO
Me
[Inoue, 1986]
ophiobolin C[392]
HO
H2N
Et
MeO
OH
O
Me
neosurugatoxin[390]
O
HO
Me
[Corey, 1982]
[White, 1986]
[Nakata & Oishi, 1986]
[Matsumoto, 1987]
NH
fredericamycin A[393]
Me
H
Me
H
N
OH
OH
O
O
H
N
OMe
[Kelly, 1986] [Bach, 1994]
[Clive, 1992] [Reddy, 1994]
[Julia, 1993] [Boger, 1995]
[Kita, 1999]
H
OHC
H
O
aplasmomycin[384]
OH
A[386]
Me
[Hanessian, 1986]
[Ley, 1990]
Me
[White, 1995]
HN
[Evans, 1986]
[Fukuyama, 1987]
OH
Br
HO
Me
O
Me
Me
O
Me
Me
O
B
MeO
HO
Me
OH HO
O
HO
histrionicotoxin[402]
[Ohno,1982]
[Hecht, 1982]
[Boger, 1994]
[Danishefsky, 1987]
HN
bleomycin A2
OH
R = OH: avermectin B1a[394]
R = OMe: avermectin A1a[395]
CN
H
Me
Me
O
[Gibbons, 1982]
[Boeckman, 1989]
[Fukuyama, 1990]
[Myers,1998]
[Corey, 1999]
ClSMe2+
HO
O
MeO
pleuromutilin[391]
N
H
OH
OH
OH
Me
Me O
[381]
Me
[Sih, 1981]
[Hirama, 1982]
[Girotra, 1983]
[Grieco, 1983]
[Heathcock, 1985]
[Keck, 1986]
[Kozikowski, 1987]
[Clive, 1988]
[Danishefsky, 1989]
[Burke, 1991]
[Hagiwara, 1995]
[Kishi, 1980]
[Hanessian, 1982]
NH
Me
Me
compactin[389]
Me
H H
N
NH
N
H
HO
O
Me
OMe
Me HN
H
Me
Me
R = CN: saframycin A
OH
Me
NH2
OH
R = H: saframycin B[381]
NH2
H2 N
HO
[Fukuyama, 1982]
[Kubo,1987]
H
N
Me
OH
Me
Me
[Isoe, 1984]
[Iwata, 1985]
[Wender, 1985]
[Piers, 1985]
[Funk, 1986]
[Magnus, 1987]
[Liu, 1988]
[Little, 1990]
NHCOCOMe
R
Me
H
N
HO
OH
OH
[Danishefsky, 1980]
[Helquist, 1981]
[Burke, 1982]
[Kende, 1982]
[Schlessinger, 1983]
[Vandewalle, 1983]
[Yoshii, 1983]
[Smith, 1984]
OH
quadrone[365]
[Danishefsky, 1980]
[Ikegami, 1980]
[Tatsuta, 1980]
[Trost, 1981]
[Mehta, 1982]
[Matsumoto, 1982]
[Magnus, 1983]
[Koreeda, 1983]
[Wender, 1983]
[Schuda, 1984]
[Funk, 1985]
[Little, 1985]
[Demuth, 1986]
[Curran, 1988]
[Weinges, 1993]
[Kuwajima, 1997]
NH2
Me
H
O
Me
MeO
Me
AcO
[Boeckman, 1989]
[Paquette, 1989]
O
O
H
N
H
koumine[398]
[Magnus, 1989]
Figure 6. Selected natural product syntheses from the twentieth century.
devised for delivering complex and diverse structures in single
operations in order to achieve such goals. New catalysts have
to be invented to bring about otherwise difficult or impossible
operations. There is little doubt that we can count on mother
nature to provide us with the targets and the opportunities to
invent and develop such methods in the future.
Solid-phase chemistry[275] is now gathering momentum in
natural product synthesis. Traditionally used for the synthesis
of peptides[276] and oligonucleotides,[277] this approach is now
being applied to construct small organic molecules in large
numbers, particularly for the purposes of drug discovery,[278]
catalyst development,[279] and material science.[280] Again, new
techniques, strategies, and tactics are needed to elevate this
endeavor to a higher level of sophistication, applicability, and
scope. As we have mentioned above, total synthesis is taking a
leading role in spearheading developments in new technologies for solid-phase and combinatorial chemistry. With the
strong foundation provided by such advances, automation of
synthetic and combinatorial chemistry should also be possible
106
and forthcoming. Indeed, automation technologies are already entering the realm of chemical synthesis laboratories.[281] Finally, a goal of paramount importance for the
ensuing century will undoubtedly involve the development of
synthetic strategies for the rapid construction of complex
natural products that rival or even surpass the efficiency of
nature.
In addition to natural products and their analogues,
synthetic chemists are also beginning to target complex and
exotic natural productlike structures for the purpose of
biological screening.[282] Such endeavors are clearly related
to total synthesis and are both inspired and facilitated by
advances in the latter field. Particularly enabling are those
contributions that include both new synthetic technologies
and novel molecular architectures. Examples of such endeavors include those from the Schreiber group,[283a] Sharpless
group,[283b] and our own[283c] (Figure 9; see p. 108).
In closing, in surveying the art and science of total synthesis
of the twentieth century, one is left with awe at its accomplishAngew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
Me
Me
Me
N
H
OH
OH
O
OH
HO
O
paspalinine[403]
OH
H2N
Me
H2N
O
OMe OH
[Smith, 1990]
isorobustin[405]
N
O
O H OH
O
H
OH
OH
OH
Me
Me
N
H H
Me
HO
H
OH
ambruticin[408]
O Me
Et
[Kende, 1990]
isorauniticine
halichondrin
Me
O
H
H
B[413] O
Me
Me
Br
OH
N
H
Me
MeO
Me
OH
N
Me
thebainone A[424]
HO
OH
Me
OCONH2
[Tius, 1992]
O
H
N
Me
NMe2
Me
OH
Me
Me
O
discodermolide[416]
lepicidin A[417]
[Evans, 1993]
OMe
Me
HO
OMe
OMe
H
OH
chlorothricolide
magellanine[431]
Cl
O
HN
HN
O
N
H
H
O
Me
H 2N
epoxydictimene[437]
H2N
[Schreiber, 1994]
(CH2)14
ptilomycalin[445]
[Overman, 1995]
[Overman, 1993]
[Ziegler, 1995]
Me
NHMe
[Danishefsky, 1995]
[Wood, 1997]
nPent
OH
Me
H
H
H
H
Me
staurosporine[435]
OH
O
O
Me
[Barrett, 1994]
[Weinreb, 1994]
MeO
OH HO
[Heathcock, 1994]
Me
Me
H
Me
HH
HO
H
Me
H
scopadulcic acid B[430]
petrosin[421]
papuamine[420]
H
N
[Terashima, 1994]
[Boger, 1996]
stenine[418]
[Hart, 1993]
[Wipf, 1995]
H
OBz
O
duocarmycin A[427]
O
Me
HO
H H
N
[Roush, 1994]
O
N
H
N
H
HO2C
H H
N
[423]
NH
H
H
Me
OMe
O
MeO2C
OH
[Coleman, 1994]
calphostin A[429]
H
Me
Me
HH
OMe
OH
[Overman, 1993]
Me
OCOPh
Me
H
H
Me
[Williams, 1993]
Me
OCOPh
MeO
Me
[Armstrong, 1998]
MeO
[Nicolaou, 1992]
[Yamamoto, 1995]
[Nakata, 1996]
[Mori, 1997]
OMe
R = Me: calyculin C (ent)[415]
O
OMe
member of the
clavularanes[434]
OH
Me
HO
H
O
OH
O
H
H
hemibrevetoxin B[414]
OH
[Evans, 1992]
[Shioiri, 1996]
[Masamune, 1994] [Smith, 1998]
Me
Me
OMe
OMe
R = H: calyculin A (ent)[415]
OH
CO2H
HO
Me
OH
CO2Me
[Wasserman and Boger, 1993]
Me
H
O MeO
isochrysohermidin[426]
H
H
HO P
O
MeHO
Me
OH
Me
O
Me
Me
Me
MeO2C
Me
Me
[Schreiber, 1993]
[Smith, 1995]
[Myles, 1997]
[Marshall, 1998]
OMe O
HO
Et
OH
CN
Me
[Kita, 1992]
Me
O
myrocin C[412]
[Danishefsky, 1992]
Me
O
OH
HO
discorhabdin C[425]
H
O
Me
H
N
H
NMe2 OH
N
H
Me
[Smith, 1991]
Me
OH
breynolide[422]
Br
OO
[Kishi, 1992]
Me
HO
Me
OAc
[Dauben, 1991]
rocaglamide[409]
O
HH
HO
kempene-2[411]
O
O
Me
HO
HO
H
O
CON(Me)2
OMe
O
HO
OH
Ph
HO
Me
Me
[Oppolzer, 1991]
Me
HO
Me
[410]
OH
[Trost, 1990]
[404]
[Danishefsky, 1990]
MeO2C
OMe
MeO
O
[Grieco, 1990]
indolizomycin
Me
Me
H
O
Me
[Schreiber, 1990]
H
Me
chaparrinone[407]
Me
hikizimycin[406]
CO2Me
OMe
OH
OH
N
H
OH
NH2
HO
[Barton, 1990]
HO
OH
Me
HO
O
AcO
7-deacetoxyalcyonin
acetate[438]
[Overman, 1995]
O
O
N
H
HN
OH
balanol[419]
[Nicolaou, 1994]
[Hu, 1994]
[Adams, 1994]
[Stadlwieser, 1996]
[Tanner, 1997]
[Naito, 1997]
OCONH2
OH
OH
syringolide 1[439]
[Wood, 1995]
[Kuwahara, 1995]
[Murai, 1996]
[Sims, 1997]
[Yoda, 1997]
[Wong, 1998]
OHC
NH
FR-900482[441]
[Fukuyama,1992]
[Danishefsky, 1995]
Figure 7. Selected natural product syntheses from the twentieth century.
ments and power. As a practitioner of the art, one is filled with
overwhelming pride to be part of such attractive and vigorous
endeavors and apprehensive in being responsible for conveying its true meaning and value to society.[284] But, most
importantly, the surveyor must be overly excited and optimistic about the future of the discipline and in transferring
this enthusiasm to the next generation of chemists. It would,
indeed, be of considerable interest to compare the
present state-of-the-art with that at the end of the twentyfirst century.
Angew. Chem. Int. Ed. 2000, 39, 44  122
Abbreviations
AA
Ac
acac
AD
AIBN
All
Alloc
9-BBN
asymmetric aminohydroxylation
acetyl
acetylacetonyl
asymmetric dihydroxylation
2,2'-azobisisobutyronitrile
allyl
allyloxycarbonyl
9-borabicyclo[3.3.1]nonane
107
REVIEWS
K. C. Nicolaou et al.
Me
Me
O
O
OH
OH
FR-90848
[Barrett, 1996]
[Falck, 1996]
O
H
N
H
Me
Me
Me
Me
HO
HO H
rubifolide
[456]
[Corey, 1997]
[Robichaud, 1998]
[Danishefsky, 1998]
[Yamada, 1999]
AcO
H
Me
Me
OH
Me
AcO
Me
Me
OH
HO
Me
O
OH
Me
O HO
O
X = Cl: spongistatin 1
[453]
X = H: spongistatin 2
[454]
OH
H H
N
O O
MeO
[Boger, 1999]
preussomerin I[446]
HO
[Heathcock, 1999]
[Roush, 1999]
OH
Me
N
Me
N
H
O
O
Me AcO
N
H
O
N
OH
[Taylor, 1999]
Me
Me
N
OH
N
O
luzopeptin B[452]
O
manumycin B[448]
OAc
H
N
OH
olivomycin A[450]
AcO
Me
MeO
Me
[Evans, 1998]
NH
O
H
O
OH
OMe
Me
HO
OH
O
[Kishi, 1998]
OH
H
O
OMe OH
Me
O
OH H
Me
phorboxazole A[449]
Me
iPrO2C
HO
OH
HO
H
Me
[Forsyth, 1998]
Me
OH
nBu
O
Me
[Romo, 1998]
Me
H
OH
Me
HO
OH
pateamine[444]
Me
H
N
Me
OH
Br
[Kishi, 1998]
Me
7[455]
OMe
Me
H2N
OMe
batrachotoxinin A[439]
Me
[Fuchs,1999]
Me
NMe2
cephalostatin
OAc
[Myers, 1998]
O
O
HO
OH
Me
[Kishi,1998]
[432]
OH
neocarzinostatin
chromophore[447]
Me
HO
[458]
[Paquette, 1997]
O
O
HO
MeO
Me
HO
pinnatoxin A (ent)
H
Me
HO
O
Me
Me
HO
Me
Me
N
OH
Me
salsolene oxide
Me
Me
Me
CO2
Me
Me
OH
OH
OH
Me
[Marshall, 1997]
dysidiolide[451]
MeO
Me
O
O
Me
O
HO
HN
Me
Me
[Danishefsky, 1997]
[Overman, 1998]
Me
HO
NMe2
hispidospermidin[443]
Me
Me
N
HN
Me
O
Me
Me
OH
lubiminol[442]
[Crimmins, 1996]
Me
OH
[Baldwin, 1996]
H
N
[Martin, 1996]
Me
CH2OH
O
N
trichoviridin[428]
croomine[433]
Me
NC
H O
O
HN
[436]
OH
N
H H
HO
O
OMe
OH
diepoxin [457]
[Wipf, 1999]
Figure 8. Selected natural product syntheses from the twentieth century.
X1
R1
NH
R2
N
O H
N
R4
R1
R
R2
R5
R2
R3
R1
R4
R
X1 = O, S; X2 = CR2, O, NR
2X
R5
BOP
X1
X2
7-8 steps
2 steps
Schreiber (1998)
Nicolaou (1999)
R2
O
R3
R3
O
R2
R1
R2
R5 X
R4
R2
Ar
O
R1
N N
NH
Ar1
X = SO2, CO, CH2
4-6 steps
R3
R1
4 steps
Ar1
O
R1
R1
4 steps
Sharpless (1999)
Figure 9. Novel, natural productlike, molecular architectures recently
synthesized for biological screening purposes (number of steps from
commercially available materials).[283]
BINAP
Bn
Boc
108
2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl
benzyl
tert-butyloxycarbonyl
Bz
CA
CAN
Cbz
Cod
Cp
CSA
Cy
DABCO
DAST
dba
DBN
DBU
DCB
DCC
Ddm
DDQ
DEAD
DEIPS
DET
benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluoride
benzoyl
chloroacetyl
cerium ammonium nitrate
benzyloxycarbonyl
cyclooctadiene
cyclopentadienyl
10-camphorsulfonic acid
cyclohexyl
1,4-diazabicyclo[2.2.2]octane
(diethylamino)sulfur trifluoride
trans,trans-dibenzylideneacetone
1,5-diazabicyclo[5.4.0]non-5-ene
1,8-diazabicyclo[5.4.0]undec-7-ene
3,4-dichlorobenzyl
N,N'-dicyclohexylcarbodiimide
4,4'-dimethoxydiphenylmethyl
2,3-dichloro-5,6-dicyano-1,4-benzoquinone
diethyl azodicarboxylate
diethylisopropylsilyl
diethyl trtrate
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
DHP
DIAD
DIBAL-H
DIC
3,4-dihydro-2H-pyran
diisopropylazodicarboxylate
diisobutylaluminum hydride
5-(3,3-dimethyl-1-triazenyl)-1H-imidazole-4carboximide
DIPT
diisopropyl tartrate
DMA
N,N-dimethylacetamide
4-DMAP 4-dimethylaminopyridine
DMF
N,N-dimethylformamide
DMP
Dess-Martin-periodinane
DMPU
N,N-dimethylpropyleneurea
DMSO
dimethylsulfoxide
Dopa
3-(3,4-dihydroxyphenyl)alanine
DPPA
diphenyl phosphoryl azide
dppb
1,4-bis(diphenylphosphinyl)butane
dppf
1,1'-bis(diphenylphosphanyl)ferrocene
DTBMS di-tert-butylmethylsilyl
EDC
1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
FDPP
pentafluorophenyl diphenylphosphinate
Fmoc
9-fluorenylmethoxycarbonyl
HATU
O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
HBTU
O-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium hexafluorophosphate
HMDS
bis(trimethylsilyl)amide
HMPA
hexamethylphosphoramide
HOAt
1-hydroxy-7-azabenzotriazole
HOBt
1-hydroxybenzotriazole
IBX
o-iodoxybenzoic acid
imid.
imidazole
Ipc
isopinocamphenyl
KSAE
Katsuki  Sharpless asymmetric epoxidation
LDA
lithium diisopropylamide
lut.
2,6-lutidine
mCPBA 3-chloroperoxybenzoic acid
MOM
methoxymethyl
Ms
methanesulfonyl
MSTFA N-methyl-N-(trimethylsilyl) trifluoroacetamide
nbd
norbaranadine (bicyclo[2.2.1]hepta-2,5-diene)
NBS
N-bromosuccinimide
NIS
N-iodosuccinimide
NMO
4-methylmorpholine-N-oxide
Nos
4-nitrobenzolsulfonyl
OTf
trifluoromethanesulfonate
PCC
pyridinium chlorochromate
PDC
pyridinium dichromate
PG
protecting group
Pht
phthalimidyl
Piv
pivaloyl
PMB
p-methoxybenzyl
PPTS
pyridinium 4-toluenesulfonate
pTs
4-toluenesulfonyl
py
pyridine
Red-Al
sodium bis(2-methoxyethoxy)aluminum hydride
SEM
2-(trimethylsilyl)ethoxymethyl
TBAF
tetra-n-butylammonium fluoride
TBAI
tetra-n-butylammonium iodide
TBDPS
tert-butyldiphenylsilyl
TBS
tert-butyldimethylsilyl
Angew. Chem. Int. Ed. 2000, 39, 44  122
TEMPO
TEOC
TES
Tfa
TFA
TFAA
THF
THP
TIPS
TMGA
TMS
TPAP
TPS
Tr
2,2,6,6-tetramethyl-1-piperidinyloxy
trimethylsilylethylcarbonyl
triethylsilyl
trifluoroacetyl
trifluoroacetic acid
trifluoroacetic anhydride
tetrahydrofuran
tetrahydropyranyl
triisopropylsilyl
tetramethylguanidinium azide
trimethylsilyl
tetra-n-propylammonium perruthenate
triphenylsilyl
trityl
It is with enormous pride and pleasure that we wish to thank
our collaborators whose names appear in the references and
whose contributions made the described work possible and
enjoyable. We gratefully acknowledge the National Institutes of
Health (USA), Merck & Co., DuPont, Schering Plough,
Pfizer, Hoffmann-La Roche, Glaxo Wellcome, Rhone-Poulenc
Rorer, Amgen, Novartis, Abbott Laboratories, Bristol Myers
Squibb, Boehringer Ingelheim, Astra-Zeneca, CaPCURE, the
George E. Hewitt Foundation, and the Skaggs Institute for
Chemical Biology for supporting our research programs.
Received: June 10, 1999 [A 349]
[1] Nobel Lectures: Chemistry 1963  1970, Elsevier, New York, 1972,
pp. 96  123.
[2] Nobel Lectures: Chemistry 1981  1990, World Scientific, New Jersey,
1992, pp. 677  708.
[3] K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, VCH,
Weinheim, 1996.
[4] E. J. Corey, X.-M. Cheng, The Logic of Chemical Synthesis, Wiley,
New York, 1989.
[5] I. Fleming, Selected Organic Syntheses, Wiley, New York, 1973.
[6] K. C. Nicolaou, E. J. Sorensen, N. Winssinger, J. Chem. Educ. 1998,
75, 1225  1258.
[7] R. Breslow, Chemistry: Today and Tomorrow, American Chemical
Society, Washington, D.C. 1996.
[8] F. Whler, Ann. Phys. Chem. 1828, 12, 253.
[9] H. Kolbe, Ann. Chem. Pharm. 1845, 54, 145.
[10] a) C. Graebe, C. Liebermann, Ber. Dtsch. Chem. Ges. 1869, 2, 332;
b) first commercial synthesis: C. Graebe, C. Liebermann, H. Caro,
Ber. Dtsch. Chem. Ges. 1870, 3, 359; W. H. Perkin, J. Chem. Soc. 1970,
133  134.
[11] A. Baeyer, Ber. Dtsch. Chem. Ges. 1878, 11, 1296  1297; first
commercial production: K. Heumann, Ber. Dtsch. Chem. Ges. 1890,
23, 3431.
[12] E. Fischer, Ber. Dtsch. Chem. Ges. 1890, 23, 799  805.
[13] See brochure of Nobel Committees for Physics and Chemistry, The
Royal Swedish Academy of Sciences, List of Nobel Prize Laureates
1901  1994, Almquist & Wiksell Tryckeri, Uppsala, Sweden, 1995.
[14] W. H. Perkin, J. Chem. Soc. 1904, 85, 654  671.
[15] See S. F. Thomas in The Total Synthesis of Natural Products, Vol. 2
(Ed.: J. Apsimon), Wiley, New York, 1973, pp. 149  154.
[16] R. Robinson, J. Chem. Soc. 1917, 111, 762  768.
[17] R. Willsttter, Ber. Dtsch. Chem. Ges. 1901, 34, 129  130; R.
Willsttter, Ber. Dtsch. Chem. Ges. 1901, 34, and 3163  3165; R.
Willsttter, Ber. Dtsch. Chem. Ges. 1986, 29, 936  947. For an account
in English, see H. L. Holmes in The Alkaloids, Vol. 1 (Eds.: R. H. F.
Manske, H. L. Holmes), Academic Press, New York, 1950, pp. 288 
292.
[18] H. Fischer, K. Zeile, Justus Liebigs Ann. Chem. 1929, 468, 98.
109
REVIEWS
[19] S. A. Harris, K. Folkers, J. Am. Chem. Soc. 1939, 61, 1242  1244; S. A.
Harris, K. Folkers, J. Am. Chem. Soc. 1939, 61, 1245  1247.
[20] S. A. Harris, K. Folkers, J. Am. Chem. Soc. 1939, 61, 3307  3310.
[21] W. E. Bachmann, W. Cole, A. L. Wilds, J. Am. Chem. Soc. 1939, 61,
974  975.
[22] R. B. Woodward, W. E. Doering, J. Am. Chem. Soc. 1944, 66, 849 
850.
[23] R. B. Woodward, G. Singh, J. Am. Chem. Soc. 1950, 72, 1428.
[24] R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, W. M.
McLamore, J. Am. Chem. Soc. 1952, 74, 4223  4251.
[25] R. B. Woodward, A. A. Patchett, D. H. R. Barton, D. A. H. Ives,
R. B. Kelly, J. Am. Chem. Soc. 1954, 76, 2852  2853.
[26] E. C. Kornfield, E. J. Fornefeld, G. B. Kline, M. H. Mann, R. G.
Jones, R. B. Woodward, J. Am. Chem. Soc. 1954, 76, 5256  5257.
[27] a) R. B Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U.
Daeniker, K. Schenker, J. Am. Chem. Soc. 1954, 76, 4749  4751;
b) R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U.
Daeniker, K. Schenker, Tetrahedron 1963, 19, 247  288.
[28] R. B. Woodward, F. E. Bader, H. Bickel, A. J. Frey, R. W. Kierstead,
J. Am. Chem. Soc. 1956, 78, 2023  2055; R. B. Woodward, F. E.
Bader, H. Bickel, A. J. Frey, R. W. Kierstead, J. Am. Chem. Soc. 1956,
78, 2657; R. B. Woodward, F. E. Bader, H. Bickel, A. J. Frey, R. W.
Kierstead, Tetrahedron 1958, 2, 1  57.
[29] a) R. B. Woodward, Pure Appl. Chem. 1961, 2, 383  404; b) R. B.
Woodward, W. A. Ayer, J. M. Beaton, F. Bickelhaupt, R. Bonnett, P.
Buchschacher, G. L. Closs, H. Dutler, J. Hannah, F. P. Hauck, S. Ito,
A. Langermann, E. Le Goff, W. Leimgruber, W. Lwowski, J. Sauer,
Z. Valenta, H. Volz, J. Am. Chem. Soc. 1960, 82, 3800  3802.
[30] a) R. B. Woodward, K. Heusler, J. Gosteli, P. Naegeli, W. Oppolzer,
R. Ramage, S. Rangeanathan, H. Vorbruggen, J. Am. Chem. Soc.
1966, 88, 852  853; b) R. B. Woodward, Science 1966, 153, 487  493.
[31] R. B. Woodward, J. Gosteli, I. Ernest, R. J. Friary, G. Nestler, H.
Raman, R. Sitrin, C. Suter, J. K. Whitesell, J. Am. Chem. Soc. 1973,
95, 6853  6855.
[32] a) R. B. Woodward, Pure Appl. Chem. 1968, 17, 519  547; b) R. B.
Woodward, Pure Appl. Chem. 1971, 25, 283  304; c) R. B. Woodward, Pure Appl. Chem. 1973, 33, 145  177; d) A. Eschenmoser,
C. E. Wintner, Science 1977, 196, 1410  1420; e) R. B. Woodward in
Vitamin B12, Proceed. 3rd European Symposium on Vitamin B12 and
Intrinsic Factor (Eds.: B. Zagalak, W. Friedrich), de Gruyter, Berlin,
1979, p. 37; f) A. Eschenmoser, Pure Appl. Chem. 1963, 7, 297  316;
g) A. Eschenmoser, Pure Appl. Chem. 1971, 15, 69 (Special Lectures
XXIII IUPAC Int. Congress, Boston); h) A. Eschenmoser, Naturwissenschaften 1974, 61, 513  525.
[33] R. B. Woodward, E. Logusch, K. P. Nambiar, K. Sakan, D. E. Ward,
B. W. Au-Yeung, P. Balaram, L. J. Browne, P. J. Card, C. H. Chen, J.
Am. Chem. Soc. 1981, 103, 3210  3213; R. B. Woodward, B. W. AuYeung, P. Balaram, L. J. Browne, D. E. Ward, P. J. Card, C. H. Chen,
J. Am. Chem. Soc. 1981, 103, 3213  3215; R. B. Woodward, E.
Logusch, K. P. Nambiar, K. Sakan, D. E. Ward, B. W. Au-Yeung, P.
Balaram, L. J. Browne, P. J. Card, C. H. Chen, J. Am. Chem. Soc.
1981, 103, 3215  3217.
[34] E. J. Corey, M. Ohno, P. A. Vatakencherry, R. B. Mitra, J. Am. Chem.
Soc. 1961, 83, 1251  1253. See also E. J. Corey, M. Ohno, R. B. Mita,
P. A. Vatakencherry, J. Org. Chem. 1963, 86, 478  485.
[35] a) G. Stork, A. W. Burgstahler, J. Am. Chem. Soc. 1955, 77, 5068 
5077; b) A. Eschenmoser, L. Ruzicka, O. Jeger, D. Arigoni, Helv.
Chim. Acta 1955, 38, 1890  1904; c) P. A. Stadler, A. Eschenmoser,
H. Schinz, G. Stork, Helv. Chim. Acta 1957, 40, 2191  2198.
[36] a) W. S. Johnson, M. B. Gravestock, B. E. McCarry, J. Am. Chem.
Soc. 1971, 93, 4332  4334; b) M. B. Gravestock, W. S. Johnson, B. E.
McCarry, R. J. Parry, B. E. Ratcliffe, J. Am. Chem. Soc. 1978, 100,
4274  4282.
[37] a) G. Stork, F. West, H. Y. Lee, R. C. A. Isaacs, S. Manabe, J. Am.
Chem. Soc. 1996, 118, 10 660  10 661; b) G. Stork, P. J. Franklin, Aust.
J. Chem. 1992, 45, 275  284; c) G. Stork, N. A. Saccomano, Tetrahedron Lett. 1987, 28, 2087  2090; d) G. Stork, G. Clark, T. Weller,
Tetrahedron Lett. 1984, 25, 5367  5370; e) G. Stork, J. D. Winkler,
C. S. Shiner, J. Am. Chem. Soc. 1982, 104, 3767  3768; f) G. Stork, G.
Clark, C. S. Shiner, J. Am. Chem. Soc. 1981, 103, 4948  4949; g) G.
Stork, E. W. Logusch, J. Am. Chem. Soc. 1980, 102, 1219  1220; h) G.
Stork, Inf. Chim. 1979, 192  193, 137  140; i) G. Stork, J. E.
110
K. C. Nicolaou et al.
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
McMurry, J. Am. Chem. Soc. 1967, 89, 5464  5465; j) G. Stork, D.
Sherman, J. Am. Chem. Soc. 1982, 104, 3758  3759.
a) G. Stork, S. Raucher, J. Am. Chem. Soc. 1976, 98, 1583  1584;
b) G. Stork, T. Takahashi, I. Kawamoto, T. Suzuki, J. Am. Chem. Soc.
1978, 100, 8272.
a) G. Stork, J. J. La Clair, P. Spargo, R. P. Nargund, N. Totah, J. Am.
Chem. Soc. 1996, 118, 5304  5305; b) G. Stork, Y. K. Yee, Can. J.
Chem. 1984, 62, 2627  2628; c) G. Stork, A. A. Hagedorn III, J. Am.
Chem. Soc. 1978, 100, 3609  3611.
P. W. Hickmott, Tetrahedron 1982, 28, 1975  2050; see also
ref. [73].
a) G. Stork, J. D. Winkler, N. A. Saccomano, Tetrahedron Lett. 1983,
24, 465  468; b) G. Stork, C. S. Shiner, J. D. Winkler, J. Am. Chem.
Soc. 1982, 104, 310  312; c) G. Stork, A. R. Schoofs, J. Am. Chem.
Soc. 1979, 101, 5081  5082; d) G. Stork, P. G. Williard, J. Am. Chem.
Soc. 1977, 99, 7067  7068; e) G. Stork, A. Y. W. Leong, A. M. Touzin,
J. Org. Chem. 1976, 41, 3491  3493; f) G. Stork, Pure Appl. Chem.
1975, 43, 553  562; g) G. Stork, J. C. Depezay, J. DAngelo, Tetrahedron Lett. 1975, 389  392; h) G. Stork, J. DAngelo, J. Am. Chem.
Soc. 1974, 96, 7114  7116; i) G. Stork, L. D. Cama, D. R. Coulson, J.
Am. Chem. Soc. 1974, 96, 5268  5270; j) G. Stork, L. Maldonado, J.
Am. Chem. Soc. 1974, 96, 5272  5274; k) G. Stork, M. E. Jung, J. Am.
Chem. Soc. 1974, 96, 3682  3684; l) G. Stork, B. Ganem, J. Am.
Chem. Soc. 1973, 95, 6152  6153; m) G. Stork, J. O. Gilbert; R. K.
Beckman, Jr., K. A. Parker, J. Am. Chem. Soc. 1973, 95, 2014  2016;
n) G. Stork, L. Maldonado, J. Am. Chem. Soc. 1971, 93, 5286  5287;
o) G. Stork, S. Danishefsky, M. Ohashi, J. Am. Chem. Soc. 1967, 89,
5459  5460.
a) G. Stork, R. Mah, Tetrahedron Lett. 1989, 30, 3609  3612; b) G.
Stork, M. E. Reynolds, J. Am. Chem. Soc. 1988, 110, 6911  6913;
c) G. Stork, Bull. Chem. Soc. Jpn. 1988, 61, 149  154; d) G. Stork, R.
Mook, Jr., Tetrahedron Lett. 1986, 27, 4529  4532; e) G. Stork, R.
Mook, Jr., J. Am. Chem. Soc. 1987, 109, 2829  2831; f) G. Stork, N. H.
Baine, Tetrahedron Lett. 1985, 26, 5927  5930; g) G. Stork, M. J.
Sofia, J. Am. Chem. Soc. 1986, 108, 6826  6828; h) G. Stork, M.
Kahn, J. Am. Chem. Soc. 1985, 107, 500  501; i) G. Stork, P. M. Sher,
J. Am. Chem. Soc. 1983, 105, 6765  6766; j) G. Stork, R. Mook, Jr., J.
Am. Chem. Soc. 1983, 105, 3720  3722; k) G. Stork, R. Mook, Jr., S. A.
Biller, S. D. Rychnovsky, J. Am. Chem. Soc. 1983, 105, 3741  3742;
l) G. Stork, N. H. Baine, J. Am. Chem. Soc. 1982, 104, 2321  2323.
a) G. Stork, J. J. La Clair, J. Am. Chem. Soc. 1996, 118, 247  248;
b) G. Stork, T. Y. Chan, J. Am. Chem. Soc. 1995, 117, 6595  6596;
c) G. Stork, T. Y. Chan, G. A. Breault, J. Am. Chem. Soc. 1992, 114,
7578  7579; d) G. Stork, G. Kim, J. Am. Chem. Soc. 1992, 114, 1087 
1088; e) G. Stork, H. S. Suh, G. Kim, J. Am. Chem. Soc. 1991, 113,
7054  7056.
A. Eschenmoser, C. E. Wintner, Science 1977, 196, 1410  1420.
A. Eschenmoser, Quart. Rev. Chem. Soc. 1970, 24, 366  415.
a) see ref. [32f  h]; b) A. Eschenmoser, Angew. Chem. 1988, 100, 5 
40; Angew. Chem. Int. Ed. Engl. 1988, 27, 5  40.
a) A. Eschenmoser, Science 1999, 284, 2118  2124; b) M. Beier, F.
Reck, T. Wagner, R. Krishnamurthy, A. Eschenmoser, Science 1999,
283, 699  703.
Reason and Imagination (Ed.: D. H. R. Barton), World Scientific,
New Jersey, 1996.
a) D. H. R. Barton, J. M. Beaton, L. E. Geller, M. M. Pechet, J. Am.
Chem. Soc. 1960, 82, 2640  2641; b) D. H. R. Barton, J. M. Beaton,
L. E. Geller, M. M. Pechet, J. Am. Chem. Soc. 1961, 83, 4076  4083;
c) D. H. R. Barton, Pure Appl. Chem. 1968, 16, 1  15; d) D. H. R.
Barton, Aldrichim. Acta 1990, 23, 3  10.
a) D. H. R. Barton, J. M. Beaton, J. Am. Chem. Soc. 1960, 82, 2641;
b) D. H. R. Barton, J. M. Beaton, J. Am. Chem. Soc. 1961, 83, 4083 
4089.
a) D. H. R. Barton, S. W. McCombie, J. Chem. Soc. Perkin Trans. 1
1975, 1574  1585; b) D. H. R. Barton, W. B. Motherwell, Pure Appl.
Chem. 1981, 53, 15  31; c) W. Hartwig, Tetrahedron 1983, 39, 2609 
2645; d) D. H. R. Barton, S. Z. Zard, Pure Appl. Chem. 1986, 58,
675  684.
A. A. Akhrem, Y. A. Titov, Total Steroid Synthesis, Plenum, New
York, 1970.
a) P. J. Pelletier, J. B. Caventou, Ann. Chim. Phys. 1818, 8, 323; b) P. J.
Pelletier, J. B. Caventou, Ann. Chim. Phys. 1819, 10, 142.
Angew. Chem. Int. Ed. 2000, 39, 44  122
Natural Products Synthesis
[54] a) L. H. Briggs, H. T. Openshaw, R. Robinson, J. Chem. Soc. 1946,
903; b) R. Robinson, Experientia 1946, 2, 28; c) For a comprehensive
survey, see G. F. Smith, Alkaloids 1965, 591.
[55] a) C. Bokhoven, J. C. Schoone, J. M. Bijvoet, Proc. K. Ned. Akad.
Wet. 1948, 51, 990; b) C. Bokhoven, J. C. Schoone, J. M. Bijvoet, Proc.
K. Ned. Akad. Wet. 1949, 52, 120; c) C. Bokhoven, J. C. Schoone,
J. M. Bijvoet, Acta Crystallogr. 1951, 4, 275  280; d) J. H. Robertson,
C. A. Beevers, Nature 1950, 165, 690  691; e) J. H. Robertson, C. A.
Beevers, Acta Crystallogr. 1951, 4, 270  275; f) A. F. Peerdeman,
Acta Crystallogr. 1956, 9, 824.
[56] R. Robinson, Prog. Org. Chem. 1952, 1, 2.
[57] R. B. Woodward, Nature 1948, 162, 155  156.
[58] a) S. D. Knight, L. E. Overman, G. Pairaudeau, J. Am. Chem. Soc.
1993, 115, 9293  9294; b) S. D. Knight, L. E. Overman, G. Pairaudeau, J. Am. Chem. Soc. 1995, 117, 5776  5788.
[59] a) P. Magnus, M. Giles, R. Bonnert, G. Johnson, L. McQuire, M.
Deluca, A. Merritt, C. S. Kim, N. Vicker, J. Am. Chem. Soc. 1993,
115, 8116  8129; b) P. Magnus, M. Giles, R. Bonnert, C. S. Kim, L.
McQuire, A. Merritt, N. Vicker, J. Am. Chem. Soc. 1992, 114, 4403 
4405; c) M. E. Kuehne, F. Xu, J. Org. Chem. 1993, 58, 7490  7497;
d) V. H. Rawal, S. Iwasa, M. T. Crimmins, Org. Chem. 1994, 7, 262 
265; e) D. Sole, J. Bonjoch, S. Garcia-Rubio, E. Peidro, J. Bosch,
Angew. Chem. 1999, 111, 408  410; Angew. Chem. Int. Ed. 1999, 38,
395  397.
[60] A. Fleming, Brit. J. Exp. Path. 1929, 10, 226.
[61] E. Chain, H. W. Florey, A. D. Gardner, N. G. Heatley, M. A.
Jennings, J. Orr-Ewing, A. G. Sanders, Lancet 1940, 239, 226.
[62] a) For a detailed account of the British  American penicillin project,
see The Chemistry of Penicillin (Eds.: H. T. Clarke, J. R. Johnson, R.
Robinson), Princeton University Press, Princeton, NJ, 1949; b) For a
review, see: A. H. Cook, Quart. Rev. (London) 1948, 2, 203.
[63] During the course of the prodigious wartime effort to synthesize
penicillin, a Merck group succeeded in synthesizing minute quantities of penicillin G: a) K. Folkers in Perspectives in Organic
Chemistry (Ed.: A. Todd), Interscience, New York, 1956, p. 409;
b) V. duVigneaud, F. H. Carpenter, R. W. Holley, A. H. Livermore,
J. R. Rachele, Science 1946, 104, 431  433; c) V. duVigneaud, J. L.
Wood, M. E. Wright in The Chemistry of Penicillin (Eds.: H. T.
Clarke, J. R. Johnson, R. Robinson), Princeton University Press,
Princeton, NJ, 1949, pp. 893  894.
[64] D. Crowfoot, C. W. Bunn, B. W. Rogers-Low, A. Turner-Jones in The
Chemistry of Penicillin (Eds.: H. T. Clarke, J. R. Johnson, R.
Robinson), Princeton University Press, Princeton, NJ, 1949, p. 310.
[65] a) J. C. Sheehan, K. R. Henery-Logan, J. Am. Chem. Soc. 1957, 79,
1262  1263; b) J. C. Sheehan, K. R. Henery-Logan, J. Am. Chem.
Soc. 1959, 81, 3089  3094.
[66] J. C. Sheehan, The Enchanted Ring: The Untold Story of Penicillin,
The MIT Press, Cambridge, MA, 1982.
[67] J. M. Mller, E. Schlittler, H. J. Bein, Experientia 1952, 8, 338.
[68] A. Scriabine in Pharmacology of Antihypertensive Drugs (Ed.: A.
Scriabine), Raven, New York, 1980, p. 119.
[69] a) C. F. Huebner, H. B. MacPhillamy, E. Schlittler, A. F. St. Andre,
Experientia 1955, 11, 303; b) E. Wenkert, L. H. Liu, Experientia 1955,
11, 302  303; c) C. F. Huebner, E. Wenkert, J. Am. Chem. Soc. 1955,
77, 4180; d) P. A. Diassi, F. L. Weisenborn, C. M. Dylion, O. Winterseiner, J. Am. Chem. Soc. 1955, 77, 4687  4689; e) E. E. van Tamelen,
P. D. Hance, J. Am. Chem. Soc. 1955, 77, 4692  4693.
[70] For other total syntheses of reserpine, see a) B. A. Pearlman, J. Am.
Chem. Soc. 1979, 101, 6398  6404, 6404  6408; b) P. A. Wender, J. M.
Schaus, A. W. White, J. Am. Chem. Soc. 1980, 102, 6157  6159; P. A.
Wender, J. M. Schaus, A. W. White, Heterocycles 1987, 25, 263  270;
c) S. F. Martin, H. Reger, S. A. Williamson, S. Grzejszczak, J. Am.
Chem. Soc. 1987, 109, 6124  6134; d) G. Stork, Pure Appl. Chem.
1989, 61, 439  442.
[71] K. Wiesner, Fortschr. Chem. Org. Naturst. 1962, 20, 271  297.
[72] a) G. Stork, R. A. Kretchmer, R. H. Schlessinger, J. Am. Chem. Soc.
1968, 90, 1647  1648; b) G. Stork, Pure Appl. Chem. 1968, 17, 383 
401.
[73] a) G. Stork, R. Terrell, J. Szmuszkoviez, J. Am. Chem. Soc. 1954, 76,
2029; b) G. Stork, H. Landesman, J. Am. Chem. Soc. 1956, 78, 5128 
5129; c) G. Stork, A. Brizzolara, H. Landesman, J. Szmuszkoviez, R.
Terrell, J. Am. Chem. Soc. 1963, 85, 207  222.
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
[74] a) W. A. Ayer, W. R. Bowman, T. C. Joseph, P. Smith, J. Am. Chem.
Soc. 1968, 90, 1648  1650; b) S. Kim, Y. Bando, Z. Horii, Tetrahedron
Lett. 1978, 2293  2294; c) C. H. Heathcock, E. F. Kleinman, E. S.
Binkley, J. Am. Chem. Soc. 1978, 100, 8036  8037; d) C. H. Heathcock, E. F. Kleinman, E. S. Binkley, J. Am. Chem. Soc. 1982, 104,
1054  1068; e) D. Schumann, H. J. Mueller, A. Naumann, Liebigs
Ann. Chem. 1982, 9, 1700  1705; f) E. Wenkert, C. A. Broka, J.
Chem. Soc. Chem. Commun. 1984, 714  717; g) G. A. Kraus, Y.-S.
Hon, Heterocycles 1987, 25, 377  386; h) P. A. Grieco, Y. Dai, J. Am.
Chem. Soc. 1998, 120, 5128  5129.
[75] a) G. G. F. Newton, E. P. Abraham, Nature 1955, 175, 548; b) G. G. F.
Newton, E. P. Abraham, Biochem. J. 1956, 62, 651  658.
[76] a) E. P. Abraham, G. G. F. Newton, Biochem. J. 1961, 79, 377  393;
b) D. C. Hodgkin, E. N. Maslen, Biochem. J. 1961, 79, 393  402.
[77] For an informative discussion and a compilation of leading references, see J. S. Bindra, R. Bindra, Prostaglandin Synthesis, Academic
Press, New York, 1977, p. 7.
[78] a) S. Bergstrm, J. Sjvall, Acta Chem. Scand. 1957, 11, 1086; b) S.
Bergstrm, J. Sjvall, Acta Chem. Scand. 1960, 14, 1693  1700; c) S.
Bergstrm, J. Sjvall, Acta Chem. Scand. 1960, 14, 1701  1705; d) S.
Bergstrm, R. Ryhase, B. Samuelsson, J. Sjvall, Acta Chem. Scand.
1962, 16, 501  502; e) S. Bergstrm, R. Ryhase, B. Samuelsson, J.
Sjvall, J. Biol. Chem. 1963, 238, 3555  3564.
[79] P. W. Collins, S. W. Djuric, Chem. Rev. 1993, 93, 1533  1564.
[80] a) E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, J. Am.
Chem. Soc. 1969, 91, 5675  5677; b) E. J. Corey, T. K. Schaaf, W.
Huber, U. Koelliker, N. M. Weinshenker, J. Am. Chem. Soc. 1970, 92,
397  398; c) E. J. Corey, R. Noyori, T. K. Schaaf, J. Am. Chem. Soc.
1970, 92, 2586  2587; d) E. J. Corey, Ann. N. Y. Acad. Sci. 1971, 180,
24  37.
[81] a) J. S. Bindra, R. Bindra, Prostaglandin Synthesis, Academic Press,
New York, 1977; b) A. Mitra, The Synthesis of Prostaglandins, WileyInterscience, New York, 1977.
[82] New Synthetic Routes to Prostaglandins and Thromboxanes (Eds.:
S. M. Roberts, F. Scheinmann), Academic Press, San Diego, 1982.
[83] a) M. P. L. Caton, Tetrahedron 1979, 35, 2705  2742; b) K. C. Nicolaou, G. P. Gasic, W. E. Barnette, Angew. Chem. 1978, 90, 356  379;
Angew. Chem. Int. Ed. Engl. 1978, 17, 293  312; c) R. F. Newton,
S. M. Roberts, Tetrahedron 1980, 36, 2163  2196; d) R. Noyori, M.
Suzuki, Angew. Chem. 1984, 96, 854  882; Angew. Chem. Int. Ed.
Engl. 1984, 23, 847  876.
[84] For the evolution of Coreys synthesis of prostaglandins, see
refs. [3, 4].
[85] E. J. Corey, D. H. Lee, J. Am. Chem. Soc. 1975, 97, 6908  6909.
[86] A. I. Myers, J. Heterocycl. Chem. 1998, 35, 991  1002.
[87] a) D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber, J. Am. Chem. Soc.
1981, 103, 3099  3111; b) D. A. Evans, J. M. Takacs, L. R. McGee,
M. D. Ennis, D. J. Mathre, J. Bartroli, Pure Appl. Chem. 1981, 53,
1109  1127; c) D. A. Evans, J. V. Nelson, T. R. Taber, Top. Stereochem. 1982, 13, 1  115; d) D. A. Evans, Aldrichim. Acta 1982, 15,
23  32.
[88] W. Oppolzer, Pure Appl. Chem. 1990, 62, 1241  1250.
[89] a) H. C. Brown, P. K. Jadhav, K. S. Bhat, J. Am. Chem. Soc. 1988, 110,
1535  1538; b) P. K. Jadhav, K. S. Bhat, T. Perumal, H. C. Brown, J.
Org. Chem. 1986, 51, 432  439.
[90] a) E. J. Corey, R. Imwinkelried, S. Pikul, Y. B. Xiang, J. Am. Chem.
Soc. 1989, 111, 5493  5495; b) E. J. Corey, N. Imai, S. Pikul,
Tetrahedron Lett. 1991, 32, 7517  7520.
[91] a) E. J. Corey, T. P. Loh, J. Am. Chem. Soc. 1991, 113, 8966  8967;
b) E. J. Corey, T. P. Loh, T. D. Roper, M. D. Azimioara, M. C. Noe, J.
Am. Chem. Soc. 1992, 114, 8290  8292.
[92] a) E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109,
5551  5553; b) E. J. Corey, R. K. Bakshi, S. Shibata, C. P. Chen, V. K.
Singh, J. Am. Chem. Soc. 1987, 109, 7925  7926; c) E. J. Corey, S.
Shibata, R. K. Bakshi, J. Org. Chem. 1988, 53, 2861  2863; d) E. J.
Corey, R. K. Bakshi, Tetrahedron Lett. 1990, 31, 611  614.
[93] a) W. S. Johnson, Acc. Chem. Res. 1968, 1, 1  8; b) W. S. Johnson,
Angew. Chem. 1976, 88, 33  41; Angew. Chem. Int. Ed. Engl. 1976,
15, 9  16; c) W. S. Johnson, Bioorg. Chem. 1976, 5, 51  98.
[94] a) R. B. Clayton, Quart. Rev. (London) 1968, 19, 168; b) R. B.
Woodward, K. Bloch, J. Am. Chem. Soc. 1953, 75, 2023  2024;
c) E. E. van Tamelen, J. D. Willet, R. B. Clayton, K. E. Lord, J. Am.
111
REVIEWS
[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
112
Chem. Soc. 1966, 88, 4752  4754; d) E. E. van Tamelen, J. Am. Chem.
Soc. 1982, 104, 6480  6481; e) E. J. Corey, W. E. Russey, P. R.
Ortiz de Montellano, J. Am. Chem. Soc. 1966, 88, 4750  4751;
f) E. J. Corey, S. C. Virgil, J. Am. Chem. Soc. 1991, 113, 4025  4026;
g) E. J. Corey, S. C. Virgil, S. Sars, J. Am. Chem. Soc. 1991, 113, 8171 
8172; h) E. J. Corey, S. C. Virgil, D. R. Liu, S. Sarshar, J. Am. Chem.
Soc. 1992, 114, 1524  1525.
a) E. E. van Tamelen, Acc. Chem. Res. 1975, 8, 152  158; b) E. E.
van Tamelen, G. M. Milne, M. I. Suffness, M. C. Rudler Chauvin,
R. J. Anderson, R. S. Achini, J. Am. Chem. Soc. 1970, 92, 7202  7204;
c) E. E. van Tamelen, J. W. Murphy, J. Am. Chem. Soc. 1970, 92,
7206  7207; d) E. E. van Tamelen, R. J. Anderson, J. Am. Chem. Soc.
1972, 94, 8225  8228; e) E. E. van Tamelen, R. A. Holton, R. E.
Hopla, W. E. Konz, J. Am. Chem. Soc. 1972, 94, 8228  8229; f) E. E.
van Tamelen, M. P. Seiler, W. Wierenga, J. Am. Chem. Soc. 1972, 94,
8229  8231.
T. Goto, Y. Kishi, S. Takahashi, Y. Hirata, Tetrahedron, 1965, 21,
2059, and references therein.
Total synthesis: a) Y. Kishi, F. Nakatsubo, M. Aratani, T. Goto, S.
Inoue, H. Kakoi, S. Sugiura, Tetrahedron Lett. 1970, 5127  5128;
b) Y. Kishi, F. Nakatsubo, M. Aratani, T. Goto, S. Inoue,
H. Kakoi, Tetrahedron Lett. 1970, 5129  5132; c) Y. Kishi, M.
Aratani, T. Fukuyama, F. Nakatsubo, T. Goto, S. Inoue, H. Tanino,
S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94, 9217  9219;
d) Y. Kishi, T. Fukuyama, M. Aratani, F. Nakatsubo, T. Goto, S.
Inoue, H. Tatino, S. Sugiura, H. Kakoi, J. Am. Chem. Soc. 1972, 94,
9219  9221.
a) R. B. Woodward, Spec. Publ. Chem. Soc. 1967, 21, 217; b) R. B.
Woodward, R. Hoffmann, Angew. Chem. 1969, 81, 797  869; Angew.
Chem. Int. Ed. Engl. 1969, 8, 781  853; c) R. B. Woodward, R.
Hoffmann, The Conservation of Orbital Symmetry, Academic Press,
New York, 1970, p. 178.
a) D. Crowfoot-Hodgkin, A. W. Johnson, A. R. Todd, Spec. Publ.
Chem. Soc. 1955, 3, 109; b) D. Crowfoot-Hodgkin, J. Kamper, M.
MacKay, J. Pickworth, K. C. Trueblood, J. G. White, Nature 1956,
178, 64  66; c) D. Crowfoot-Hodgkin, J. Kamper, J. Lindsey, M.
MacKay, J. Pickworth, J. H. Robertson, C. B. Shoemaker, J. G. White,
R. J. Prosen, K. N. Trueblood, Proc. Roy. Soc. London Ser. A 1957,
242, 228; d) R. Bonnett, Chem. Rev. 1963, 63, 573  605.
W. Friedrich, G. Gross, K. Bernhauser, P. Zeller, Helv. Chim. Acta.
1960, 43, 704  712.
R. B. Woodward in Perspectives in Organic Chemistry (Ed.: A.
Todd), Interscience, New York, 1956, p. 160.
a) E. J. Corey, E. J. Trybulski, L. S. Melvin, Jr., K. C. Nicolaou, J. A.
Secrist, R. Lett, P. W. Sheldrake, J. R. Falck, D. J. Brunelle, M. F.
Haslanger, S. Kim, S. Yoo, J. Am. Chem. Soc. 1978, 100, 4618  4620;
b) E. J. Corey, S. Kim, S. Yoo, K. C. Nicolaou, L. S. Melvin, Jr., D. J.
Brunelle, J. R. Falck, E. J. Trybulski, R. Lett, P. W. Sheldrake, J. Am.
Chem. Soc. 1978, 100, 4620  4622.
E. J. Corey, K. C. Nicolaou, J. Am. Chem. Soc. 1974, 96, 5614  5616.
a) E. J. Corey, K. C. Nicolaou, L. S. Melvin, Jr., J. Am. Chem. Soc.
1975, 97, 653  654; E. J. Corey, K. C. Nicolaou, L. S. Melvin, Jr., J.
Am. Chem. Soc. 1975, 97, 654  655; b) K. C. Nicolaou, Tetrahedron
1977, 33, 683  710; c) S. Masamune, G. S. Bates, J. W. Corcoran,
Angew. Chem. 1977, 89, 602  624; Angew. Chem. Int. Ed. Engl. 1977,
16, 585  607; d) I. Paterson, M. M. Mansuri, Tetrahedron 1985, 41,
3569  3624.
A. Agtarap, J. W. Chamberlin, M. Pinkerton, L. Steinrauf, J. Am.
Chem. Soc. 1967, 89, 5737  5739.
a) M. Dobler, Ionophores and Their Structures, Wiley, New York,
1981; b) J. W. Westley, Adv. Appl. Microbiol. 1977, 22, 177; c) B. C.
Pressman, Ann. Rev. Biochem. 1976, 45, 501; d) J. W. Westley, Ann.
Rep. Med. Chem. 1975, 10, 246.
Polyether Antiobiotics: Naturally Occurring Acid Ionophores,
Vol. 1  2 (Ed.: J. W. Westley), Marcel Dekker, New York, 1982.
a) G. Schmid, T. Fukuyama, K. Akasaka, Y. Kishi, J. Am. Chem. Soc.
1979, 101, 259  260; b) T. Fukuyama, C.-L. Wang, Y. Kishi, J. Am.
Chem. Soc. 1979, 101, 260  262; c) T. Fukuyama, K. Akasaka, D. S.
Karanewsky, C.-L. Wang, G. Schmid, Y. Kishi, J. Am. Chem. Soc.
1979, 101, 262  263.
T. Nakata, G. Schmid, B. Vranesic, M. Okigawa, T. Smith-Palmer, Y.
Kishi, J. Am. Chem. Soc. 1978, 100, 2933  2935.
K. C. Nicolaou et al.
[110] a) D. B. Collum, J. H. McDonald III, W. C. Still, J. Am. Chem. Soc.
1980, 102, 2117  2118; b) D. B. Collum, J. H. McDonald III, W. C.
Still, J. Am. Chem. Soc. 1980, 102, 2118  2120; c) D. B. Collum, J. H.
McDonald III, W. C. Still, J. Am. Chem. Soc. 1980, 102, 2120  2121.
[111] a) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon,
B. M. Gatehouse, J. Chem. Soc. Chem. Commun. 1980, 162  163;
b) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, J. Chem. Soc.
Chem. Commun. 1980, 902  903; c) W. M. Bandaranayake, J. E.
Banfield, D. S. C. Black, G. D. Fallon, B. M. Gatehouse, Aust. J.
Chem. 1981, 34, 1655  1667; d) W. M. Bandaranayake, J. E. Banfield,
D. S. C. Black, Aust. J. Chem. 1982, 35, 557  565; e) W. M. Bandaranayake, J. E. Banfield, D. S. C. Black, G. D. Fallon, B. M. Gatehouse, Aust. J. Chem. 1982, 35, 567  579; f) J. E. Banfield, D. S. C.
Black, S. R. Johns, R. I. Willing, Aust. J. Chem. 1982, 35, 2247  2256.
[112] a) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Uenishi, J. Am.
Chem. Soc. 1982, 104, 5555  5557; b) K. C. Nicolaou, N. A. Petasis, J.
Uenishi, R. E. Zipkin, J. Am. Chem. Soc. 1982, 104, 5557  5558;
c) K. C. Nicolaou, R. E. Zipkin, N. A. Petasis, J. Am. Chem. Soc.
1982, 104, 5558  5560; d) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin,
J. Am. Chem. Soc. 1982, 104, 5560  5562; e) K. C. Nicolaou, N. A.
Petasis in Strategies and Tactics in Organic Synthesis, Vol. 1 (Ed.: T.
Lindberg), Academic Press, San Diego, 1984, p. 155  173.
[113] K. C. Nicolaou, Chem. Brit. 1985, 813  817.
[114] R. S. Dewey, B. H. Arison, J. Hannah, D. H. Shih, G. AlbersSchonberg, J. Antibiot. 1985, 38, 1691  1698.
[115] a) R. E. Dolle, K. C. Nicolaou, J. Chem. Soc. Chem. Commun. 1985,
1016  1018; b) R. E. Dolle, K. C. Nicolaou, J. Am. Chem. Soc. 1985,
107, 1691  1694; c) R. E. Dolle, K. C. Nicolaou, J. Am. Chem. Soc.
1985, 107, 1695  1698.
[116] K. C. Nicolaou, R. E. Dolle, D. P. Papahatjis, J. L. Randall, J. Am.
Chem. Soc. 1984, 106, 4189  4192.
[117] K. C. Nicolaou, Chemtracts: Org. Chem. 1991, 4, 181  198.
[118] a) K. Tachibana, P. J. Scheuer, Y. Tsukitani, H. Kikutsi, D. V. Engen,
J. Clardy, Y. Gopichand, F. Schmitz, J. Am. Chem. Soc. 1981, 103,
2469  2471; b) M. Murata, M. Shimatani, H. Sugitani, Y. Oshima, T.
Yasumoto, Bull. Jpn. Soc. Sci. Fish. 1982, 48, 549. For biological
activity, see a) R. Boe, B. T. Gjertsen, O. K. Vintermyr, G. Houge, M.
Lanotte, S. O. Diskeland, Exp. Cell Res. 1991, 195, 237  246; b) A.
Takai, G. Mieskes, Biochem. J. 1991, 275, 233  239.
[119] a) M. Isobe, Y. Ichikawa, H. Masaki, T. Goto, Tetrahedron Lett. 1984,
25, 3607  3610; b) Y. Ichikawa, M. Isobe, T. Goto, Tetrahedron Lett.
1984, 25, 5049  5052; c) M. Isobe, Y. Ichikawa, T. Goto, Tetrahedron
Lett. 1985, 26, 5199  5202; d) M. Isobe, Y. Ichikawa, D.-I. Bai, T.
Goto, Tetrahedron Lett. 1985, 26, 5203  5206; e) M. Isobe, Y.
Ichikawa, T. Goto, Tetrahedron Lett. 1985, 26, 963  966; f) M. Isobe,
Y. Ichidawa, D.-I. Bai, H. Masaki, T. Goto, Tetrahedron 1987, 43,
4767  4776.
[120] a) C. J. Forsyth, S. F. Sabes, R. A. Urbanek, J. Am. Chem. Soc. 1997,
119, 8381  8382; b) S. F. Sabes, R. A. Urbanek, C. J. Forsyth, J. Am.
Chem. Soc. 1998, 120, 2534  2542.
[121] S. V. Ley, A. C. Humphries, H. Eick, R. Bownham, A. R. Ross, R. J.
Boyce, J. B. J. Pavey, J. Pietruszka, J. Chem. Soc. Perkin Trans. 1 1998,
3907  3912.
[122] a) J. Vandeputte, J. L. Wachtel, E. T. Stiller, Antibiot. Annu. 1956,
587; b) W. Mechinski, C. P. Shaffner, P. Ganis, G. Avitabile,
Tetrahedron Lett. 1970, 3873  3876; c) P. Ganis, G. Avitabile, W.
Mechinski, C. P. Shaffner, J. Am. Chem. Soc. 1971, 93, 4560  4564.
[123] a) K. C. Nicolaou, R. A. Daines, J. Uenishi, W. S. Li, D. P. Papahatjis,
T. K. Chakraborty, J. Am. Chem. Soc. 1987, 109, 2205  2208; b) K. C.
Nicolaou, R. A. Daines, T. K. Chakraborty, J. Am. Chem. Soc. 1987,
109, 2208  2210; c) K. C. Nicolaou, T. K. Chakraborty, R. A. Daines,
N. S. Simpkins, J. Chem. Soc. Chem. Commun. 1986, 413  416;
d) K. C. Nicolaou, R. A. Daines, T. K. Chakraborty, Y. Ogawa, J.
Am. Chem. Soc. 1987, 109, 2821  2822; e) K. C. Nicolaou, R. A.
Daines, J. Uenishi, W. S. Li, D. P. Papahatjis, T. K. Chakraborty, J.
Am. Chem. Soc. 1988, 110, 4672  4685; f) K. C. Nicolaou, R. A.
Daines, T. K. Chakraborty, Y. Ogawa, J. Am. Chem. Soc. 1988, 110,
4685  4696; g) K. C. Nicolaou, R. A. Daines, Y. Ogawa, T. K.
Chakraborty, J. Am. Chem. Soc. 1988, 110, 4696  4705.
[124] T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974  5976.
[125] For a recent review, see K. C. Nicolaou, M. W. Hrter, J. L. Gunzner,
A. Nadin, Liebigs Ann. 1997, 1283  1301.
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
[126] R. M. Kennedy, A. Abiko, T. Takemasa, M. Okumoto, S. Masamune,
Tetrahedron Lett. 1998, 451  454.
[127] a) S. Furukawa, Sci. Pap. Inst. Phys. Chem. Res. 1932, 19, 27; b) S.
Furukawa, Sci. Pap. Inst. Phys. Chem. Res. 1933, 21, 273; c) S.
Furukawa, Sci. Pap. Inst. Phys. Chem. Res. 1934, 24, 304; d) B. Max,
Trends Pharmacol. Sci. 1987, 8, 290; e) R. T. Major, Science 1967, 157,
1270  1272; f) H. Lutz, J. Am. Forests 1931, 37, 475; g) H. J. PrideuxBrune, R. Hort. Soc. 1947, 72, 446; h) J. N. Wilford in The New York
Times: Medical Science, 1988, March 1, L, p. C3.
[128] a) K. Nakanishi, Pure Appl. Chem. 1967, 14, 89  113; See also b) N.
Sakabe, S. Takada, K. Okabe, J. Chem. Soc. Chem. Commun. 1967,
259  261; c) K. Okabe, K. Yamada, S. Yamamura, S. Takada, J.
Chem. Soc. C 1967, 2201  2206.
[129] a) E. J. Corey, M. C. Kang, M. C. Desai, A. K. Ghosh, I. N. Houpis, J.
Am. Chem. Soc. 1988, 110, 649  651; see also b) M. C. Desai, A. K.
Ghosh, M. C. Kang, I. N. Houpis in Strategies and Tactics in Organic
Synthesis, Vol. 3 (Ed.: T. Lindenberg), Academic Press, New York,
1991, p. 89. See also ref. [3]. Another synthesis of gingkolide B
recently appeared: M. T. Crimmins, J. M. Pace, P. G. Nantermet,
A. S. Kim-Meade, J. B. Thomas, S. H. Watterson, A. S. Wagman, J.
Am. Chem. Soc. 1999, 121, 10 249  10 250.
[130] For reviews of palytoxin, see a) R. E. Moore, Prog. Chem. Org. Nat.
Prod. 1985, 48, 81  202; b) Y. Hirata, D. Uemura, Y. Ohizumi,
Handbook of Natural Toxins, Vol. 3 (Ed.: A. T. Tu), Marcel Dekker,
New York, 1988, p. 241.
[131] D. Uemura, K. Ueda, Y. Hirata, H. Naoki, T. Iwashita, Tetrahedron
Lett. 1981, 22, 2781  2784.
[132] R. E. Moore, G. Bartolini, J. Am. Chem. Soc. 1981, 103, 2491  2494.
[133] a) R. W. Armstrong, J.-M. Beau, S. H. Cheon, W. J. Christ, H.
Fujioka, W.-H. Ham, L. D. Hawkins, H. Jin, S. H. Kang, Y. Kishi,
M. J. Martinelli, W. W. McWhorter, Jr., M. Mizuno, M. Nakata, A. E.
Stutz, F. X. Talamas, M. Taniguchi, J. A. Tino, K. Ueda, J.-i. Uenishi,
J. B. White, M. Yonaga, J. Am. Chem. Soc. 1989, 111, 7525  7530;
b) R. W. Armstrong, J.-M. Beau, S. H. Cheon, W. J. Christ, H.
Fujioka, W.-H. Ham, L. D. Hawkins, H. Jin, S. H. Kang, Y. Kishi,
M. J. Martinelli, W. W. McWhorter, Jr., M. Mizuno, M. Nakata, A. E.
Stutz, F. X. Talamas, M. Taniguchi, J. A. Tino, K. Ueda, J.-i. Uenishi,
J. B. White, M. Yonaga, J. Am. Chem. Soc. 1989, 111, 7530  7533. See
also ref. [3].
[134] E. M. Suh, Y. Kishi, J. Am. Chem. Soc. 1994, 116, 11 205  11 206. See
also ref. [3].
[135] T. Kihara, H. Kusakabe, G. Nakamura, T. Sakurai, K. Isono, J.
Antibiot. 1981, 34, 1073  1074.
[136] T. Sakurai, T. Kihara, K. Isono, Acta Crystallogr. Sect. C 1983, 39,
295  297; T. Kihara, K. Isono, J. Antibiot. 1983, 36, 1236  1241.
[137] D. A. Evans, S. W. Kaldor, T. K. Jones, J. Clardy, T. J. Stout, J. Am.
Chem. Soc. 1990, 112, 7001  7031. See also ref. [3].
[138] a) G. Stork, S. D. Rychnovsky, J. Am. Chem. Soc. 1987, 109, 1564 
1565; G. Stork, S. D. Rychnovsky, J. Am. Chem. Soc. 1987, 109, 1565 
1566; b) G. Stork, S. D. Rychnovsky, Pure Appl. Chem. 1986, 58,
767  772.
[139] a) M. D. Lee, T. S. Dunne, M. M. Siegel, C. C. Chang, G. O. Morton,
D. B. Borders, J. Am. Chem. Soc. 1987, 109, 3464  3466; b) M. D. Lee,
T. S. Dunne, C. C. Chang, G. A. Ellestad, M. M. Siegel, G. O.
Morton, G. O. McGahren, D. B. Borders, J. Am. Chem. Soc. 1987,
109, 3466  3468; c) M. D. Lee, T. S. Dunne, C. C. Chang, M. M.
Siegel, G. O. Morton, G. A. Ellestad, W. J. McGahren, D. B. Borders,
J. Am. Chem. Soc. 1992, 114, 985  997.
[140] Reviews: a) K. C. Nicolaou, W.-M. Dai, Angew. Chem. 1991, 103,
1453  1481; Angew. Chem. Int. Ed. Engl. 1991, 30, 1387  1416;
b) K. C. Nicolaou, A. L. Smith, E. W. Yue, Proc. Natl. Acad. Sci.
USA 1993, 90, 5881  5888.
[141] a) R. G. Bergman, Acc. Chem. Res. 1973, 6, 25  31; b) R. R. Jones,
R. G. Bergman, J. Am. Chem. Soc. 1972, 94, 660  661; c) T. P.
Lockhart, P. B. Gomita, R. G. Bergman, J. Am. Chem. Soc. 1981, 103,
4091  4096.
[142] a) K. C. Nicolaou, C. W. Hummel, E. N. Pitsinos, M. Nakada, A. L.
Smith, K. Shibayama, H. Saimoto, J. Am. Chem. Soc. 1992, 114,
10 082  10 084; b) R. D. Groneberg, T. Miyazaki, N. A. Stylianides,
T. J. Schulze, W. Stahl, E. P. Schreiner, T. Suzuki, Y. Iwabuchi, A. L.
Smith, K. C. Nicolaou, J. Am. Chem. Soc. 1993, 115, 7593  7611;
c) A. L. Smith, E. N. Pitsinos, C.-K. Hwang, Y. Mizuno, H. Saimoto,
Angew. Chem. Int. Ed. 2000, 39, 44  122
[143]
[144]
[145]
[146]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
G. R. Scarlato, T. Suzuki, K. C. Nicolaou, J. Am. Chem. Soc. 1993,
115, 7612  7624; d) K. C. Nicolaou, C. W. Hummel, M. Nakada, K.
Shibayama, E. N. Pitsinos, H. Saimoto, Y. Mizuno, K.-U. Baldenius,
A. L. Smith, J. Am. Chem. Soc. 1993, 115, 7625  7635; e) K. C.
Nicolaou, Angew. Chem. 1993, 105, 1462  1471; Angew. Chem. Int.
Ed. Engl. 1993, 32, 1377  1385.
S. A. Hitchcock, S. H. Boyer, M. Y. Chu-Moyer, S. H. Olson, S. J.
Danishefsky, Angew. Chem. 1994, 106, 928  932; Angew. Chem. Int.
Ed. Engl. 1994, 33, 858  862.
a) C. Vezina, A. Kudelski, S. N. Sehgal, J. Antibiot. 1975, 28, 721 
726; b) S. N. Sehgal, H. Baker, C. Vezina, J. Antibiot. 1975, 28, 727 
732.
a) D. C. N. Swindells, P. S. White, J. A. Findlay, Can. J. Chem. 1978,
56, 2491  2492; b) J. A. Findlay, L. Radics, Can. J. Chem. 1980, 58,
579  590.
M. K. Rosen; S. L. Schreiber, Angew. Chem. 1992, 104, 413  429;
Angew. Chem. Int. Ed. Engl. 1992, 31, 384  400; b) S. L. Schreiber,
Science 1991, 251, 283  287; c) S. L. Schreiber, J. Liu, M. W. Albers,
R. Karmacharya, E. Koh, P. K. Martin, M. K. Rosen, R. F. Standaert,
T. J. Wandless, Transplant. Proc. 1991, 23, 2839  2844.
a) K. C. Nicolaou, T. K. Chakraborty, A. D. Piscopio, N. Minowa, P.
Bertinato, J. Am. Chem. Soc. 1993, 115, 4419  4420; b) A. D.
Piscopio, N. Minowa, T. K. Chakraborty, K. Koide, P. Bertinato,
K. C. Nicolaou, J. Chem. Soc. Chem. Commun. 1993, 617  618;
c) K. C. Nicolaou, P. Bertinato, A. D. Piscopio, T. K. Chakraborty, N.
Minowa, J. Chem. Soc. Chem. Commun. 1993, 619  622; d) K. C.
Nicolaou, A. D. Piscopio, P. Bertinato, T. K. Chakraborty, N.
Minowa, K. Koide, Chem. Eur. J. 1995, 1, 318  323. See also ref. [3].
D. Romo, S. D. Meyer, D. D. Johnson, S. L. Schreiber, J. Am. Chem.
Soc. 1993, 115, 7906  7909.
C. M. Hayward, D. Yohannes, S. J. Danishefsky, J. Am. Chem. Soc.
1993, 115, 9345  9346.
A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W.
Leahy, R. E. Maleczka, Jr., J. Org. Chem. 1995, 117, 5407  5408.
M. A. Duncton, G. Pattenden, J. Chem. Soc. Perkins Trans. 1, 1999,
1235  1246.
M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon, A. T. McPhail, J.
Am. Chem. Soc. 1971, 93, 2325  2327.
K. C. Nicolaou, W.-M. Dai, R. K. Guy, Angew. Chem. 1994, 106, 38 
69; Angew. Chem. Int. Ed. Engl. 1994, 33, 15  44; K. C. Nicolaou,
R. K. Guy, P. Potier, Sci. Am. 1996, 272(6), 84  88.
a) K. C. Nicolaou, Z. Yang, J.-J. Liu, H. Ueno, P. G. Nantermet, R. K.
Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan,
E. J. Sorensen, Nature 1994, 367, 630  634; b) K. C. Nicolaou, P. G.
Nantermet, H. Ueno, R. K. Guy, E. A. Couladouros, E. J. Sorensen,
J. Am. Chem. Soc. 1995, 117, 624  633; c) K. C. Nicolaou, J.-J. Liu, Z.
Yang, H. Ueno, E. J. Sorensen, C. F. Claiborne, R. K. Guy, C.-K.
Hwang, M. Nakada, P. G. Nantermet, J. Am. Chem. Soc. 1995, 117,
634  644; d) K. C. Nicolaou, Z. Yang, J.-J. Liu, P. G. Nantermet, C. F.
Claiborne, J. Renaud, R. K. Guy, K. Shibayama, J. Am. Chem. Soc.
1995, 117, 645  652; e) K. C. Nicolaou, H. Ueno, J.-J. Liu, P. G.
Nantermet, Z. Yang, J. Renaud, K. Paulvannan, R. Chadha, J. Am.
Chem. Soc. 1995, 117, 653  659; f) K. C. Nicolaou, R. K. Guy, Angew.
Chem. 1995, 107, 2047  2059; Angew. Chem. Int. Ed. Engl. 1995, 34,
2079  2090. See also ref. [3].
a) R. A. Holton, C. Somoza, K. B. Kim, F. Liang, R. J. Biediger, P. D.
Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki,
C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile, J. H. Liu,
J. Am. Chem. Soc. 1994, 116, 1597  1598; b) R. A. Holton, K. B. Kim,
C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C.
Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P.
Zhang, K. K. Murthi, L. N. Gentile, J. H. Liu, J. Am. Chem. Soc.
1994, 116, 1599  1600.
J. J. Masters, J. T. Link, L. B. Snyder, W. B. Young, S. J. Danishefsky,
Angew. Chem. 1995, 34, 1886  1888; Angew. Chem. Int. Ed. Engl.
1995, 34, 1723  1726.
a) P. A. Wender, N. F. Badham, S. P. Conway, P. E. Floreancig, T. E.
Glass, J. B. Houze, N. E. Krauss, D. Lee, D. G. Marquess, P. L.
McGrane, W. Meng, M. G. Natchus, A. J. Shuker, J. C. Sutton, R. E.
Taylor, J. Am. Chem. Soc. 1997, 119, 2757  2758; b) P. A. Wender,
N. F. Badham, S. P. Conway, P. E. Floreancig, T. E. Glass, C.
Graenicher, J. B. Houze, J. Jaenichen, D. Lee, D. G. Marquess, P. L.
113
REVIEWS
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]
[170]
[171]
114
McGrane, W. Meng, T. P. Mucciaro, M. Muehlebach, M. G. Natchus,
H. Paulsen, D. B. Rawlins, J. Satkofsky, A. J. Shuker, J. C. Sutton,
R. E. Taylor, K. Tomooka, J. Am. Chem. Soc. 1997, 119, 2755  2756;
c) P. A. Wender, D. G. Marquess, L. P. McGrane, R. E. Taylor,
Chemtracts: Org. Chem. 1994, 7, 160  171.
I. Shiina, K. Saitoh, I. Frechard-Ortuno, T. Mukaiyama, Chem. Lett.
1998, 3  4; T. Mukaiyama, I. Shiina, H. Iwadare, M. Saitoh, T.
Nishimura, N. Ohkawa, H. Sakoh, K. Nishimura, Y.-I. Tani, M.
Hasegawa, K. Yamada, K. Saitoh, Chem. Eur. J. 1999, 5, 121  161.
K. Morihira, R. Hara, S. Kawahara, T. Nishimori, N. Nakamura, H.
Kusama, I. Kuwajima, J. Am. Chem. Soc. 1998, 120, 12 980  12 981.
J. D. Bergstrm, M. M. Kurtz, D. J. Rew, A. M. Amend, J. D. Karkas,
R. G. Bostedor, V. S. Bansal, C. Dufresne, F. L. VanMiddlesworth,
O. D. Hensens, J. M. Liesch, D. L. Zink, K. E. Wilson, J. Onishi, J. A.
Milligan, G. Bills, L. Kaplan, M. Nallin Omstead, R. G. Jenkins, L.
Huang, M. S. Meinz, L. Quinn, R. W. Burg, Y. L. Kong, S. Mochales,
M. Mojena, I. Martin, F. Pelaez, M. T. Diez, A. W. Alberts, Proc.
Natl. Acad. Sci. USA 1993, 90, 80  84.
a) M. J. Dawson, J. E. Farthing, P. S. Marshall, R. F. Middleton, M. J.
ONeill, A. Shuttleworth, C. Stylli, R. M. Tait, P. M. Taylor, H. G.
Wildman, A. D. Buss, D. Langley, M. V. Hayes, J. Antibiot. 1992, 45,
639  648; b) P. J. Sidebottom, R. M. Highcock, S. J. Lane, P. A.
Procopiou, N. S. Watson, J. Antibiot. 1992, 45, 648  658.
A. Nadin, K. C. Nicolaou, Angew. Chem. 1996, 108, 1732  1766;
Angew. Chem. Int. Ed. Engl. 1996, 35, 1623  1656.
A. Baxter, B. J. Fitzgerald, J. L. Hutson, A. D. McCarthy, J. M.
Motteram, B. C. Ross, M. Sapra, M. A. Snowden, N. S. Watson, R. J.
Williams, C. Wright, J. Biol. Chem. 1992, 267, 11 705  11 708.
a) K. C. Nicolaou, E. W. Yue, Y. Naniwa, F. DeRiccardis, A. Nadin,
J. E. Leresche, S. La Greca, Z. Yang, Angew. Chem. 1994, 106, 2306 
2309; Angew. Chem. Int. Ed. Engl. 1994, 33, 2184  2187; b) K. C.
Nicolaou, A. Nadin, J. E. Leresche, S. La Greca, T. Tsuri, E. W. Yue,
Z. Yang, Angew. Chem. 1994, 106, 2309  2312; Angew. Chem. Int.
Ed. Engl. 1994, 33, 2187  2190; c) K. C. Nicolaou, A. Nadin, J. E.
Leresche, E. W. Yue, S. La Greca, Angew. Chem. 1994, 106, 2312 
2313; Angew. Chem. Int. Ed. Engl. 1994, 33, 2190  2191; d) K. C.
Nicolaou, E. W. Yue, S. La Greca, A. Nadin, Z. Yang, J. E. Leresche,
T. Tsuri, Y. Naniwa, F. De Riccardis, Chem. Eur. J. 1995, 1, 467. See
also ref. [3].
a) For excellent reviews of the Sharpless asymmetric dihydroxylation
(AD) reaction, see a) H. C. Kolb, M. S. VanNieuwenhze, K. B.
Sharpless, Chem. Rev. 1994, 94, 2483  2547; b) D. J. Berrisford, C.
Bolm, K. B. Sharpless, Angew. Chem. 1995, 107, 1159  1170, Angew.
Chem. Int. Ed. Engl. 1995, 34, 1059  1070.
a) E. M. Carreira, J. Du Bois, J. Am. Chem. Soc. 1994, 116, 10 825 
10 827; b) E. M. Carreira, J. Du Bois, J. Am. Chem. Soc. 1995, 117,
8106  8125.
D. A. Evans, J. C. Barrow, J. L. Leighton, A. J. Robichaud, M. J.
Sefkow, J. Am. Chem. Soc. 1994, 116, 12 111  12 112.
D. Stoermer, S. Caron, C. H. Heathcock, J. Org. Chem. 1996, 61,
9115  9125; b) S. Caron, D. Stoermer, A. K. Mapp, C. H. Heathcock,
J. Org. Chem. 1996, 61, 9126  9134.
a) S. Carmely, Y. Kashman, Tetrahedron Lett. 1985, 26, 511  514;
b) M. Kobayashi, J. Tanaka, T. Katori, M. Matsura, I. Kitagawa,
Tetrahedron Lett. 1989, 30, 2963  2966; c) M. Kobayashi, J. Tanaka,
T. Katori, M. Matsuura, M. Yamashita, I. Kitagawa, Chem. Pharm.
Bull. 1990, 38, 2409  2418; d) I. Kitagawa, M. Kobayashi, T. Katori,
M. Yamashita, M. Doi, T. Ishida, J. Tanaka, J. Am. Chem. Soc. 1990,
112, 3710  3712; e) M. Doi, T. Ishida, M. Kobayashi, I. Kitagawa, J.
Org. Chem. 1991, 56, 3629  3632.
a) I. Paterson, J. G. Cumming, R. A. Ward, S. Lamboley, Tetrahedron
1995, 34, 9393  9412; b) I. Paterson, J. S. Smith, R. A. Ward,
Tetrahedron 1995, 34, 9413  9436; c) I. Paterson, R. A. Ward,
J. D. Smith, J. G. Cumming, K.-S. Yeung, Tetrahedron 1995, 34,
9437  9466; d) I. Paterson, K.-S. Yeung, R. A. Ward, J. D.
Smith, J. G. Cummings, S. Lamboley, Tetrahedron 1995, 34, 9467 
9486.
A. P. Patron, P. Richter, M. J. Tomaszewski, R. A. Miller, K. C.
Nicolaou, J. Chem. Soc. Chem. Commun. 1994, 1147  1150; P. K.
Richter, M. J. Tomaszewski, R. Miller, A. P. Patron, K. C. Nicolaou,
J. Chem. Soc. Chem. Commun. 1994, 1151  1152; K. C. Nicolaou, K.
Ajito, A. P. Patron, H. Khatuya, P. K. Richter, P. Bertinato, J. Am.
K. C. Nicolaou et al.
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]
[189]
Chem. Soc. 1996, 118, 3059  3060; K. C. Nicolaou, A. P. Patron, K.
Ajito, P. K. Richter, H. Khatuya, P. Bertinato, R. A. Miller, M. J.
Tomaszewski, Chem. Eur. J. 1996, 2, 847  868.
a) C. J. Cowden, I. Paterson, Org. React. 1997, 51, 1  200; b) I.
Paterson, M. A. Lister, C. K. McClure, Tetrahedron Lett. 1986, 27,
4787  4190; c) I. Paterson, A. N. Hulme, J. Org. Chem. 1995, 60,
3288  3300; d) I. Paterson, J. M. Goodman, M. A. Lister, R. C.
Schumann, C. K. McClure, R. D. Norcross, Tetrahedron 1990, 46,
4663  4684.
J. Carretero, L. Ghosez, Tetrahedron Lett. 1988, 29, 2059  2063.
a) Y. Gao, K. B. Sharpless, J. Am. Chem. Soc. 1988, 110, 7538  7539;
b) B. Kim, K. B. Sharpless, Tetrahedron Lett. 1989, 30, 655  658; c) B.
Lohray, Y. Gao, K. B. Sharpless, Tetrahedron Lett. 1989, 30, 2623 
2626.
J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull.
Chem. Soc. Jpn. 1979, 52, 1989  1993.
a) International Symposium on Red Tides (Eds.: T. Okaichi, D. M.
Anderson, T. Nemoto), Elsevier, New York, 1989; b) Marine
Toxins: Origin, Structure and Molecular Pharmacology: V. L.
Trainer, R. A. Edwards, A. M. Szmant, A. M. Stuart, T. J. Mende,
D. G. Baden, ACS Symp. Ser. 1990, 418; c) D. M. Anderson, A. W.
White, Oceanus 1992, 35, 55; d) D. M. Anderson, Sci. Am. 1994,
271(8), 62  68, and references therein; e) V. L. Trainer, D. G. Baden,
W. A. Catterall, J. Biol. Chem. 1994, 269, 19 904  19 909.
Y.-Y. Lin, M. Risk, S. M. Ray, D. Van Engen, J. Clardy, J. Golik, J. C.
James, K. Nakanishi, J. Am. Chem. Soc. 1981, 103, 6773  6775.
a) K. C. Nicolaou, E. A. Theodorakis, F. P. J. T. Rutjes, J. Tiebes, M.
Sato, E. Untersteller, X.-Y. Xiao, J. Am. Chem. Soc. 1995, 117, 1171 
1172; b) K. C. Nicolaou, F. P. J. T. Rutjes, E. A. Theodorakis, J.
Tiebes, M. Sato, E. Untersteller, J. Am. Chem. Soc. 1995, 117, 1173 
1174; K. C. Nicolaou, C.-K. Hwang, M. E. Duggan, D. A. Nugiel, Y.
Abe, K. Bal Reddy, S. A. DeFrees, D. R. Reddy, R. A. Awartani,
S. R. Conley, F. P. J. T. Rutjes, E. A. Theodorakis, J. Am. Chem. Soc.
1995, 117, 10 227  10 238; K. C. Nicolaou, E. A. Theodorakis,
F. P. J. T. Rutjes, M. Sato, J. Tiebes, X.-Y. Xiao, C.-K. Hwang, M. E.
Duggan, Z. Yang, E. A. Couladouros, F. Sato, J. Shin, H.-M. He, T.
Bleckman, J. Am. Chem. Soc. 1995, 117, 10 239  10 251; K. C.
Nicolaou, F. P. J. T. Rutjes, E. A. Theodorakis, J. Tiebes, M. Sato, E.
Untersteller, J. Am. Chem. Soc. 1995, 117, 10 252  10 263.
K. C. Nicolaou, Angew. Chem. 1996, 108, 644  664; Angew. Chem.
Int. Ed. Engl. 1996, 35, 588  607. See also ref. [3].
M. Konishi, H. Ohkuma, T. Tsuno, T. Oki, G. D. Van Duyne, J.
Clardy, J. Am. Chem. Soc. 1990, 1127, 3715  3716.
H. Kamei, Y. Nishiyama, A. Takahashi, Y. Obi, T. Oki, J. Antibiot.
1991, 44, 1306  1311.
J. Taunton, J. L. Wood, S. L. Schreiber, J. Am. Chem. Soc. 1993, 115,
10 378  10 379.
A. G. Myers, M. E. Fraley, M. J. Tom, S. B. Cohen, D. J. Madar,
Chem. Biol. 1995, 2, 33  43.
M. D. Shair, T. Y. Yoon, K. K. Mosny, T. C. Chou, S. J. Danishefsky, J.
Am. Chem. Soc. 1996, 118, 9509  9525.
a) K. L. Rinehart, T. G. Holt, N. L. Fregeau, P. A. Keifer, G. R.
Wilson, T. J. Perun, Jr., R. Sakai, A. G. Thompson, A. G. Stroh, L. S.
Shield, D. S. Seigler, L. H. Li, D. G. Martin, C. J. P. Grimmelikhuijzen, G. Gade, J. Nat. Prod. 1990, 53, 771  792; b) K. L. Rinehart, R.
Sakai, T. G. Holt, N. L. Fregeau, T. J. Perun, Jr., D. S. Seigler, G. R.
Wilson, L. S. Shield, Pure Appl. Chem. 1990, 62, 1277  1280; c) K. L.
Rinehart, T. G. Holt, N. L. Gregeau, J. G. Stroh, P. A. Keifer, F. Sun,
L. H. Li, D. G. Martin, J. Org. Chem. 1990, 55, 4512  4515; d) A. E.
Wright, D. A. Forleo, G. P. Gunawardana, S. P. Gunasekera, F. E.
Koehn, O. J. McConnell, J. Org. Chem. 1990, 55, 4508  4512; e) R.
Sakai, K. L. Rinehart, Y. Guan, H.-J. Wang, Proc. Natl. Acad. Sci.
USA 1992, 89, 11 456  11 460.
E. J. Corey, D. Y. Gin, R. S. Kania, J. Am. Chem. Soc. 1996, 118,
9202  9203.
E. J. Martinez, T. Owa, S. L. Schreiber, E. J. Corey, Proc. Natl. Acad.
Sci. USA 1999, 96, 3496  3501.
G. Hofle, N. Bedorf, H. Steinmetz, D. Schomberg, K. Gerth, H.
Reichenbach, Angew. Chem. 1996, 108, 1671  1673; Angew. Chem.
Int. Ed. Engl. 1996, 35, 1567  1569.
Review: K. C. Nicolaou, F. Roschangar, D. Vourloumis, Angew. Chem.
1998, 110, 2120  2153; Angew. Chem. Int. Ed. 1998, 37, 2014  2045.
Angew. Chem. Int. Ed. 2000, 39, 44  122
Natural Products Synthesis
[190] A. Balog, D. Meng, T. Kamenecha, P. Bertinato, D.-S. Su, E. J.
Sorensen, S. J. Danishefsky, Angew. Chem. 1996, 108, 2976  2978;
Angew. Chem. Int. Ed. Engl. 1996, 35, 2801  2803.
[191] Z. Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, Angew.
Chem. 1997, 109, 170  172; Angew. Chem. Int. Ed. Engl. 1997, 36,
166  168.
[192] D. Schinzer, A. Limberg, A. Bauer, O. M. Bohm, M. Cordes, Angew.
Chem. 1997, 109, 543  544; Angew. Chem. Int. Ed. Engl. 1997, 36,
523  524.
[193] D.-S. Su, D. Meng, P. Bertinato, A. Balog, E. J. Sorensen, S. J.
Danishefsky, Y.-H. Zheng, T. C. Chou, L. He, S. B. Horwitz, Angew.
Chem. 1997, 109, 775  777; Angew. Chem. Int. Ed. Engl. 1997, 36,
757  759.
[194] K. C. Nicolaou, N. Winssinger, J. Pastor, S. Ninkovic, F. Sarabia, Y.
He, D. Vourloumis, Z. Yang, T. Li, P. Giannakakou, E. Hamel, Nature
1997, 387, 268  272.
[195] K. C. Nicolaou, Y. He, D. Vourloumis, H. Vallberg, Z. Yang, Angew.
Chem. 1996, 108, 2554  2556; Angew. Chem. Int. Ed. Engl. 1996, 34,
2399  2401.
[196] K. C. Nicolaou, X.-Y. Xiao, Z. Parandoosh, A. Senyei, M. P. Nova,
Angew. Chem. 1995, 107, 2476  2479; Angew. Chem. Int. Ed. Engl.
1995, 33, 2289  2291.
[197] K. C. Nicolaou, D. Vourloumis, T. Li, J. Pastor, N. Winssinger, Y. He,
S. Ninkovic, F. Sarabia, H. Vallberg, F. Roschangar, N. P. King,
M. R. V. Finlay, P. Giannakakou, P. Verdier-Pinard, E. Hamel,
Angew. Chem. 1997, 109, 2181  2187; Angew. Chem. Int. Ed. Engl.
1997, 36, 2097  2103.
[198] a) W.-H. Fenical, P. R. Jensen, T. Lindel, USA 5 473 057, 1995 [Chem.
Abstr. 1996: 34 898]; b) T. Lindel, P. R. Hensen, W.-H. Fenical, B. H.
Long, A. M. Casazza, J. Carboni, C. R. Fairchild, J. Am. Chem. Soc.
1997, 119, 8744  8745.
[199] K. C. Nicolaou, F. van Delft, T. Ohshima, D. Vourloumis, J. Xu, S.
Hosokawa, J. A. Pfefferkorn, S. Kim, T. Li, Angew. Chem. 1997, 109,
2631  2634; Angew. Chem. Int. Ed. Engl. 1997, 36, 2520  2524; K. C.
Nicolaou, T. Ohshima, S. Hosokawa, F. van Delft, D. Vourloumis, J.
Xu, J. A. Pfefferkorn, S. Kim, J. Am. Chem. Soc. 1998, 120, 8674 
8680.
[200] X.-T. Chen, B. Zhou, S. K. Bhattacharya, C. E. Gutteridge, T. R. R.
Pettus, S. J. Danishefsky, Angew. Chem. 1998, 110, 835  838; Angew.
Chem. Int. Ed. 1998, 37, 789  892.
[201] M. DAmbrosio, A. Guerriero, F. Pietra, Helv. Chim. Acta 1987, 70,
2019  2027; 1988, 71, 964  976.
[202] M. Ciomei, C. Albanese, W. Pastori, M. Grandi, F. Pietra, M.
DAmbrosio, A. Guerriero, C. Battistini, Proc. Am. Assoc. Cancer
Res. 1997, 38, 5.
[203] For a review on sarcodictyins and eleutherobins, see K. C. Nicolaou,
J. A. Pfefferkorn, Chem. Pharm. Bull. 1999, 47, 1199  1213.
[204] a) K. C. Nicolaou, J.-Y. Xu, S. Kim, T. Ohshima, S. Hosokawa, J. A.
Pfefferkorn, J. Am. Chem. Soc. 1997, 119, 11 353  11 354; b) K. C.
Nicolaou, J.-Y. Xu, S. Kim, J. A. Pfefferkorn, T. Ohshima, D.
Vourloumis, S. Hosokawa, J. Am. Chem. Soc. 1998, 120, 8661  8662.
[205] a) K. C. Nicolaou, N. Winssinger, D. Vourloumis, T. Ohshima, S.
Kim, J. Pfefferkorn, J.-Y. Xu, T. Li, J. Am. Chem. Soc. 1998, 120,
10 814  10 826; b) K. C. Nicolaou, S. Kim, J. A. Pfefferkorn,
J.-Y. Xu, T. Ohshima, S. Hosokawa, D. Vourloumis, T. Li, Angew.
Chem. 1998, 110, 1483  1486; Angew. Chem. Int. Ed. 1998, 37, 1418 
1421.
[206] M. Hergenhahn, W. Adolf, E. Hecker, Tetrahedron Lett. 1975, 19,
1595  1598.
[207] R. J. Schmidt, F. Evans, J. Phytochem. 1976, 15, 1778  1779.
[208] M. J. Caterina, M. A. Schumache, M. Tominaga, T. A. Rosen, J. D.
Levine, D. Julius, Nature 1997, 389, 816  824. See also M. A. Rouhi,
Chem. Eng. News 1998, 76(4), 31  34.
[209] P. A. Wender, K. D. Rice, M. E. Schnute, J. Am. Chem. Soc. 1997, 119,
7897  7898; P. A. Wender, R. M. Keenan, H. Y. Lee, J. Am. Chem.
Soc. 1987, 109, 4390  4392.
[210] P. A. Wender, C. D. Jesudason, H. Nakahira, N. Tamura, A. L. Tebbe,
Y. Ueno, J. Am. Chem. Soc. 1997, 119, 12 976  12 977.
[211] Y. Shimizu, H.-N. Chou, H. Bando, G. VanDuyne, J. C. Clardy, J. Am.
Chem. Soc. 1986, 108, 514  515; J. Pawlak, M. S. Tempesta, M. G.
Zagorski, M. S. Lee, K. Nakanishi, T. Iwashita, M. L. Gross, K. B.
Tomer, J. Am. Chem. Soc. 1987, 109, 1144  1150.
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
[212] K. C. Nicolaou, Z. Yang, G.-Q. Shi, J. L. Gunzner, K. A. Agrios, P.
Gartner, Nature 1998, 392, 264  269; K. C. Nicolaou, M. E. Bunnage,
D. G. McGarry, S. Shi, P. K. Somers, P. A. Wallace, X.-J. Chu, K. A.
Agrios, J. L. Gunzner, Z. Yang, Chem. Eur. J. 1999, 5, 599  617; K. C.
Nicolaou, P. A. Wallace, S. Shi, M. A. Ouellette, M. E. Bunnage, J. L.
Gunzner, K. A. Agrios, G.-Q. Shi, P. Gartner, Z. Yang, Chem. Eur. J.
1999, 5, 618  627; K. C. Nicolaou, G.-Q. Shi, J. L. Gunzner, P.
Gartner, P. A. Wallace, M. A. Ouellette, S. Shi, M. E. Bunnage, K. A.
Agrios, C. A. Veale, C.-K. Hwang, J. Hutchinson, C. V. C. Prasad,
W. W. Ogilvie, Z. Yang, Chem. Eur. J. 1999, 5, 628  645; K. C.
Nicolaou, J. L. Gunzner, G.-Q. Shi, K. A. Agrios, P. Gartner, Z. Yang,
Chem. Eur. J. 1999, 5, 646  658.
[213] K. C. Nicolaou, G.-Q. Shi, J. L. Gunzner, P. Grtner, Z. Yang, J. Am.
Chem. Soc. 1997, 119, 5467  5468.
[214] R. Sakai, T. Higa, C. W. Jefford, G. Bernardinelli, J. Am. Chem. Soc.
1986, 108, 6404  6405.
[215] Reviews: a) M. Tsuda, J. Kobayashi, Heterocycles 1997, 46, 765  794;
b) N. Matzanke, R. Gregg, S. Weinreb, Org. Prep. Proc. Intl. 1998,
30, 1  51; c) E. Magnier, Y. Langlois, Tetrahedron 1998, 54, 6201 
6258.
[216] J. E. Baldwin, R. C. Whitehead, Tetrahedron Lett. 1992, 33, 2059 
2062.
[217] J. D. Winkler, J. M. Axten, A. Ali, M. C. Hillier, J. Am. Chem. Soc.
1998, 120, 6425  6426.
[218] S. F. Martin, J. M. Humphrey, A. Ali, M. C. Hillier, J. Am. Chem. Soc.
1999, 121, 866  867.
[219] J. E. Baldwin, T. E. W. Claridge, A. J. Culshaw, F. A. Heupel, V. Lee,
D. R. Spring, D. C. Whitehead, R. J. Boughtflower, I. M. Mutton,
R. J. Upton, Angew. Chem. 1998, 110, 2806  2808; Angew. Chem. Int.
Ed. 1998, 37, 2661  2663.
[220] K. C. Nicolaou, C. N. C. Boddy, S. Brse, N. Winssinger, Angew.
Chem. 1999, 111, 2230  2287; Angew. Chem. Int. Ed. 1999, 38, 2096 
2152.
[221] M. H. McMormich, W. M. Stark, G. E. Pittenger, J. M. McGuire,
Antibiot. Annu. 1955  1956, 606  611.
[222] C. M. Harris, T. M. Harris, J. Am. Chem. Soc. 1982, 104, 4293  4295.
[223] D. A. Evans, M. R. Wood, B. W. Trotter, T. I. Richardson, J. C.
Barrow, J. K. Katz, Angew. Chem. 1998, 110, 2864  2868; Angew.
Chem. Int. Ed. 1998, 37, 2700  2704; D. A. Evans, C. J. Dinsmore,
P. S. Watson, M. R. Wood, T. I. Richardson, B. W. Trotter, J. L. Katz,
Angew. Chem. 1998, 110, 2868  2872; Angew. Chem. Int. Ed. 1998, 37,
2704  2708.
[224] K. C. Nicolaou, S. Natarajan, H. Li, N. F. Jain, R. Hughes, M. E.
Solomon, J. M. Ramanjulu, C. N. C. Boddy, M. Takayanagi, Angew.
Chem. 1998, 110, 2872  2878; Angew. Chem. Int. Ed. 1998, 37, 2708 
2714; K. C. Nicolaou, N. F. Jain, S. Natarajan, R. Hughes, M. E.
Solomon, H. Li, J. M. Ramanjulu, M. Takayanagi, A. E. Koumbis, T.
Bando, Angew. Chem. 1998, 110, 2879  2881; Angew. Chem. Int. Ed.
1998, 37, 2714  2717; K. C. Nicolaou, M. Takayanagi, N. F. Jain, S.
Natarajan, A. E. Koumbis, T. Bando, J. M. Ramanjulu, Angew.
Chem. 1998, 110, 2881  2883; Angew. Chem. Int. Ed. 1998, 37, 2717 
2719.
[225] K. C. Nicolaou, H. J. Mitchell, N. F. Jain, N. Winssinger, R. Hughes,
T. Bando, Angew. Chem. 1998, 111, 253  255; Angew. Chem. Int. Ed.
1999, 38, 240  244.
[226] K. C. Nicolaou, H. Li, C. N. C. Boddy, J. M. Ramanjulu, T. Y. Yue, S.
Natarajan, X.-J. Chu, S. Brse, R. Rbsam, Chem. Eur. J. 1999, 5,
2584  2601; K. C. Nicolaou, C. N. C. Boddy, H. Li, A. E. Koumbis, R.
Hughes, S. Natarajan, N. F. Jain, J. M. Ramanjulu, S. Brse, Chem.
Eur. J. 1999, 5, 2602  2621; K. C. Nicolaou, A. E. Koumbis, M.
Takayanagi, S. Natarajan, N. F. Jain, T. Bando, H. Li, R. Hughes,
Chem. Eur. J. 1999, 5, 2622  2647; K. C. Nicolaou, H. J. Mitchell,
N. F. Jain, R. Hughes, N. Winssinger, S. Natarajan, A. E. Koumbis,
Chem. Eur. J. 1999, 5, 2648  2667.
[227] D. L. Boger, S. Miyazaki, S. H. Kim, J. H. Wu, O. Loiseleur, S. L.
Castle, J. Am. Chem. Soc. 1999, 121, 3226  3227.
[228] K. C. Nicolaou, C. N. C. Boddy, S. Natarajan, T.-Y. Yue, H. Li,
S. Brse, J. M. Ramanjulu, J. Am. Chem. Soc. 1997, 119, 3421 
3422.
[229] T. T. Dabrah, T. Kaneko, W. Massefski, Jr., E. B. Whipple, J. Am.
Chem. Soc. 1997, 119, 1594  1598; T. T. Dabrah, H. J. Harwood, Jr.,
L. H. Huang, N. D. Jankovich, T. Kaneko, J.-C. Li, S. Lindsey, P. M.
115
REVIEWS
[230]
[231]
[232]
[233]
[234]
[235]
[236]
[237]
[238]
[239]
[240]
[241]
[242]
[243]
[244]
[245]
[246]
[247]
[248]
[249]
[250]
116
Moshier, T. A. Subashi, M. Therrien, P. C. Watts, J. Antibiot. 1997, 50,
1  7.
K. C. Nicolaou, P. S. Baran, Y.-L. Zhong, H.-S. Choi, W. H. Yoon, Y.
He, K. C. Fong, Angew. Chem. 1999, 111, 1774  1781; Angew. Chem.
Int. Ed. 1999, 38, 1669  1675; K. C. Nicolaou, P. S. Baran, Y.-L.
Zhong, K. C. Fong, Y. He, W. H. Yoon, H.-S. Choi, Angew. Chem.
1999, 111, 1781  1784; Angew. Chem. Int. Ed. 1999, 38, 1676  1678.
K. C. Nicolaou, P. S. Baran, R. Jautelat, Y. He, K. C. Fong, H.-S. Choi,
W. H. Yoon, Y.-L. Zhong, Angew. Chem. 1999, 111, 532  535; Angew.
Chem. Int. Ed. 1999, 38, 549  552.
K. C. Nicolaou, Y. He, K. C. Fong, W. H. Yoon, H. S. Choi, Y. L.
Zhong, P. S. Baran, Org. Lett. 1999, 1, 63  66.
K. C. Nicolaou, P. S. Baran, Y.-L. Zhong, H.-S. Choi, K. C. Fong, Y.
He, W. H. Yoon, Org. Lett. 1999, 1, 883  886.
a) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, Angew. Chem. in press;
b) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, Angew. Chem. in press.
K. C. Nicolaou, 1999, unpublished results.
a) E. F. Rogers, H. R. Snyder, R. F. Fischer, J. Am. Chem. Soc. 1952,
74, 1987  1989; b) H. R. Snyder, R. F. Fischer, J. F. Walker, H. E. Els,
G. A. Nussberger, J. Am. Chem. Soc. 1954, 76, 2819  2825, 4601 
4605; c) H. R. Snyder, H. F. Strohmayer, R. A. Mooney, J. Am.
Chem. Soc. 1958, 80, 3708  3710.
P. Yates, F. N. MacLachlan, I. D. Rae, M. Rosenberger, A. G. Szabo,
C. R. Willis, M. P. Cava, M. Behforouz, M. V. Lakshmikantham, W.
Zeigler, J. Am. Chem. Soc. 1973, 95, 7842  7850.
F. He, Y. Bo, J. D. Altom, E. J. Corey, J. Am. Chem. Soc. 1999, 121,
6771  6772.
a) J.-J. Sanglier, V. Quesniaux, T. Fehr, H. Hofmann, M. Mahnke, K.
Memmert, W. Schuler, G. Zenke, L. Gschwind, C. Mauer, W.
Schilling, J. Antibiot. 1999, 52, 466  473; b) T. Fehr, J. Kallen, L.
Oberer, J.-J. Sanglier, W. Schilling, J. Antibiotics 1999, 52, 474  479;
c) D. E. Zacharias, Acta Crystallogr. Sect. B 1970, 25, 1455  1464.
K. C. Nicolaou, J. Xu, F. Murphy, S. Barluenga, O. Baudoin, H. Wei,
D. L. F. Gray, T. Ohshima, Angew. Chem. 1999, 111, 2599  2604;
Angew. Chem. Int. Ed. 1999, 38, 2447  2451.
a) A. K. Ganguly, B. Pramanik, T. C. Chan, O. Sarre, Y.-T. Liu, J.
Morton, V. M. Girijavallabhan, Heterocycles 1989, 28, 83  88.
D. E. Wright, Tetrahedron 1979, 35, 1207  1237.
a) J. A. Maertens, Curr. Opin. Anti-Infect. Invest. Drugs 1999, 1, 49 
56; b) J. A. Maertens, Idrugs 1999, 2, 446  453.
a) A. K. Ganguly, J. L. McCormick, T. M. Chan, A. K. Saksena, P. R.
Das, Tetrahedron Lett. 1997, 38, 7989  7991; b) T. M. Chan, R. M.
Osterman, J. B. Morton, A. K. Ganguly, Magn. Res. Chem. 1997, 35,
529  532.
K. C. Nicolaou, H. J. Mitchell, H. Suzuki, R. M. Rodrguez, O.
Baudoin, K. C. Fylaktakidou, Angew. Chem. 1999, 111, 3523  3528;
Angew. Chem. Int. Ed. 1999, 38, 3334  3339; K. C. Nicolaou, R. M.
Rodrguez, K. C. Fylaktakidou, H. Suzuki, H. J. Mitchell, Angew.
Chem. 1999, 111, 3529  3534; Angew. Chem. Int. Ed. 1999, 38,
3340  3345; K. C. Nicolaou, H. J. Mitchell, R. M. Rodrguez, K. C.
Fylaktakidou, H. Suzuki, Angew. Chem. 1999, 111, 3535  3540;
Angew. Chem. Int. Ed. 1999, 38, 3345  3350.
K. C. Nicolaou, F. L. van Delft, S. C. Conley, H. J. Mitchell, J. Jin, M.
Rodrguez, J. Am. Chem. Soc. 1997, 119, 9057  9058.
a) G. Jaurand, J.-M. Beau, P. Sinay, J. Chem. Soc. Chem. Commun.
1982, 701  703; b) M. Trumtel, P. Tavecchia, A. Veyrieres, P. Sinay,
Carbohydr. Res. 1990, 202, 257  275.
R. F. Heck, Palladium Reagents in Organic Synthesis, Academic
Press, London, 1985.
S. K. Armstrong, J. Chem. Soc. Perkin Trans. 1 1998, 371  388. See
also ref. [271]. For some early pioneering studies on this reaction, see
T. J. Katz, S. J. Lee, N. Acton, Tetrahedron Lett. 1976, 4247  4250;
T. J. Katz, N. Acton, Tetrahedron Lett. 1976, 4251  4254; T. J. Katz, J.
McGinnis, C. Altus, J. Am. Chem. Soc. 1976, 98, 606  608; T. J. Katz,
Organomet. Chem. 1977, 16, 283  317.
a) S. T. Nguyen, L. K. Johnson, R. H. Grubbs, J. Am. Chem. Soc.
1992, 114, 3974  3975; b) S. T. Nguen, R. H. Grubbs, J. W. Ziller, J.
Am. Chem. Soc. 1993, 115, 9858  9859; c) W. A. Herrmann, W. C.
Schattenmann, O. Nuyken, S. C. Glander, Angew. Chem. 1996, 108,
1169  1170; Angew Chem. Int. Ed. Engl. 1996, 36, 1087  1088; d) P.
Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118,
100  110.
K. C. Nicolaou et al.
[251] R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare,
M. O. Regan, J. Am. Chem. Soc. 1990, 112, 3875  3886.
[252] C.-H. Wong, G. M. Whitesides, Enzymes in Synthetic Organic
Chemistry, Pergamon, Oxford, 1994.
[253] a) K. Ehud, R. A. Lerner, Isr. J. Chem. 1996, 36, 113  16; b) P. G.
Schultz, R. A. Lerner, Science 1995, 269, 1835  1842; c) P. G. Schultz,
R. A. Lerner, Acc. Chem. Res. 1993, 26, 391  395.
[254] a) D. E. Kane, C. T. Walsh, C. Khosla, Science 1998, 282, 63  68;
b) C. Khosla, Chem. Rev. 1997, 97, 2577  2590; c) L. Katz, Chem. Rec.
1997, 97, 2557  2575; d) P. F. Leadlay, Curr. Opin. Chem. Biol.
1997, 1, 162  168; e) I. A. Scott, Tetrahedron 1994, 50, 13 315 
13 333; f) C. A. Roessner, I. A. Scott, Annu. Rev. Microbiol.
1996, 50, 467  490; g) I. A. Scott, J. Nat. Prod. 1994, 57, 557 
573.
[255] a) Z. G. Hajos, D. R. Parrish, J. Org. Chem. 1974, 39, 1615  1621;
b) U. Eder, G. Sauer, R. Wiechert, Angew. Chem. 1971, 83, 492  493;
Angew. Chem. Int. Ed. Engl. 1971, 10, 496  497; c) Z. G. Hajos, D. R.
Parrish, J. Org. Chem. 1973, 38, 3239  3243; d) G. Sauer, U. Eder, G.
Haffer, G. Neef, R. Wiechert, Angew. Chem. 1975, 87, 413; Angew.
Chem. Int. Ed. Engl. 1975, 14, 417.
[256] a) W. S. Knowles, M. J. Sabacky, B. D. Vineyard, D. J. Weinkauff, J.
Am. Chem. Soc. 1975, 97, 2567  2568; b) W. S. Knowles, Acc. Chem.
Res. 1983, 16, 106  112; c) W. S. Knowles, J. Chem. Educ. 1986, 63,
222  225.
[257] a) H. B. Kagan, Bull. Soc. Chim. Fr. 1988, 846  853; b) J. W. Scott,
Top. Stereochem. 1989, 19, 209  226; c) J. Crosby, Tetrahedron 1991,
47, 4789  4846; d) S. Akutagawa in Organic Synthesis in Japan, Past,
Present, and Future (Ed.: R. Noyori), Tokyo Kagaku Dozin, Co.,
Tokyo, 1992, p. 75.
[258] R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New
York, 1994.
[259] For original publication, see ref. [124]. For excellent reviews of the
Sharpless asymmetric epoxidation reaction, see a) B. E. Rossiter in
Asymmetric Synthesis, Vol. 5 (Ed.: J. D. Morrison), Academic Press,
New York, 1985, pp. 193  246; b) M. G. Finn, K. B. Sharpless in
Asymmetric Synthesis, Vol. 5 (Ed.: J. D. Morrison), Academic Press,
New York, 1985, pp. 247  308; c) R. A. Johnson, K. B. Sharpless
in Comprehensive Organic Synthesis, Vol. 7 (Eds: B. M. Trost,
I. Fleming), Pergamon, New York, 1991, p. 389  436; d) R. A.
Johnson, K. B. Sharpless in Catalytic Asymmetric Synthesis (Ed.: I.
Ojima), VCH, New York, 1993, p. 103; e) A. Pfenninger, Synthesis
1986, 89  116; f) T. Katsuki, V. S. Martin, Org. React. 1996, 48, 1 
299.
[260] M. Shibasaki, H. Sasai, T. Arai, Angew. Chem. 1997, 109,
1290  1310; Angew. Chem. Int. Ed. Engl. 1997, 36, 1237  1256.
[261] a) K. Neuschuetz, J. Velker, R. Neier, Synthesis 1998, 3, 227  255;
b) H. Waldmann, Organic Synthesis Highlights II, VCH, Weinheim,
1995, pp. 193  202; c) S. T. Dennison, D. C. Harrowven, J. Chem.
Educ. 1996, 73, 697  701; d) L. F. Tietze, Chem. Ind. 1995, 12,
453  457; e) P. J. Parsons, C. S. Penkett, A. J. Shell, Chem. Rev. 1996,
96, 195  206; f) R. A. Bunce, Tetrahedron 1995, 51, 13 103  13 159;
g) L. F. Tietze, Chem. Rev. 1996, 96, 115  136; h) J. D. Winkler,
Chem. Rev. 1996, 96, 167  176; i) T. L. Ho, Tandem Organic
Reactions, Wiley, New York, 1992.
[262] See refs. [93, 94] and a) E. E. van Tamelen, Acc. Chem. Res. 1975, 8,
152  158; b) E. E. van Tamelen, G. M. Milne, M. I. Suffness, M. C.
Rudler Chauvin, R. J. Anderson, R. S. Achini, J. Am. Chem. Soc.
1970, 92, 7202  7204; c) E. E. van Tamelen, J. W. Murphy, J. Am.
Chem. Soc. 1970, 92, 7206  7207; d) E. E. van Tamelen, R. J.
Anderson, J. Am. Chem. Soc. 1972, 94, 8225  8228; e) E. E.
van Tamelen, R. A. Holton, R. E. Hopla, W. E. Konz, J. Am. Chem.
Soc. 1972, 94, 8228  8229; f) E. E. van Tamelen, M. P. Seiler, W.
Wierenga, J. Am. Chem. Soc. 1972, 94, 8229  8231; g) K. B. Sharpless, J. Am. Chem. Soc. 1970, 92, 6999  7001; h) P. A. Bartlett in
Asymmetric Synthesis, Vol. 3 (Ed.: J. D. Morrison), Academic Press,
New York, 1984, p. 341; i) W. S. Johnson, D. M. Bailey, R. Owyang,
R. A. Bell, B. Jaques, J. K. Crandall, J. Am. Chem. Soc. 1964, 86,
1959  1966; j) W. S. Johnson, J. K. Crandall, J. Org. Chem. 1965, 30,
1785  1790.
[263] I. Ugi, Angew. Chem. 1982, 94, 826  35; Angew. Chem. Int. Ed. Engl.
1982, 21, 810  819.
[264] D. P. Curran, ACS Symp. Ser. 1998, 685, 62  71.
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
[265] B. M. Trost, Angew. Chem. 1995, 107, 285  307; Angew. Chem. Int.
Ed. Engl. 1995, 34, 259  281; see also, A. de Meijerie, S. Brse, J.
Organomet. Chem. 1999, 576, 88  100.
[266] a) O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1928, 460, 98  122;
b) Nobel Lectures: Chemistry 1942  1962, Elsevier, New York, 1964,
pp. 259  303; c) W. Oppolzer in Comprehensive Organic Synthesis,
Vol. 5 (Eds.: B. M. Trost, I. A. Fleming, L. A. Paquette), Pergamon,
New York, 1991, p. 315  400.
[267] a) G. Wittig, G. Geissler, Justus Liebigs Ann. Chem. 1953, 580, 44 
53; b) K. C. Nicolaou, M. W. Hrter, J. L. Gunzner, A. Nadin, Liebigs
Ann. Chem. 1997, 1283  1301; c) Nobel Lectures: Chemistry 1971 
1980, World Scientific, River Edge, NJ, 1993, pp. 368  376.
[268] H. C. Brown, B. C. S. Rao, J. Am. Chem. Soc. 1956, 78, 5694  5695;
b) H. C. Brown, Hydroboration, W. A. Benjamin, New York, 1962;
c) Nobel Lectures: Chemistry 1971  1980, World Scientific, Teaneck,
NJ, 1993, pp. 333  364.
[269] a) E. J.Corey, D. Seebach, J. Org. Chem. 1966, 31, 4097  4099; b) D.
Seebach, E. J. Corey, J. Org. Chem. 1975, 40, 231  237.
[270] Palladium Reagents and Catalysts (Ed.: J. Tsuji), Wiley, New York,
1996.
[271] a) R. H. Grubbs, S. J. Miller, G. C. Fu, Acc. Chem. Res. 1995, 28,
446  452; b) M. Schuster, S. Blechert, Angew. Chem. 1997, 109,
2124  2145; Angew. Chem. Int. Ed. Engl. 1997, 36, 2037  2056;
c) Alkene Metathesis in Organic Synthesis in Topics in Organometallic Chemistry, Vol. 1 (Ed.: A. Frstner), Springer, New York,
1998; See also R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413 
4450.
[272] T. W. Greene, P. G. M. Wuts, Protecting Groups in Organic Synthesis,
Wiley, New York, 1999.
[273] D. H. R. Barton, Experientia 1950, 6, 316  320.
[274] R. A. Hirschmann, Angew. Chem. 1991, 103, 1305  1330; Angew.
Chem. Int. Ed. Engl. 1991, 30, 1278  1301.
[275] J. S. Fruechtel, G. Jung, Angew. Chem. 1996, 108, 19  46; Angew.
Chem. Int. Ed. Engl. 1996, 35, 17  42.
[276] B. Merrifield in Peptides (Ed.: B. Gutte), Academic Press, San Diego,
1995, pp. 93  169.
[277] Combinatorial Chemistry (Eds.: S. R. Wilson, A. W. Czarnik), Wiley,
New York, 1997.
[278] a) Combinatorial Chemistry and Molecular Diversity Drug Discovery
(Eds.: E. M. Gordon, J. F. Kerwin, Jr.), Wiley, New York, 1998,
p. 516; b) R. E. Dolle, Mol. Diversity 1998, 3, 199  233; b) R. E.
Dolle, K. H. Nelson, Jr., J. Comb. Chem. 1999, 1, 235  282.
[279] a) K. D. Shimizu, M. L. Snapper, A. H. Hoveyda, Chem. Eur. J. 1998,
4, 1885  1889; b) A. H. Hoveyda, Chem. Biol. 1998, 5, R187-R191;
c) M. B. Francis, T. F. Jamison, E. N. Jacobsen, Curr. Opin. Chem.
Biol. 1998, 2, 422  428.
[280] P. G. Schultz, X.-D. Xiang, Curr. Opin. Solid State Mater. Sci. 1998, 3,
153  158.
[281] IRORI (San Diego, CA) and Argonaut (San Francisco, CA) are two
examples of companies specializing in the design and manufacturing
of automated systems for chemical synthesis (K.C.N. is an advisor to
IRORI).
[282] W. Wells, Chem. Biol. 1999, 6, R209  R211.
[283] a) D. S. Tan, M. A. Foley, M. D. Shair, S. L. Schreiber, J. Am. Chem.
Soc. 1998, 120, 8565  8566; b) K. B. Sharpless, personal communication; c) see ref. [234].
[284] Chemical Research2000 and Beyond: Challenges and Visions
(Ed.: P. Barkan), Oxford University Press, New York, 1998,
p. 218.
[285] a) H. H. Rennhard, C. R. Stephens, R. B. Woodward, J. Am. Chem.
1962, 84, 3222  3224; b) R. B. Woodward, Pure Appl. Chem.
1963, 6, 561  573; c) J. J. Krost, J. D. Johnston, K. Butler, E. J.
Bianco, L. H. Conover R. B. Woodward, J. Am. Chem. Soc. 1968, 90,
439  457.
[286] R. B. Woodward, The Harvey Lectures, Vol. 31, Academic Press, New
York, 1965.
[287] a) M. A. Wuonola, R. B. Woodward, J. Am. Chem. Soc. 1973, 95,
284  285; b) M. A. Wuonola, R. B. Woodward, J. Am. Chem. Soc.
1973, 95, 5098  5099; c) M. A. Wuonola, R. B. Woodward, Tetrahedron 1976, 32, 1085  1095.
[288] a) W. J. Greenlee, R. B. Woodward, J. Am. Chem. Soc. 1976, 98,
6075  6076; b) W. J. Greenlee, R. B. Woodward, Tetrahedron 1980,
Angew. Chem. Int. Ed. 2000, 39, 44  122
[289]
[290]
[291]
[292]
[293]
[294]
[295]
[296]
[297]
[298]
[299]
[300]
[301]
[302]
[303]
[304]
[305]
[306]
[307]
[308]
[309]
[310]
[311]
[312]
[313]
[314]
[315]
36, 3361  3366; c) W. J. Greenlee, R. B. Woodward, Tetrahedron
1980, 36, 3367  3375.
R. B. Woodward, T. R. Hoye, J. Am. Chem. Soc. 1977, 99, 8007  8014.
a) I. Ernest, J. Gosteli, C. W. Greengrass, W. Holick, H. R. Pfaendler,
R. B. Woodward, J. Am. Chem. Soc. 1978, 100, 8214  8222; b) M.
Lang, K. Prasad, W. Holick, J. Gosteli, I. Ernest, R. B. Woodward, J.
Am. Chem. Soc. 1979, 101, 6296  6301; c) I. Ernest, J. Gosteli, R. B.
Woodward, J. Am. Chem. Soc. 1979, 101, 6301  6305; d) H. R.
Pfaendler, J. Gosteli, R. B. Woodward, J. Am. Chem. Soc. 1979, 101,
6306  6310; e) H. R. Pfaendler, J. Gosteli, R. B. Woodward, J. Am.
Chem. Soc. 1980, 102, 2039  2043; f) M. Lang, K. Prasad, J. Gosteli,
R. B. Woodward, Helv. Chim. Acta 1980, 63, 1093  1097.
a) E. J. Corey, A. G. Hortmann, W. R. Hertler, J. Am. Chem. Soc.
1958, 80, 2903  2905; b) E. J. Corey, A. G. Hortmann, W. R. Hertler,
J. Am. Chem. Soc. 1959, 81, 5209  5212.
a) E. J. Corey, R. B. Mitra, H. Uda, J. Am. Chem. Soc. 1963, 85, 362 
366; b) E. J. Corey, R. B. Mitra, H. Uda, J. Am. Chem. Soc. 1964, 86,
485  492.
a) E. J. Corey, S. Nozoe, J. Am. Chem. Soc. 1963, 85, 3527  3529;
b) E. J. Corey, S. Nozoe, J. Am. Chem. Soc. 1965, 87, 5728  5733.
a) E. J. Corey, A. G. Hortmann, J. Am. Chem. Soc. 1963, 85, 4033 
4034; b) E. J. Corey, A. G. Hortmann, J. Am. Chem. Soc. 1965, 87,
5736  5741.
a) E. J. Corey, S. Nozoe, J. Am. Chem. Soc. 1964, 86, 1652; b) E. J.
Corey, S. Nozoe, J. Am. Chem. Soc. 1965, 87, 5733  5735.
a) E. J. Corey, E. Hamanaka, J. Am. Chem. Soc. 1967, 89, 2758  2759;
b) E. J. Corey, S. Daigneault, B. R. Dixon, Tetrahedron Lett. 1993, 34,
3675  3678.
a) E. J. Corey, J. A. Katzenellenbogen, N. W. Gilman, S. A. Roman,
B. W. Erickson, J. Am. Chem. Soc. 1968, 90, 5618  5620; b) E. J.
Corey, H. Yamamoto, J. Am. Chem. Soc. 1970, 92, 6636  6637, c) E. J.
Corey, H. Yamamoto, J. Am. Chem. Soc. 1970, 92, 6637  6638.
a) E. J. Corey, N. N. Girotra, C. T. Mathew, J. Am. Chem. Soc. 1969,
91, 1557  1559; b) E. J. Corey, R. D. Balanson, Tetrahedron Lett.
1973, 34, 3153  3156.
E. J. Corey, K. Achiwa, J. A. Katzenellenbogen, J. Am. Chem. Soc.
1969, 91, 4318  4320.
a) E. J. Corey, D. E. Cane, L. Libit, J. Am. Chem. Soc. 1971, 93,
7016  7021; b) E. J. Corey, M. C. Desai, Tetrahedron Lett. 1985, 26,
3535  3538.
D. S. Watt, E. J. Corey, Tetrahedron Lett. 1972, 4651  4654.
E. J. Corey, B. B. Snider, J. Am. Chem. Soc. 1972, 94, 2549 
2550.
E. J. Corey, D. S. Watt, J. Am. Chem. Soc. 1973, 95, 2303  2311.
E. J. Corey, R. D. Balanson, J. Am. Chem. Soc. 1974, 96, 6516  6517.
a) E. J. Corey, J. F. Arnett, G. N. Widiger, J. Am. Chem. Soc. 1975, 97,
430  431; b) E. J. Corey, M. Petrzilka, Y. Ueda, Tetrahedron Lett.
1975, 4343  4346; c) E. J. Corey, M. Petrzilka, Y. Ueda, Helv. Chim.
Acta 1977, 60, 2294  2302.
E. J. Corey, D. N. Crouse, J. E. Anderson, J. Org. Chem. 1975, 40,
2140  2141.
E. J. Corey, K. C. Nicolaou, T. Toru, J. Am. Chem. Soc. 1975, 97,
2287  2288.
a) E. J. Corey, R. H. Wollenberg, Tetrahedron Lett. 1976, 4705  4708;
b) E. J. Corey, P. Carpino, Tetrahedron Lett. 1990, 31, 7555  7558.
a) E. J. Corey, M. Shibasaki, J. Knolle, T. Sugahara, Tetrahedron Lett.
1977, 785  788; b) E. J. Corey, M. Shibasaki, J. Knolle, Tetrahedron
Lett. 1977, 1625  1626.
E. J. Corey, S. Bhattacharyya, Tetrahedron Lett. 1977, 3919  3922.
E. J. Corey, G. E. Keck, I. Szekely, J. Am. Chem. Soc. 1977, 99, 2006 
2009.
a) E. J. Corey, R. L. Danheiser, S. Chandrasekaran, G. E. Keck, B.
Gopalan, S. D. Larsen, P. Siret, J. L. Gras, J. Am. Chem. Soc. 1978,
100, 8034  8036; b) E. J. Corey, J. Gorzynski Smith, J. Am. Chem.
Soc. 1979, 101, 1038  1039.
E. J. Corey, M. Behforouz, M. Ishiguro, J. Am. Chem. Soc. 1979, 101,
1608  1609.
E. J. Corey, H. L. Pearce, J. Am. Chem. Soc. 1979, 101, 5841  5843.
a) E. J. Corey, Y. Arai, C. Mioskowski, J. Am. Chem. Soc. 1979, 101,
6748  6749; b) E. J. Corey, S.-I. Hashimoto A. E. Barton, J. Am.
Chem. Soc. 1981, 103, 721  722; c) E. J. Corey, J. O. Albright, J. Org.
Chem. 1983, 48, 2114  2115; d) E. J. Corey, W.-G. Su, M. M.
117
REVIEWS
[316]
[317]
[318]
[319]
[320]
[321]
[322]
[323]
[324]
[325]
[326]
[327]
[328]
[329]
[330]
[331]
[332]
[333]
[334]
[335]
[336]
[337]
[338]
[339]
[340]
[341]
[342]
[343]
[344]
[345]
[346]
[347]
[348]
[349]
[350]
118
Mehrotra, Tetrahedron Lett. 1984, 25, 5123  5126; e) E. J. Corey, J.
Am. Chem. Soc. 1979, 101, 6748  6749.
E. J. Corey, D. A. Clark, G. Goto, A. Marfat, C. Mioskowski, B.
Samuelsson, S. Hammarstroem, J. Am. Chem. Soc. 1980, 102, 1436 
1439.
E. J. Corey, M. A. Tius, J. Das, J. Am. Chem. Soc. 1980, 102, 1742 
1744.
E. J. Corey, L. O. Weigel, A. R. Chamberlin, H. Cho, D. H. Hua, J.
Am. Chem. Soc. 1980, 102, 6613  6615.
E. J. Corey, A. Tramontano, J. Am. Chem. Soc. 1981, 103, 5599  5600.
E. J. Corey, J. Das, J. Am. Chem. Soc. 1982, 104, 5551  5553.
a) E. J. Corey, D. H. Hua, B. C. Pan, S. P. Seitz, J. Am. Chem. Soc.
1982, 104, 6818  6820; b) E. J. Corey, B. C. Pan, D. H. Hua, D. R.
Deardorff, J. Am. Chem. Soc. 1982, 104, 6816  6818.
E. J. Corey, A. Tramontano, J. Am. Chem. Soc. 1984, 106, 462  465.
E. J. Corey, D. Biswanath, J. Am. Chem. Soc. 1984, 106, 2735  2736.
E. J. Corey, M. M. Mehrotra, J. Am. Chem. Soc. 1984, 106, 3384 
3384.
a) E. J. Corey, J. P. Dittami, J. Am. Chem. Soc. 1985, 107, 256  257;
b) E. J. Corey, A. Guzman-Perez, M. C. Noe, J. Am. Chem. Soc. 1994,
116, 12 109  12 110.
E. J. Corey, M. C. Desai, T. A. Engler, J. Am. Chem. Soc. 1985, 107,
4339  4341.
a) E. J. Corey, A. G. Myers, N. Takahashi, H. Yamane, H. Schraudolf,
J. Am. Chem. Soc. 1987, 107, 5574  5575; b) E. J. Corey, A. G. Myers,
N. Takahashi, H. Yamane, H. Schraudolf, Tetrahedron Lett. 1986, 27,
5083  5084; c) E. J. Corey, H. Kigoshi, Tetrahedron Lett. 1991, 32,
5025  5028.
a) E. J. Corey, M. M. Mehrotra, Tetrahedron Lett. 1986, 27, 5173 
5176; b) E. J. Corey, W. Su, M. B. Cleaver, Tetrahedron Lett. 1989, 30,
4181  4184.
E. J. Corey, P. A. Magriotis, J. Am. Chem. Soc. 1987, 109, 287  289.
E. J. Corey, G. Wess, Y. B. Xiang, A. K. Singh, J. Am. Chem. Soc.
1987, 109, 4717  4721.
a) A. K. Singh, R. K. Bakshi, E. J. Corey, J. Am. Chem. Soc. 1987,
109, 6187  6189; b) E. J. Corey, A. Guzman-Perez, S. E. Lazerwith, J.
Am. Chem. Soc. 1997, 119, 11 769  11 776.
E. J. Corey, R. M. Burk, Tetrahedron Lett. 1987, 28, 6413  6416.
E. J. Corey, M. M. Mehrotra, Tetrahedron Lett. 1988, 29, 57  60.
E. J. Corey, D. C. Ha, Tetrahedron Lett. 1988, 29, 3171  3174.
a) E. J. Corey, P. da Silva Jardine, J. C. Rohloff, J. Am. Chem. Soc.
1988, 110, 3672  3673; b) E. J. Corey, P. da Silva Jardine, T. Mohri,
Tetrahedron Lett. 1988, 29, 6409  6412; c) E. J. Corey, P. da Silva Jardine, Tetrahedron Lett. 1989, 30, 7297  7300.
a) E. J. Corey, P. Carpino, J. Am. Chem. Soc. 1989, 111, 5472  5474;
b) E. J. Corey, P. Carpino, Tetrahedron Lett. 1990, 31, 3857  3858.
E. J. Corey, I. N. Houpis, J. Am. Chem. Soc. 1990, 112, 8997  8998.
a) E. J. Corey, G. A. Reichard, J. Am. Chem. Soc. 1992, 114, 10 677 
10 678; b) E. J. Corey, S. Choi, Tetrahedron Lett. 1993, 34, 6969 
6972; c) E. J. Corey, W. Li, G. A. Reichard, J. Am. Chem. Soc.
1998, 120, 2330  2336; e) E. J. Corey, W. Li, T. Nagamitsu, Angew.
Chem. 1998, 110, 1784  1787; Angew. Chem. Int. Ed. 1998, 37, 1676 
1679.
E. J. Corey, J. Lee, J. Am. Chem. Soc. 1993, 115, 8873  8874.
E. J. Corey, Y. J. Wu, J. Am. Chem. Soc. 1993, 115, 8871  8872.
E. J. Corey, A. Guzman-Perez, T.-P. Loh, J. Am. Chem. Soc. 1994,
116, 3611  3612.
a) T. G. Gant, M. C. Noe, E. J. Corey, Tetrahedron Lett. 1995, 36,
8745  8748; b) E. J. Corey, L. I. Wu, J. Am. Chem. Soc. 1993, 115,
9327  9328.
E. J. Corey, B. E. Roberts, B. R. Dixon, R. Brian, J. Am. Chem. Soc.
1995, 117, 193  196.
E. J. Corey, M. A. Letavic, J. Am. Chem. Soc. 1995, 117, 9616  9617.
E. J. Corey, R. S. Kania, J. Am. Chem. Soc. 1996, 118, 1229  1230.
E. J. Corey, S. Lin, J. Am. Chem. Soc. 1996, 118, 8765  8766.
E. J. Corey, G. Luo, L. S. Lin, Angew. Chem. 1998, 110, 1147  1149;
Angew. Chem. Int. Ed. 1998, 37, 1126  1128.
E. J. Corey, K. Lui, J. Am. Chem. Soc. 1997, 119, 9929  9930.
E. J. Martinez, E. J. Corey, Org. Lett. 1999, 1, in press.
Quinine: a) R. B. Woodward, W. E. Doering, J. Am. Chem. Soc.
1944, 66, 849; R. B. Woodward, W. E. Doering, J. Am. Chem. Soc.
1945, 67, 860  874; b) M. Gates, B. Sugavanam, S. L. Schreiber, J.
K. C. Nicolaou et al.
[351]
[352]
[353]
[354]
[355]
[356]
[357]
Am. Chem. Soc. 1970, 92, 205  207; c) J. Gutzwiller, M. Uskokovic,
J. Am. Chem. Soc. 1970, 92, 204  205; d) E. C. Taylor, S. F.
Martin, J. Am. Chem. Soc. 1972, 94, 6218  6220; e) T. Imanishi, M.
Inoue, Y. Wada, M. Hanaoka, Chem. Pharm. Bull. 1982, 30, 1925 
1928.
Cortisone: a) R. B. Woodward, F. Sondheimer, D. Taub, J. Am.
Chem. Soc. 1951, 73, 405  407; b) L. H. Sarett, G. E. Arth, R. M.
Lukes, R. E. Beyler, G. I. Poos, W. F. Johns, J. M. Constantin, J. Am.
Chem. Soc. 1952, 74, 4974  4976; c) Y. Horiguchi, E. Nakamura, I.
Kuwajima, J. Org. Chem. 1986, 51, 4323  4325; d) H. Nemoto, N.
Matsuhashi, M. Imaizumi, M. Nagai, K. Fukumoto, J. Org. Chem.
1990, 55, 5625  5631.
Morphine: a) M. Gates, G. Tschudi, J. Am. Chem. Soc. 1952, 72,
1109  1110; M. Gates, G. Tschudi, J. Am. Chem. Soc. 1956, 78, 1380 
1393; b) D. Elad, D. Ginsburg, J. Am. Chem. Soc. 1954, 76, 312  313;
c) G. C. Morrison, R. O. Waite, J. Shavel, Jr., Tetrahedron Lett. 1967,
4055  4056; d) T. Kametani, M. Ihara, K. Fukumoto, H. Yagi, J.
Chem. Soc. C 1969, 2030  2033; e) M. A. Schwartz, I. S. Mami, J. Am.
Chem. Soc. 1975, 97, 1239  1240; f) K. C. Rice, J. Org. Chem. 1980,
45, 3135  3137; g) D. A. Evans, C. H. Mitch, Tetrahedron Lett. 1982,
23, 285  288; h) J. E. Toth, P. L. Fuchs, J. Org. Chem. 1987, 52, 473 
475; i) K. A. Parker, D. Fokas, J. Am. Chem. Soc. 1992, 114, 9688 
9689; j) C. Y. Hong, N. Kado, L. E. Overman, J. Am. Chem. Soc.
1993, 115, 11 028  11 029; k) J. Mulzer, G. Duerner, D. Trauner,
Angew. Chem. 1996, 108, 3046  3048; Angew. Chem. Int. Ed. Engl.
1996, 35, 2830  2832.
Lysergic acid: a) ref. [26]; b) M. Julia, F. Le Goffic, J. Igolen, M.
Baillarge, Tetrahedron Lett. 1969, 1569  1571; c) V. W. Armstrong, S.
Coulton, R. Ramage, Tetrahedron Lett. 1976, 4311  4314; d) W.
Oppolzer, E. Francotte, K. Baettig, Helv. Chim. Acta. 1981, 64, 478 
481; e) J. Rebek, Jr., D. F. Tai, Y. K. Shue, J. Am. Chem. Soc. 1984,
106, 1813  1819; f) I. Ninomyia, C. Hashimoto, T. Kiguchi, T. Naito,
J. Chem. Soc. Perkin Trans. 1 1985, 941  948.
Yohimbine: a) E. E. van Tamelen, M. Shamma, A. W. Burgstahler, J.
Wolinsky, R. Tamm, P. E. Aldrich, J. Am. Chem. Soc. 1958, 80, 5006 
5007; b) L. Toke, K. Honty, C. Szantay, Chem. Ber. 1969, 102, 3248 
3259; c) G. Stork, R. N. Guthikonda, J. Am. Chem. Soc. 1972, 94,
5109  5110; d) T. Kametani, M. Kajiwara, T. Takahashi, K. Fukumoto, Heterocyles 1975, 3, 179  182; e) R. T. Brown, S. B. Pratt, J.
Chem. Soc. Chem. Commun. 1980, 165  167; f) E. Wenkert, J. S.
Pyrek, S. Uesato, Y. D. Vankar, J. Am. Chem. Soc. 1982, 104, 2244 
2246; g) O. Miyata, Y. Hirata, T. Naito, I. Ninomiya, J. Chem. Soc.
Chem. Commun. 1983, 1231  1232; h) S. F. Martin, H. Rueger, S. A.
Williamson, S. Grzejszczak, J. Am. Chem. Soc. 1987, 109, 6124  6134;
i) J. Aube, S. Ghosh, M. Tanol, J. Am. Chem. Soc. 1994, 116, 9009 
9018.
Colchicine: a) J. Schreiber, W. Leimgruber, M. Pesaro, P. Schudel, T.
Threlfall, A. Eschenmoser, Helv. Chim. Acta. 1961, 44, 540  597;
b) E. E. van Tamelen, T. A. Spencer, D. S. Allen, R. L. Orvis,
Tetrahedron 1961, 14, 8  34; c) T. Nakamura, Y. Murase, R. Hayashi,
Y. Endo, Chem. Pharm. Bull. 1962, 10, 281; d) A. I. Scott, F.
McCapra, R. L. Buchanan, A. C. Day, D. W. Young, Tetrahedron
1965, 21, 3605  3631; e) R. B. Woodward, The Harvey Lectures Series
59, Academic Press, New York, 1965, p. 31; f) J. Martel, E. Toromanoff, C. Huynh, J. Org. Chem. 1965, 30, 1752  1759; g) S. Kaneko, M.
Matsui, Agr. Biol. Chem. 1968, 32, 995  1001; h) E. Kotani, F.
Miyazaki, S. Tobinaga, J. Chem. Soc. Chem. Commun. 1974, 300 
301; i) M. Kato, F. Kido, M. D. Wu, A. Yoshikoshi, Bull. Chem. Soc.
Jpn. 1974, 47, 1516  1521; j) D. A. Evans, S. P. Tanis, D. J. Hart, J. Am.
Chem. Soc. 1981, 103, 5813  5821; k) D. L. Boger, C. E. Brotherton,
J. Am. Chem. Soc. 1986, 108, 6713  6719; l) P. Magnus, L. M.
Principe, M. J. Slater, J. Org. Chem. 1987, 52, 1483  1486; m) M. G.
Banwell, J. N. Lambert, M. F. Mackay, R. J. Greenwood, J. Chem.
Soc. Chem. Commun. 1992, 974  975; n) J. C. Lee, S.-J. Jin, J. K. Cha,
J. Org. Chem. 1998, 63, 2804  2805.
6-Demethyl-6-deoxytetracycline: a) ref. [285a,b]; b) H. Muxfeldt, W.
Rogalski, J. Am. Chem. Soc. 1965, 87, 933  934. For a recent
construction of the tetracycline framework, see [39a].
Galanthamine: a) D. H. R. Barton, G. W. Kirby, J. Chem. Soc. Chem.
Commun. 1962, 806  807; b) T. Kametani, K. Yamaki, H. Yagi, K.
Fukumoto, J. Chem. Soc. D 1969, 425  426; c) K. Shimizu, K.
Tomioka, S. Yamada, K. Koga, Heterocycles 1977, 8, 277  282.
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
[358] Estrone: a) S. N. Ananchenko, I. V. Torgov, Tetrahedron Lett. 1963,
1553  1558; b) G. H. Douglas, J. M. H. Graves, D. Hartley, G. A.
Hughes, B. J. McLoughlin, J. Siddall, H. Smith, J. Chem. Soc. Chem.
Commun. 1963, 5072  5094; c) P. A. Bartlett, W. S. Johnson, J. Am.
Chem. Soc. 1973, 95, 7501  7502; P. A. Bartlett, J. I. Brauman, W. S.
Johnson, R. A. Volkmann, J. Am. Chem. Soc. 1973, 95, 7502  7503;
d) N. Cohen, B. L. Banner, W. F. Eichel, D. R. Parrish, G. Saucy, J.-M.
Cassal, W. Meier, A. Furst, J. Org. Chem. 1975, 40, 681  685; e) S. J.
Danishefsky, P. Cain, J. Am. Chem. Soc. 1976, 98, 4975  4983; f) T.
Kametani, H. Nemoto, H. Ishikawa, K. Shiroyama, K. Fukumoto, J.
Am. Chem. Soc. 1976, 98, 3378  3379. See also T. Kametani, H.
Nemoto, H. Ishikawa, K. Shiroyama, H. Matsumoto, K. Fukumoto, J.
Am. Chem. Soc. 1977, 99, 3461  3466; H. Nemoto, M. Nagai, M.
Moizumi, K. Kohzuki, K. Fukumoto, T. Kametani, Tetrahedron Lett.
1988, 29, 4959  4962; g) W. Oppolzer, Helv. Chim. Acta 1980, 63,
1703; W. Oppolzer, Synthesis 1978, 793  802; h) R. L. Funk, K. P. C.
Vollhardt, J. Am. Chem. Soc. 1977, 99, 5483  5484; R. L. Funk,
K. P. C. Vollhardt, J. Am. Chem. Soc. 1979, 101, 215  217; R. L. Funk,
K. P. C. Vollhardt, J. Am. Chem. Soc. 1980, 102, 5253  5261; i) P. A.
Grieco, T. Takigawa, W. J. Schillinger, J. Org. Chem. 1980, 45, 2247 
2251; j) G. Quinkert, W. D. Weber, U. Schwartz, G. Duerner, Angew.
Chem. 1980, 92, 1060  1062; Angew. Chem. Int. Ed. Engl. 1980, 19,
1027  1029; G. Quinkert, U. Schwartz, H. Stark, W. D. Dietrich, H.
Baier, F. Adam, G. Duerner, Angew. Chem. 1980, 92, 1062  1063;
Angew. Chem. Int. Ed. Engl. 1980, 19, 1029  1030; k) T. A. Bryson,
C. J. Reichel, Tetrahedron Lett. 1980, 21, 2381  2384; l) Y. Ito, M.
Nakatsuka, T. Saegusa, J. Am. Chem. Soc. 1981, 103, 476  477;
m) F. E. Ziegler, T.-F. Wang, Tetrahedron Lett. 1981, 22, 1179  1182;
n) M. E. Jung, K. M. Halweg, Tetrahedron Lett. 1984, 25, 2121  2124;
o) J. H. Hutchinson, T. Money, Tetrahedron Lett. 1985, 26, 1819 
1822; p) G. H. Posner, C. Switzer, J. Am. Chem. Soc. 1986, 108,
1239  1244; q) G. S. R. S. Rao, L. U. Devi, U. J. Sheriff, J. Chem. Soc.
Perkin Trans. 1 1991, 964  965; r) S. Takano, M. Moriya, K.
Ogasawara, Tetrahedron Lett. 1992, 33, 1909  1910.
[359] Cepharamine: a) Y. Inubushi, T. Ibuka, M. Kitano, Tetrahedron Lett.
1969, 1611  14; b) T. Kametani, T. Kobari, K. Fukumoto, J. Chem.
Soc. Chem. Commun. 1972, 288  289; c) M. Schwartz, R. Wallace,
Tetrahedron Lett. 1979, 3257  3260; d) A. G. Schultz, A. Wang, J.
Am. Chem. Soc. 1998, 120, 8259  8260.
[360] Lupeol: G. Stork, S. Uyeo, T. Wakamatsu, P. Grieco, J. Labovitz, J.
Am. Chem. Soc. 1971, 93, 4945  4947.
[361] Fumagillol: a) E. J. Corey, B. B. Snider, J. Am. Chem. Soc. 1972, 94,
2549  2550; b) D. Kim, S. K. Ahn, H. Bae, W. J. Choi, H. S. Kim,
Tetrahedron Lett. 1997, 38, 4437  4440; c) D. Vosburg, S. Weiler, E. J.
Sorensen, Angew. Chem. 1999, 1024  1027; Angew. Chem. Int. Ed.
1999, 38, 971  974; d) D. F. Taber, T. E. Christos, A. L. Rheingold,
I. A. Guzei J. Am. Chem. Soc. 1999, 121, 5589  5590.
[362] Daunomycinone: a) C. M. Wong, R. Schwenk, D. Propien, T.-L. Ho,
Can. J. Chem. 1973, 51, 466  467; b) A. S. Kende, Y.-G. Tsay, J. E.
Mills, J. Am. Chem. Soc. 1976, 98, 1967  1969; c) K. Krohn, K.
Tolkiehn, Chem. Ber. 1979, 112, 3453  3471; c) J. S. Swenton, P. W.
Raynolds, J. Am. Chem. Soc. 1978, 100, 6188  6195; d) T. R. Kelly, J.
Vaya, L. Ananthasubramania, J. Am. Chem. Soc. 1980, 102, 5983 
5984; e) K. A. Parker, J. Kallmerten, J. Am. Chem. Soc. 1980, 102,
5881  5886; f) M. Braun, Tetrahedron Lett. 1980, 21, 3871  3874; M.
Braun, Tetrahedron 1984, 40, 4585  4591; g) F. M. Hauser, S.
Prasanna, J. Am. Chem. Soc. 1981, 103, 6378  6386; h) D. S. Kimball,
K. S. Kim, D. K. Mohanty, E. Vanotti, F. Johnson, Tetrahedron Lett.
1982, 23, 3871  3874; i) A. V. R. Rao, K. B. Reddy, A. R. Mehendale,
J. Chem. Soc. Chem. Commun. 1983, 564  566; j) J. Tamariz, P.
Vogel, Tetrahedron 1984, 40, 4549  4560; k) B. A. Keay, R. Rodrigo,
Tetrahedron 1984, 40, 4597  4607; l) D. W. Hansen, Jr., R. Pappo,
R. B. Garland, J. Org. Chem. 1988, 53, 4244  4253.
[363] Vindoline: a) M. Ando, G. Bchi, T. Ohnuma, J. Am. Chem. Soc.
1975, 97, 6880  6881; b) J. P. Kutney, U. Bunzli-Trepp, K. K. Chan,
J. P. De Souza, Y. Fujise, T. Honda, J. Katsube, F. K. Klein, A.
Leutwiler, S. Morehead, M. Rohr, B. R. Worth, J. Am. Chem. Soc.
1978, 100, 4220  4224; c) Y. Ban, Y. Sekine, T. Oishi, Tetrahedron
Lett 1978, 151  154; d) B. Danieli, G. Lesma, G. Palmisano, R. Riva,
J. Chem. Soc. Chem. Commun. 1984, 909  911; e) R. Z. Andriamialisoa, N. Langlois, Y. Langlois, J. Org. Chem. 1985, 50, 961  967;
f) P. L. Feldman, H. Rapoport, J. Am. Chem. Soc. 1987, 109, 1603 
Angew. Chem. Int. Ed. 2000, 39, 44  122
[364]
[365]
[366]
[367]
[368]
[369]
[370]
[371]
1604; g) M. E. Kuehne, D. E. Podhorez, T. Mulamba, W. G. Bornmann, J. Org. Chem. 1987, 52, 347  353.
Biotin: For an authoritative review of the total syntheses of biotin
(over 40 syntheses have been reported), see P. J. De Clercq, Chem.
Rev. 1997, 97, 1755  1792.
Quadrone: a) S. J. Danishefsky, K. Vaughan, R. C. Gadwood, K.
Tsuzuki, J. Am. Chem. Soc. 1980, 102, 4262  4263; b) W. K. Bornack,
S. S. Bhagwat, J. Ponton, P. Helquist, J. Am. Chem. Soc. 1981, 103,
4647  4648; c) S. D. Burke, C. W. Murtiashaw, J. O. Saunders, M. S.
Dike, J. Am. Chem. Soc. 1982, 104, 872  874; d) A. S. Kende, B.
Roth, P. J. Sanfilippo, T. J. Blacklock, J. Am. Chem. Soc. 1982, 114,
5808  5810; e) R. H. Schlessinger, J. L. Wood, A. J. Poss, R. A.
Nugent, W. H. Parsons, J. Org. Chem. 1983, 48, 1146  1147; f) J. M.
Dewanckele, F. Zutterman, M. Vandewalle, Tetrahedron 1983, 39,
3235  3244; g) K. Takeda, Y. Shimono, E. Yoshii, J. Am. Chem. Soc.
1983, 105, 563  568; h) A. B. Smith III, J. P. Konopelski, J. Org.
Chem. 1984, 49, 4094  5; i) K. Kon, K. Ito, S. Isoe, Tetrahedron Lett.
1984, 25, 3739  3742; j) C. Iwata, M. Yamashita, S. Aoki, K. Suzuki, I.
Takahashi, H. Arakawa, T. Imanishi, T. Tanaka, Chem. Pharm. Bull.
1985, 33, 436  439; T. Imanishi, M. Matsui, M. Yamashita, C. Iwata, J.
Chem. Soc. Chem. Commun. 1987, 1802  1804; k) P. A. Wender, D. J.
Wolanin, J. Org. Chem. 1985, 50, 4418  4420; l) E. Piers,
N. Moss, Tetrahedron Lett. 1985, 26, 2735  2738; m) R. L. Funk,
M. M. Abelman, J. Org. Chem. 1986, 51, 3247  3248; n) P. Magnus,
L. M. Principe, M. J. Slater, J. Org. Chem. 1987, 52, 1483  1486;
o) H. J. Liu, M. Llinas-Brunet, Can. J. Chem. 1988, 66, 528  530;
p) C. G. Sowell, R. L. Wolin, R. D. Little, Tetrahedron Lett. 1990, 31,
485  488.
Gibberellic acid: a) E. J. Corey, R. L. Danheiser, S. Chandrasekaran,
P. Siret, G. E. Keck, J. L. Gras, J. Am. Chem. Soc. 1978, 100, 8031 
8034 and ref. [312a]; b) J. M. Hook, L. N. Mander, R. Ulrech, J. Am.
Chem. Soc. 1980, 102, 6628  6629; c) H. Nagaoka, M. Shimano, Y.
Yamada, Tetrahedron Lett. 1989, 30, 971  974.
Dendrobine: a) K. Yamada, M. Suzuki, Y. Hayakawa, K. Aoki, H.
Nakamura, H. Nagase, Y. Hirata, J. Am. Chem. Soc. 1972, 94, 8278 
8280; b) Y. Inubushi, T. Kikuchi, T. Ibuka, K. Tanaka, I. Saji, K.
Tokane, J. Chem. Soc. Chem. Commun. 1972, 1252  1253; c) A. S.
Kende, T. J. Bentley, R. A. Mader, D. Ridge, J. Am. Chem. Soc. 1974,
96, 4332  4334; d) W. R. Roush, J. Am. Chem. Soc. 1978, 100, 3599 
3601; e) S. F. Martin, L. Wei, J. Org. Chem. 1991, 56, 642  650;
f) C. H. Lee, M. Westling, T. Livinghouse, A. C. Williams, J. Am.
Chem. Soc. 1992, 114, 4089  4095; g) N. Uesaka, F. Saitoh, M. Mori,
M. Shibasaki, K. Okamura, T. Date, J. Org. Chem. 1994, 59, 5633 
5642; h) C.-K. Sha, R.-T. Chiu, C.-F. Yang, N.-T. Yao, W.-H. Tseng,
F.-L. Liao, S.-L. Wang, J. Am. Chem. Soc. 1997, 119, 4130 
4135.
Illudol: a) T. Matsumoto, K. Miyano, S. Kagawa, S. Yu, J. I. Ogawa,
A. Ichihara, Tetrahedron Lett. 1971, 3521  3524; b) M. F. Semmelhack, S. Tomoda, K. M. Hurst, J. Am. Chem. Soc. 1980, 102, 7567 
7568; c) E. P. Johnson, K. P. C. Vollhardt, J. Am. Chem. Soc. 1990,
112, 381  382; d) M. R. Elliott, A.-L. Dhimane, M. Malacria, J. Am.
Chem. Soc. 1997, 119, 3427  3428.
Mitomycins A and C: a) T. Fukuyama, F. Nakatsubo, A. J. Cocuzza,
Y. Kishi, Tetrahedron Lett. 1977, 18, 4295  4298; b) T. Fukuyama, L.
Yang, J. Am. Chem. Soc. 1989, 111, 8303  8304.
Saxitoxin: a) H. Tanino, T. Nakata, T. Kaneko, Y. Kishi, J. Am. Chem.
Soc. 1977, 99, 2818  2819; b) P. A. Jacobi, M. J. Martinelli, S. Polanc,
J. Am. Chem. Soc. 1984, 106, 5594  5598.
Thienamycin: a) D. B. R. Johnston, S. M. Schmitt, F. A. Bouffard,
B. G. Christensen, J. Am. Chem. Soc. 1978, 100, 313  315; b) T.
Kametani, S.-P. Huang, S. Yokohama, Y. Suzuki, M. Ihara, J. Am.
Chem. Soc. 1980, 102, 2060  2065; c) M. Shiozaki, T. Hiraoka,
Tetrahedron Lett. 1980, 21, 4473  4476; d) S. Hanessian, D. Desilets,
G. Rancourt, R. Fortin, Can. J. Chem. 1982, 60, 2292  2294; e) M.
Shibasaki, A. Nishida, S. Ikegami, Tetrahedron Lett. 1982, 23, 2875 
2878; f) I. Shinkai, T. Liu, R. A. Reamer, M. Sletzinger, Tetrahedron
Lett. 1982, 23, 4899  4902; g) M. Miyashita, N. Chida, A. Yoshikoshi,
J. Chem. Soc. Chem. Commun. 1982, 1354  1356; h) N. Ikota, O.
Yoshino, K. Koga, Chem. Pharm. Bull. 1982, 30, 1929  1931; i) P. A.
Grieco, D. L. Flynn, R. E. Zelle, J. Am. Chem. Soc. 1984, 106, 6414 
6417; j) S. T. Hodgson, D. M. Hollinshead, S. V. Ley, Tetrahedron
1985, 41, 5871  5878; k) T. Iimori, M. Shibasaki, Tetrahedron Lett.
119
REVIEWS
[372]
[373]
[374]
[375]
[376]
120
1985, 26, 1523  1526; l) D. J. Hart, D.-C. Ha, Tetrahedron Lett. 1985,
26, 5493  5496; m) H. Maruyama, T. Hiraoka, J. Org. Chem. 1986, 51,
399  402; n) J. D. Buynak, J. Mathew, M. N. Rao, J. Chem. Soc.
Chem. Commun. 1986, 941  942; o) D. A. Evans, E. B. Sjogren,
Tetrahedron Lett. 1986, 27, 4961  4964; p) I. Fleming, J. D. Kilburn, J.
Chem. Soc. Chem. Commun. 1986, 1198  1199; q) G. I. Georg, J.
Kant, H. S. Gill, J. Am. Chem. Soc. 1987, 109, 1129  1135; r) M.
Hatanaka, H. Nitta, Tetrahedron Lett. 1987, 28, 69  72; s) H. Kaga, S.
Kobayashi, M. Ohno, Tetrahedron Lett. 1988, 29, 1057  1060; t) P. A.
Jacobi, S. Murphree, F. Rupprecht, W. Zheng, J. Org. Chem. 1996, 61,
2413  2427.
Cytochalasin B: a) G. Stork, Y. Nakahara, Y. Nakahara, W. J.
Greenlee, J. Am. Chem. Soc. 1978, 100, 7775  7777; b) for an elegant
synthesis of cytochalasin G, see H. Dyke, R. Sauter,
P. Steel, E. J. Thomas, J. Chem. Soc. Chem. Commun. 1986, 1447 
1449.
N-Methylmaysenine: a) E. J. Corey, L. O. Weigel, D. Floyd, M. G.
Bock, J. Am. Chem. Soc. 1978, 100, 2916  2918. See also E. J. Corey,
L. O. Weigel, A. R. Chamberlin, B. Lipshutz, J. Am. Chem. Soc. 1980,
104, 1439  1441; b) A. I. Meyers, D. M. Roland, D. L. Comins, R.
Henning, M. P. Fleming, K. Shimizu, J. Am. Chem. Soc. 1979, 101,
4732  4734; c) M. Kitamura, M. Isobe, Y. Ichikawa, T. Goto, J. Org.
Chem. 1984, 49, 3517  3527.
Hirsutene: a) K. Tatsuta, K. Akimoto, M. Kinoshita, J. Am. Chem.
Soc. 1979, 101, 6116  6118; b) T. Hudlicky, T. M. Kutchan, S. R.
Wilson, D. T. Mao, J. Am. Chem. Soc. 1980, 102, 6351  6353; c) D. R.
Little, G. W. Muller, J. Am. Chem. Soc. 1981, 103, 2744  2749; d) G.
Mehta, A. V. Reddy, J. Chem. Soc. Chem. Commun. 1981, 756  757;
e) P. Magnus, D. A. Quagliato, Organometallics 1982, 1, 1243  1244;
P. Magnus, D. A. Quagliato, J. Org. Chem. 1985, 50, 1621  1626;
f) P. A. Wender, J. J. Howbert, Tetrahedron Lett. 1982, 23, 3983 
3986; g) S. V. Ley, P. J. Murray, J. Chem. Soc. Chem. Commun.
1982, 1252  1253; h) R. D. Little, R. G. Higby, K. D. Moeller, J. Org.
Chem. 1983, 48, 3139  3140; i) D. P. Curran, D. M. Rakiewicz, J. Am.
Chem. Soc. 1983, 107, 1448  1449; j) H. D. Hua, G. Sinai-Zingde, S.
Venkataraman, J. Am. Chem. Soc. 1985, 107, 4088  4090; k) J. Cossy,
D. Belotti, J. P. Pete, Tetrahedron Lett. 1987, 28, 4547  4550; l) G.
Mehta, A. N. Murthy, D. S. Reddy, A. V. Reddy, J. Am. Chem. Soc.
1986, 108, 3443  3452; m) M. Franck-Neumann, M. Miesch, E.
Lacroix, Tetrahedron Lett. 1989, 30, 3529  3532; n) D. D. Sternbach,
C. L. Ensinger, J. Org. Chem. 1990, 55, 2725  2736; o) J. Castro, H.
Sorensen, A. Riera, C. Morin, A. Moyano, M. A. Pericas, A. E.
Greene, J. Am. Chem. Soc. 1990, 112, 9388  9389; p) T. K. Sarkar,
S. K. Ghosh, P. S. V. S. Rao, V. R. Mamdapur, Tetrahedron Lett. 1990,
31, 3465  3466; q) K. J. Moriarty, C. C. Shen, L. A. Paquette, Synlett
1990, 263  264; r) K. Ramig, M. A. Kuzemko, K. McNamara, T.
Cohen, J. Org. Chem. 1992, 57, 1968  1969; s) M. Toyota, Y.
Nishikawa, K. Motoki, N. Yoshida, K. Fukumoto, Tetrahedron Lett.
1993, 34, 6099  6102; t) W. Oppolzer, C. Robyr, Tetrahedron 1994,
50, 415  424.
Vinblastine, Vincristine: N. Langlois, F. Gueritte, Y. Langlois, P.
Potier, J. Am. Chem. Soc. 1976, 98, 7017  7024; P. Mangeney, R. Z.
Andriamialisoa, N. Langlois, Y. Langlois, P. Potier, J. Am. Chem. Soc.
1979, 101, 2243  2245.
Ryanodol: A. Belanger, D. J. F. Berney, H.-J. Borschberg, R.
Brousseau, A. Doutheau, R. Durand, H. Katayama, R. Lapalme,
D. M. Leturc, C.-C. Liao, F. N. MacLachlan, J.-P. Maffrand, F.
Marazza, R. Martino, C. Moreau, L. Saint-Laurent, R. Saintonge,
P. Soucy, L. Ruest, P. Deslongchamps, Can. J. Chem. 1979, 57, 3348 
3354. See also P. Deslongchamps, A. Belanger, D. J. F. Berney, H. J.
Borschberg, R. Brousseau, A. Doutheau, R. Durand, H. Katayama,
R. Lapalme, D. M. Leturc, C.-C. Liao, F. N. MacLachlan, J.-P.
Maffrand, F. Marazza, R. Martino, C. Moreau, L. Ruest, L. SaintLaurent, R. Saintonge, P. Soucy, Can. J. Chem. 1990, 68, 115  127; P.
Deslongchamps, A. Belanger, D. J. F. Berney, H. J. Borschberg, R.
Brousseau, A. Doutheau, R. Durand, H. Katayama, R. Lapalme,
D. M. Leturc, C.-C. Liao, F. N. MacLachlan, J.-P. Maffrand, F.
Marazza, R. Martino, C. Moreau, L. Ruest, L. Saint-Laurent, R.
Saintonge, P. Soucy, Can. J. Chem. 1990, 68, 127  153; P. Deslongchamps, A. Belanger, D. J. F. Berney, H. J. Borschberg, R. Brousseau,
A. Doutheau, R. Durand, H. Katayama, R. Lapalme, D. M. Leturc,
C.-C. Liao, F. N. MacLachlan, J.-P. Maffrand, F. Marazza, R. Martino,
K. C. Nicolaou et al.
[377]
[378]
[379]
[380]
[381]
[382]
[383]
C. Moreau, L. Ruest, L. Saint-Laurent, R. Saintonge, P. Soucy, Can. J.
Chem. 1990, 68, 153  186; P. Deslongchamps, A. Belanger, D. J. F.
Berney, H. J. Borschberg, R. Brousseau, A. Doutheau, R. Durand,
H. Katayama, R. Lapalme, D. M. Leturc, C.-C. Liao, F. N. MacLachlan, J.-P. Maffrand, F. Marazza, R. Martino, C. Moreau, L. Ruest,
L. Saint-Laurent, R. Saintonge, P. Soucy, Can. J. Chem. 1990, 68,
186  192.
Aphidicolin: a) B. M. Trost, Y. Nishimura, K. Yamamoto, J. Am.
Chem. Soc. 1979, 101, 1328  1330; b) J. E. McMurry, A. Andrus,
G. M. Ksander, J. H. Musser, M. A. Johnson, J. Am. Chem. Soc. 1979,
101, 1330  1332; c) E. J. Corey, M. A. Tius, J. Das, J. Am. Chem. Soc.
1980, 102, 1742  1744; d) R. E. Ireland, J. D. Godfrey, S. Thaisrivongs, J. Am. Chem. Soc. 1981, 103, 2446  2448; e) E. E. van Tamelen, S. R. Zawacky, R. K. Russell, J. G. Carlson, J. Am. Chem. Soc.
1983, 105, 142  143; f) R. M. Bettolo, P. Tagliatesta, A. Lupi, D.
Bravetti, Helv. Chim. Acta. 1983, 66, 1922  1928; g) S. P. Tanis, Y. H.
Chuang, D. B. Head, Tetrahedron Lett. 1985, 26, 6147  6150; h) R. A.
Holton, R. M. Kennedy, H. B. Kim, M. E. Krafft, J. Am. Chem. Soc.
1987, 109, 1597  1600; i) M. Toyota, Y. Nishikawa, K. Fukumoto,
Tetrahedron Lett. 1994, 35, 6495  6498; See also M. Toyota, Y.
Nishikawa, K. Fukumoto, Tetrahedron Lett. 1995, 36, 5379  5382;
j) T. Tanaka, O. Okuda, K. Murakami, H. Yoshino, H. Mikamiyama,
A. Kanda, S.-W. Kim, C. Iwata, Chem. Pharm. Bull. 1995, 43, 1407 
1411.
Delphinine: K. Wiesner, Pure Appl. Chem. 1979, 51, 689  703.
Coriolin: a) S. J. Danishefsky, R. Zamboni, M. Kahn, S. J. Etheredge,
J. Am. Chem. Soc. 1980, 102, 2097  2098; b) M. Shibasaki, K. Iseki, S.
Ikegami, Tetrahedron Lett. 1980, 21, 3587  3590; c) K. Tatsuta, K.
Akimoto, M. Kinoshita, J. Antibiot. 1980, 33, 100  2; d) B. M. Trost,
D. P. Curran, J. Am. Chem. Soc. 1981, 103, 7380  7381; e) G. Mehta,
A. V. Reddy, A. N. Murthy, D. S. Reddy, J. Chem. Soc. Chem.
Commun. 1982, 540  541; f) T. Ito, N. Tomiyoshi, K. Nakamura, S.
Azuma, M. Izawa, F. Maruyama, M. Yanagiya, H. Shirahama, T.
Matsumoto, Tetrahedron Lett. 1982, 23, 1721  1724; g) C. Exon, P.
Magnus, J. Am. Chem. Soc. 1983, 105, 2477  2478; h) M. Koreeda,
S. G. Mislankar, J. Am. Chem. Soc. 1983, 105, 7203  7205; i) P. A.
Wender, J. J. Howbert, Tetrahedron Lett. 1983, 24, 5325  5328; P. A.
Wender, C. R. D. Correia, J. Am. Chem. Soc. 1987, 109, 2523  2525;
j) P. F. Schuda, M. R. Heimann, Tetrahedron 1984, 40, 2365  2380;
k) R. L. Funk, G. L. Bolton, J. U. Daggett, M. M. Hansen, L. H. M.
Horcher, Tetrahedron 1985, 41, 3479  3495; l) L. Van Hijfte, R. D.
Little, J. Org. Chem. 1985, 50, 3940  3942; m) M. Demuth, P.
Ritterskamp, E. Weigt, K. Schaffner, J. Am. Chem. Soc. 1986, 108,
4149  4154; n) T. L. Fevig, R. L. Elliott, D. P. Curran, J. Am. Chem.
Soc. 1988, 110, 5064  5067; o) K. Weinges, R. Braun, U. Huber-Patz,
H. Irngartinger, Liebigs Ann. Chem. 1993, 1133  1140; p) K. Domon,
K. Masuya, K. Tanino, I. Kuwajima, Tetrahedron Lett. 1997, 38, 465 
468.
Quassin: a) P. A. Grieco, S. Ferrino, G. Vidari, J. Am. Chem. Soc.
1980, 102, 7587  7588; b) M. Kim, K. Kawada, R. S. Gross, D. S.
Watt, J. Org. Chem. 1990, 55, 504  511; c) H. Stojanac, Z. Valenta,
Can. J. Chem. 1991, 69, 853  855; d) T. K. M. Shing, Q. Jiang, T. C. W.
Mak, J. Org. Chem. 1998, 63, 2056  2057.
Saframycin B: a) T. Fukuyama, R. A. Sachleben, J. Am. Chem. Soc.
1982, 104, 4957  4958; b) A. Kubo, N. Saito, R. Yamauchi, S. Sakai,
Chem. Pharm. Bull. 1987, 35, 2158  2161; c) See also the syntheses of
saframycin A: T. Fukuyama, L. Yang, K. L. Ajeck, R. A. Sachleben,
J. Am. Chem. Soc. 1990, 112, 3712  3713; A. G. Myers, D. Kung,
Book of Abstracts, 216th National Meeting of the American Chemical
Society, Washington, D.C., 1998, ORGN0501; E. J. Martinez, E. J.
Corey, Org. Lett. 1999, 1, 75  77.
Eburnamine: a) L. Castedo, J. Harley-Mason, T.-J. Leeney, J. Chem.
Soc. Chem. Commun. 1968, 19, 1186; b) K. H. Gibson, J. E. Saxton, J.
Chem. Soc. D 1969, 799; c) J. L. Herrmann, G. R. Kieczykowski, S. E.
Normandin, R. H. Schlessinger, Tetrahedron Lett. 1976, 17, 801  804;
d) E. Boelsing, F. Klatte, U. Rosentreter, E. Winterfeldt, Chem. Ber.
1979, 112, 1902  1912; e) M. Node, H. Nagasawa; K. Fuji, J. Am.
Chem. Soc. 1987, 109, 7901  7903.
Carbomycin: a) K. C. Nicolaou, M. R. Pavia, S. P. Seitz, Tetrahedron
Lett. 1979, 20, 2327  2330; K. C. Nicolaou, S. P. Seitz, M. R. Pavia,
N. A. Petasis, J. Org. Chem. 1979, 44, 4011  4013; K. C. Nicolaou,
S. P. Seitz, M. R. Pavia, J. Am. Chem. Soc. 1981, 103, 1222  1224;
Angew. Chem. Int. Ed. 2000, 39, 44  122
REVIEWS
Natural Products Synthesis
[384]
[385]
[386]
[387]
[388]
[389]
[390]
[391]
[392]
[393]
[394]
K. C. Nicolaou, M. R. Pavia, S. P. Seitz, J. Am. Chem. Soc. 1981, 103,
1224  1226; b) K. Tatsuta, Y. Amemiya, S. Maniwa, M. Kinoshita,
Tetrahedron Lett. 1980, 21, 2837  2840.
Aplasmomycin: a) E. J. Corey, B. C. Pan, D. H. Hua, D. R. Deardorff, J. Am. Chem. Soc. 1982, 104, 6816  6818; E. J. Corey, D. H.
Hua, B. C. Pan, S. P. Seitz, J. Am. Chem. Soc. 1982, 104, 6818  6820;
b) J. D. White, T. R. Vedananda, M. C. Kang, S. C. Choudhry, J. Am.
Chem. Soc. 1986, 108, 8105  8107; c) T. Nakata, K. Saito, T. Oishi,
Tetrahedron Lett. 1986, 27, 6345  6348; d) F. Matsuda, N. Tomiyosi,
M. Yanagiya, T. Matsumoto, Chem. Lett. 1987, 2097  2100.
Bleomycin: a) T. Takita, Y. Umezawa, S. Saito, H. Morishima, H.
Naganawa, H. Umezawa, T. Tsushiya, T. Miyake, S. Kageyama, S.
Umezawa, Y. Muraoka, M. Suzuki, M. Otsuka, M. Narita, S.
Kobayashi, M. Ohno, Tetrahedron Lett. 1982, 23, 521  524, and
references therein; b) Y. Aoyagi, K. Katano, H. Suguna, J. Primeau,
L.-H. Chang, S. M. Hecht, J. Am. Chem. Soc. 1982, 104, 5537  5538;
c) For a review of the chemistry and biology of bleomycin, see D. L.
Boger, H. Cai, Angew. Chem. 1999, 111, 470  498; Angew. Chem. Int.
Ed. 1999, 38, 448  476; D. L. Boger, S. L. Colletti, T. Honda, R. F.
Menezes, J. Am. Chem. Soc. 1994, 116, 5607  5618; D. L. Boger, T.
Honda, Q. Dang, J. Am. Chem. Soc. 1994, 116, 5619  5630. D. L.
Boger, T. Honda, R. F. Menezes, S. L. Colletti, J. Am. Chem. Soc.
1994, 116, 5631  5646; D. L. Boger, T. Honda, J. Am. Chem. Soc.
1994, 116, 5647  5656.
Cyanocycline: a) D. A. Evans, C. R. Illig, J. C. Saddler, J. Am. Chem.
Soc. 1986, 108, 2478  2479; b) T. Fukuyama, L. Li, A. A. Laird, R. K.
Frank, J. Am. Chem. Soc. 1987, 109, 15 873  15 879.
Rifamycin: a) H. Nagaoka, W. Rutsch, G. Schmid, H. Lio, M. R.
Johnson, Y. Kishi, J. Am. Chem. Soc. 1980, 102, 7962  7965; H. Lio,
H. Nagaoka, Y. Kishi, J. Am. Chem. Soc. 1980, 102, 7965  7967; b) S.
Hanessian, J. R. Pougny, I. K. Boessenkool, J. Am. Chem. Soc. 1982,
104, 6164  6166.
Echinosporin: A. B. Smith III, G. A. Sulikowski, K. Fujimoto, J. Am.
Chem. Soc. 1989, 111, 8039  8041.
Compactin: a) N. Y. Wang, C. T. Hsu, C. J. Sih, J. Am. Chem. Soc.
1981, 103, 6538  6539; b) M. Hirama, M. Uei, J. Am. Chem. Soc.
1982, 104, 4251  4253; c) N. N. Girotra, N. L. Wendler, Tetrahedron
Lett. 1982, 23, 5501  5504; d) P. A. Grieco, R. E. Zelle, R. Lis, J. Finn,
J. Am. Chem. Soc. 1983, 105, 1403  1404; e) T. Rosen, C. H.
Heathcock, J. Am. Chem. Soc. 1985, 107, 3731  3733; f) G. E. Keck,
D. F. Kachensky, J. Org. Chem. 1986, 51, 2487  2493; g) A. P.
Kozikowski, C. S. Li, J. Org. Chem. 1987, 52, 3541  3552; h) D. L. J.
Clive, K. S. K. Murthy, A. G. H. Wee, J. S. Prasad, G. V. J. Da Silva,
M. Majewski, P. C. Anderson, R. D. Haugen, L. D. Heerze, J. Am.
Chem. Soc. 1988, 110, 6914  6916; i) S. J. Danishefsky, B. Simoneau,
J. Am. Chem. Soc. 1989, 111, 2599  2604; j) S. D. Burke, D. N.
Deaton, Tetrahedron Lett. 1991, 32, 4651  4; k) H. Hagiwara, T.
Nakano, M. Konno, H. Uda, J. Chem. Soc. Perkin Trans. 1 1995, 777 
783.
Neosurugatoxin: S. Inoue, K. Okada, H. Tanino, H. Kakoi, Tetrahedron Lett. 1986, 27, 5225  5228.
Pleuromutilin: a) E. G. Gibbons, J. Am. Chem. Soc. 1982, 104, 1767 
1769; b) R. K. Boeckman, Jr., D. M. Springer, T. R. Alessi, J. Am.
Chem. Soc. 1989, 111, 8284  8286.
Ophiobolin C: M. Rowley, M. Tsukamoto, Y. Kishi, J. Am. Chem.
Soc. 1989, 111, 2735  2736.
Fredericamycin: a) T. R. Kelly, S. H. Bell, N. Ohashi, R. J. Armstrong-Chong, J. Am. Chem. Soc. 1988, 110, 6471  6480; b) D. L. J.
Clive, Y. Tao, A. Khodabocus, Y. J. Wu, A. G. Angoh, S. M. Bennett,
C. N. Boddy, L. Bordeleau, D. Kellner, G. Kleiner, D. S. Middelton,
C. J. Nichols, S. R. Richardson, P. G. Uernon, J. Chem. Soc. Chem.
Commun. 1992, 1489  1490; c) L. Saint-Jalmes, C. Lila, J. Z. Xu, L.
Moreau, B. Pfeiffer, G. Eck, L. Pelsez, C. Rolando, M. Julia, Bull.
Soc. Chem. Fr. 1993, 130, 447  449; d) J. A. Wendt, P. J. Gauvreau,
R. D. Bach, J. Am. Chem. Soc. 1994, 116, 9921  9926; e) A. V. R.
Rao, A. K. Singh, B. V. Rao, K. M. Reddy, Heterocycles 1994, 37,
1893  1912; f) D. L. Boger, O. Hueter, K. Mbiya, M. Zhang, J. Am.
Chem. Soc. 1995, 117, 11 839  11 849; g) Y. Kita, K. Higuchi, Y.
Yoshida, K. Lio, S. Kitagaki, S. Akai, H. Fujioka, Angew. Chem. 1999,
111, 683  686; Angew. Chem. Int. Ed. 1999, 38, 683  686.
Avermectin B1a : a) J. D. White, G. L. Bolton, A. P. Dantanarayana,
C. M. J. Fox, R. N. Hiner, R. W. Jackson, K. Sakuma, U. S. Warrier, J.
Angew. Chem. Int. Ed. 2000, 39, 44  122
[395]
[396]
[397]
[398]
[399]
[400]
[401]
[402]
[403]
[404]
[405]
[406]
[407]
[408]
[409]
[410]
[411]
[412]
[413]
[414]
Am. Chem. Soc. 1995, 117, 1908  1939; b) M. J. Ford, J. G. Knight,
S. V. Ley, S. Vile, Synlett 1990, 331  332; D. Diez-Martin, P. Grice,
H. C. Kolb, S. V. Ley, A. Madin, Synlett 1990, 326  328; A.
Armstrong, S. V. Ley, A. Madin, S. Mukherjee, Synlett 1990, 328 
330; A. Armstrong, S. V. Ley, Synlett 1990, 323  325; c) S. Hanessian,
A. Ugolini, D. Dube, P. J. Hodges, C. Andre, J. Am. Chem. Soc. 1986,
108, 2776  2778; S. Hanessian, A. Ugolini, P. J. Hodges, P. Beaulieu,
D. Dube, C. Andre, Pure Appl. Chem. 1987, 59, 299  316.
Avermectin A1a : S. J. Danishefsky, D. M. Armistead, F. E. Wincott,
H. G. Selnick, R. Hungate, J. Am. Chem. Soc. 1987, 109, 8117  8119;
S. J. Danishefsky, H. G. Selnick, D. M. Armistead, F. E. Wincott, J.
Am. Chem. Soc. 1987, 109, 8119  8120.
CC-1065: a) R. C. Kelly, I. Bebhard, N. Wicnienski, P. A. Aristoff,
P. O. Johnson, D. G. Martin, J. Am. Chem. Soc. 1987, 109, 6837  6838;
b) D. L. Boger, R. S. Coleman, J. Am. Chem. Soc. 1988, 110, 1321 
1323.
Ikarugamycin: a) R. K. Boeckman, Jr., C. H. Weidner, R. B. Perni,
J. J. Napier, J. Am. Chem. Soc. 1989, 111, 8036  8037; b) L. A.
Paquette, D. Macdonald, L. G. Anderson, J. Wright, J. Am. Chem.
Soc. 1989, 111, 8037  8039.
Koumine: P. Magnus, B. Mugrage, M. De Luca, G. A. Cain, J. Am.
Chem. Soc. 1989, 111, 786  789.
Daphnilactone A: R. B. Ruggeri, K. F. McClure, C. H. Heathcock, J.
Am. Chem. Soc. 1989, 111, 1530  1531.
Huperzine: Y. Xia, A. P. Kozikowski, J. Am. Chem. Soc. 1989, 111,
4116  4117.
FK506: a) T. K. Jones, S. G. Mills, R. A. Reamer, D. Askin, R.
Desmond, R. P. Volante, I. Shinkai, J. Am. Chem. Soc. 1989, 111,
1157  1159; b) M. Nakatsuka, J. A. Ragan, T. Sammakia, D. B.
Smith, D. E. Uehling, S. L. Schreiber, J. Am. Chem. Soc. 1990, 112,
5583  5601; c) A. B. Jones, A. Villalobos, R. G. Linde, S. J. Danishefsky, J. Org. Chem. 1990, 55, 2786  2797; d) R. L. Sih, C. J. Sih,
Tetrahedron Lett. 1990, 31, 3287  3290; e) A. B. Smith III, K. Chen,
D. J. Robinson, L. M. Laakso, K. J. Hale, Tetrahedron Lett. 1994, 35,
4271  4274; f) R. E. Ireland, J. L. Gleason, L. D. Gegnas, T. K.
Highsmith, J. Org. Chem. 1996, 61, 6856  6872.
Histrionicotoxin: a) S. C. Carey, M. Aratani, Y. Kishi, Tetrahedron
Lett. 1985, 26, 5887  5890; b) G. Stork, K. Zhao, J. Am. Chem. Soc.
1990, 112, 5875  5876; c) G. M. Williams, S. D. Roughley, J. E.
Davies, A. B. Holmes, J. P. Adams, J. Am. Chem. Soc. 1999, 121,
4900  4901.
Paspalinine: A. B. Smith III, T. Sunazuka, T. L. Leenay, J. KingeryWood, J. Am. Chem. Soc. 1990, 112, 8197  8198.
Indolizomycin: a) G. Kim, M. Y. Chu-Moyer, S. J. Danishefsky, J.
Am. Chem. Soc. 1990, 112, 2003  2004; G. Kim, M. Y. Chu-Moyer,
S. J. Danishefsky, J. Am. Chem. Soc. 1993, 115, 30  39.
Isorobustin: D. H. R. Barton, D. M. X. Donnelly, J.-P. Finet, P. J.
Guiry, Tetrahedron Lett. 1990, 31, 7449  7452.
Hikizimycin: N. Ikemoto, S. L. Schreiber, J. Am. Chem. Soc. 1990,
112, 9657  9658.
Chaparrinone: R. S. Gross, P. A. Grieco, J. L. Collins, J. Am. Chem.
Soc. 1990, 112, 9436  9437.
Ambruticin: A. S. Kende, Y. Fujii, J. S. Mendoza, J. Am. Chem. Soc.
1990, 112, 9645  9646.
Rocaglamide: B. M. Trost, P. D. Greenspan, B. V. Yang, M. G.
Saulnier, J. Am. Chem. Soc. 1990, 112, 9022  9024.
Isorauniticine: W. Oppolzer, H. Bienayme, A. Genevois-Borella, J.
Am. Chem. Soc. 1991, 113, 9660  9662.
Kempene-2: W. G. Dauben, I. Farkas, D. P. Bridon, C.-P. Chuang,
K. E. Henegar, J. Am. Chem. Soc. 1991, 113, 5883  5884.
Myrocin C: M. Y. Chu-Moyer, S. J. Danishefsky, J. Am. Chem. Soc.
1992, 114, 8333  8334.
Halichondrin B: T. D. Aicher, K. R. Buszek, F. G. Fang, C. J. Forsyth,
S. H. Jung, Y. Kishi, M. C. Matelich, P. M. Scola, D. M. Spero, S. K.
Yoon, J. Am. Chem. Soc. 1992, 114, 3162  3164.
Hemibrevetoxin B: a) K. C. Nicolaou, K. R. Reddy, G. Skokotas, F.
Sato, X.-Y. Xiao, J. Am. Chem. Soc. 1992, 114, 7935  7936; b) I.
Kadota, J.-Y. Park, N. Koumura, G. Pollaud, Y. Matsukawa, Y.
Yamamoto, Tetrahedron Lett. 1995, 36, 5777  5780; c) M. Morimoto,
H. Matsukura, T. Nakata, Tetrahedron Lett. 1996, 37, 6365  6358;
d) Y. Mori, K. Yaegashi, H. Furukawa, J. Am. Chem. Soc. 1997, 119,
4557  4558.
121
REVIEWS
[415] Calyculin A: a) D. A. Evans, J. R. Gage, J. L. Leighton, J. Org. Chem.
1992, 57, 1964  1965; D. A. Evans, J. R. Gage, J. L. Leighton, J. Am.
Chem. Soc. 1992, 114, 9434  9453; b) N. Tanimoto, S. W. Gerritz, A.
Sawabe, T. Noda, S. A. Filla, S. Masamune, Angew. Chem. 1994, 106,
674  676; Angew. Chem. Int. Ed. Engl. 1994, 33, 673  675; c) F.
Yokokawa, Y. Hamada, T. Shioiri, Chem. Commun. 1996, 871  872;
d) A. B. Smith III, G. K. Friestad, J.-W. J. Duan, J. Barbosa, K. G.
Hull, M. Iwashima, Y. Qiu, G. P. Spoors, E. Bertounesque, B. A.
Salvatore, J. Org. Chem. 1998, 63, 7596  7597; calyculin C: e) A. K.
Ogawa, R. W. Armstrong, J. Am. Chem. Soc. 1998, 120, 12 435 
12 442.
[416] Discodermolide: a) J. B. Nerenberg, D. T. Hung, P. K. Somers, S. L.
Schreiber, J. Am. Chem. Soc. 1993, 115, 12 621  12 622; b) A. B.
Smith III, Y. Qiu, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc. 1995,
117, 12 011  12 012; c) S. S. Harried, G. Yang, M. A. Strawn, D. C.
Myles, J. Org. Chem. 1997, 62, 6098  6099; d) J. A. Marshall, B. A.
Johns, J. Org. Chem. 1998, 63, 7885  7886.
[417] Lepicidin A: D. A. Evans, W. C. Black, J. Am. Chem. Soc. 1993, 115,
4497  4513.
[418] Stenine: a) C.-Y. Chen, D. J. Hart, J. Org. Chem. 1993, 58, 3840 
3849; b) P. Wipf, Y. Kim, D. M. Goldstein, J. Am. Chem. Soc. 1995,
117, 11 106  11 112.
[419] Balanol: a) K. C. Nicolaou, M. E. Bunnage, K. Koide, J. Am. Chem.
Soc. 1994, 116, 8402  8403; b) J. W. Lampe, P. F. Hughes, C. K.
Biggers, S. H. Smith, H. Hu, J. Org. Chem. 1994, 59, 5147  5148;
c) C. P. Adams, S. M. Fairway, C. J. Hardy, D. E. Hibbs, M. B.
Hursthouse, A. D. Morley, B. W. Sharp, N. Vicker, I. Warner, J.
Chem. Soc. Perkin Trans. 1 1995, 2355  2362; d) P. Barbier, J.
Stadlwieser, Chimia 1996, 50, 530  532; e) D. Tanner, I. Tedenborg,
A. Almario, I. Paterson, I. Csoeregh, N. M. Kelly, P. G. Andersson, T.
Hoegberg, Tetrahedron 1997, 53, 4857  4868; f) H. Miyabe, M.
Torieda, T. Kiguchi, T. Naito, Synlett 1997, 580  682.
[420] Papuamine: a) A. G. M. Barrett. M. L. Boys, T. L. Boehm, J. Chem.
Soc. Chem. Comm. 1994, 1881  1882; b) R. M. Borzilleri, S. M.
Weinreb, M. Parvez, J. Am. Chem. Soc. 1995, 117, 10 905  10 913.
[421] Petrosin: R. W. Scott, J. R. Epperson, C. H. Heathcock, J. Am. Chem.
Soc. 1994, 116, 8853  8854.
[422] Breynolide: A. B. Smith III, J. R. Empfield, R. A. Rivero, H. A.
Vaccaro, J. Am. Chem. Soc. 1991, 113, 4037  4038.
[423] Chlorothricolide: W. R. Roush, R. J. Sciotti, J. Am. Chem. Soc. 1994,
116, 6457  6458. See also W. R. Roush, R. J. Sciotti, J. Am. Chem.
Soc. 1998, 120, 7411  7419.
[424] Thebainone A: M. A. Tius, M. A. Kerr, J. Am. Chem. Soc. 1992, 114,
5959  5966.
[425] Discorhabdin C: Y. Kita, H. Tohma, M. Inagaki, K. Hatanaka, T.
Yakura, J. Am. Chem. Soc. 1992, 114, 2175  2180.
[426] Isochrysohermidin: H. H. Wasserman, R. W. DeSimone, D. L. Boger, C. M. Baldino, J. Am. Chem. Soc. 1993, 115, 8457  8458.
[427] Duocarmycin: a) Y. Fukuda, Y. Itoh, K. Nakatani, S. Terashima,
Tetrahedron 1994, 50, 2793  2808; Y. Fukuda, K. Nakatani, S.
Terashima, Tetrahedron 1994, 50, 2809  2820; b) D. L. Boger, J. A.
McKie, T. Nishi, T. Ogiku, J. Am. Chem. Soc. 1996, 118, 2301  2302.
[428] Trichoviridin: J. E. Baldwin, R. M. Adlington, I. A. ONeil, A. T.
Russell, M. L. Smith, Chem. Commun. 1996, 41  42.
[429] Calphostin A: R. S. Coleman, E. B. Grant, J. Am. Chem. Soc. 1994,
116, 8795  8796.
[430] Scopadulcic acid: a) L. E. Overman, D. J. Ricca, V. D. Tran, J. Am.
Chem. Soc. 1993, 115, 2042  2043; See also L. E. Overman, D. J.
Ricca, V. D. Tran, J. Am. Chem. Soc. 1997, 119, 12 031  12 040;
b) F. E. Ziegler, O. B. Wallace, J. Org. Chem. 1995, 60, 3626  3636.
[431] Magellanine: G. C. Hirst, T. O. Johnson, Jr., L. E. Overman, J. Am.
Chem. Soc. 1993, 115, 2992  2993.
[432] Salsolene oxide: L. A. Paquette, L.-Q. Sun, T. J. N. Watson, D.
Friedrich, B. T. Freeman, J. Am. Chem. Soc. 1997, 119, 2767  2768.
[433] Croomine: S. F. Martin, K. J. Barr, J. Am. Chem. Soc. 1996, 118,
3299  3300.
[434] The family of the clavularanes: D. R. Williams, P. J. Coleman, S. S.
Henry, J. Am. Chem. Soc. 1993, 115, 11 654  11 655.
[435] Staurosporine: a) J. T. Link, S. Raghavan, S. J. Danishefsky, J. Am.
Chem. Soc. 1995, 117, 552  553; b) J. L. Wood, B. M. Stoltz, S. N.
Goodman, K. Onwueme, J. Am. Chem. Soc. 1997, 119, 9652  9661.
122
K. C. Nicolaou et al.
[436] FR-90848: a) A. G. M. Barrett, K. Kasdorf, J. Am. Chem. Soc. 1996,
118, 11 030  11 037; b) J. R. Falck, B. Mekonnen, J. Yu, J.-Y. Lai, J.
Am. Chem. Soc. 1996, 118, 6096  6097.
[437] Epoxydictimene: T. F. Jamison, S. Shambayati, W. E. Crowe, S. L.
Schreiber, J. Am. Chem. Soc. 1994, 116, 5505  5506; T. F. Jamison, S.
Shambayati, W. E. Crowe, S. L. Schreiber, J. Am. Chem. Soc. 1997,
119, 4353  4363.
[438] 7-Deacetoxyalcyonin acetate: D. W. C. MacMillan, L. E. Overman, J.
Am. Chem. Soc. 1995, 117, 10 391  10 392.
[439] Syringolide 1: a) J. L. Wood, S. Jeong, A. Salcedo, J. Jenkins, J. Org.
Chem. 1995, 60, 286  287; b) S. Kuwahara, M. Moriguchi, K.
Miyagawa, M. Konno, O. Kodama, Tetrahedron 1995, 51, 8809 
8014; c) J. Ishihara, T. Sugimoto, A. Murai, Synlett 1996, 4, 335 
336; d) C.-M. Zeng, S. L. Midland, N. T. Keen, J. J. Sims, J. Org.
Chem. 1997, 62, 4780  4784; e) H. Yoda, M. Kawauchi, K. Takabe,
K. Hosoyam, Heterocycles 1997, 45, 1895  1898; f) P. Yu, Q.-G.
Wang, T. C. W. Mak, H. N. C. Wong, Tetrahedron 1998, 54, 1783 
1788.
[440] Batrachotoxinin: M. Kurosu, L. R. Marcin, T. J. Grinsteiner, Y. Kishi,
J. Am. Chem. Soc. 1998, 120, 6627  8662.
[441] FR-900482: a) T. Fukuyama, L. Xu, S. Goto, J. Am. Chem. Soc. 1992,
114, 383  385; b) J. M. Schkeryantz, S. J. Danishefsky, J. Am. Chem.
Soc. 1995, 117, 4722  4723.
[442] Lubiminol: M. T. Crimmins, Z. Wang, L. A. McKerlie, Tetrahedron
Lett. 1996, 37, 8703  8706; M. T. Crimmins, Z. Wang, L. A. McKerlie,
J. Am. Chem. Soc. 1998, 120, 1747  1756.
[443] Hispidospermidin: a) A. J. Frontier, S. Raghavan, S. J. Danishefsky,
J. Am. Chem. Soc. 1997, 119, 6686  6687; b) L. E. Overman, A. L.
Tomasi, J. Am. Chem. Soc. 1998, 120, 4039  4040.
[444] Pateamine: R. M. Rzasa, H. A. Shea, D. Romo, J. Am. Chem. Soc.
1998, 120, 591  592.
[445] Ptilomycalin: L. E. Overman, M. H. Rabinowitz, P. A. Renhowe, J.
Am. Chem. Soc. 1995, 117, 2657  2658.
[446] Preussomerin I: S. Chi, C. H. Heathcock, Org. Lett. 1999, 1, 3  6.
[447] Neocarzinostatin chromophore: A. G. Myers, J. Liang, M. Hammond, P. M. Harrington, Y. Wu, E. Y. Kuo, J. Am. Chem. Soc. 1998,
120, 5319  5320.
[448] Manumycin B: J. J. C. Grove, X. Wei, R. J. K. Taylor, Chem.
Commun. 1999, 421  422.
[449] Phorboxazole A: C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, J.
Am. Chem. Soc. 1998, 120, 5597  5598.
[450] Olivomycin A: W. R. Roush, R. A. Hartz, D. J. Gustin, J. Am. Chem.
Soc. 1999, 121, 1990  1991.
[451] Dysidiolide: a) E. J. Corey, B. E. Roberts, J. Am. Chem. Soc. 1997,
119, 12 425  12 431; b) J. Boukouvalas, Y.-X. Cheng, J. Robichaud, J.
Org. Chem. 1998, 63, 228  229; c) S. R. Magnuson, L. SeppLorenzino, N. Rosen, S. J. Danishefsky, J. Am. Chem. Soc. 1998,
120, 1615  1616; d) Y. Kajiwara, H. Miyaoka, Y. Yamada, 41st Symp.
Chem. Nat. Prod. 1999, 25  30.
[452] Luzopeptin B: D. L. Boger, M. W. Ledeboer, M. Kume, J. Am.
Chem. Soc. 1999, 121, 1098  1099.
[453] Spongistatin 1: J. Guo, K. J. Duffy, K. L. Stevens, P. I. Dalko, R. M.
Roth, M. M. Hayward, Y. Kishi, Angew. Chem. 1998, 110, 198  202;
Angew. Chem. Int. Ed. 1998, 37, 187  192; M. M. Hayward, R. M.
Roth, K. J. Duffy, P. I. Dalko, K. L. Stevens, J. Guo, Angew. Chem.
1998, 110, 202  206; Angew. Chem. Int. Ed. 1998, 37, 192  196.
[454] Spongistatin 2: D. A. Evans, P. J. Coleman, L. C. Dias, Angew. Chem.
1997, 109, 2951  2954; Angew. Chem. Int. Ed. Engl. 1997, 36, 2738 
2741; D. A. Evans, B. W. Trotter, B. Cote, P. J. Coleman, Angew.
Chem. 1997, 109, 2954  2957; Angew. Chem. Int. Ed. Engl. 1997, 36,
2741  2744; D. A. Evans, B. W. Trotter, B. Cote, P. J. Coleman, L. C.
Dias, A. N. Tyler, Angew. Chem. 1997, 109, 2957  2961; Angew.
Chem. Int. Ed. Engl. 1997, 36, 2744  2747.
[455] Cephalostatin 7: J. U. Jeong, C. Guo, P. L. Fuchs, J. Am. Chem. Soc.
1999, 121, 2071  2084.
[456] Rubifolide: J. A. Marshall, C. A. Sehon, J. Org. Chem. 1997, 62,
4313  4320.
[457] Diepoxin: P. Wipf, J.-K. Jung, J. Org. Chem. 1999, 64, 1092  1093.
[458] Pinnatoxin: J. A. McCauley, K. Nagasawa, P. A. Lander, S. G.
Mischke, M. A. Semones, Y. Kishi, J. Am. Chem. Soc. 1998, 120,
7647  7648.
Angew. Chem. Int. Ed. 2000, 39, 44  122