Dr.
Michael Sutherland
Cavendish Quantum Materials Group
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page1of22
OutlineandGoals
ReviewofFermiDiracStaFsFcs,theFreeelectronGas.
Reviewofelementarybandstructuretheory,nearly
freeelectronsmodels.
ExamplesofrealbandstructuresandrealFermi
surfaces
OverviewofExperimentalTechniquesforprobingthe
FermiSurface(QuantumOscillaFons,ARPES)
Detailedlistforfurtherreading
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page2of22
1
1
1
2e 1
=
=
B
Bn+1 Bn
h
Arecip
h
k
TheFermiDiracDistribuFon
E =
= E +h
f
2 2
f
2m
kf " = ki"
ElectronsarefermionsparFcleswithhalf
integerspinthatobeythePauliExclusion
dM dB
V
=
Principle:notwofermionsmayhaveexactlythe
dB dt
samesetofquantumnumbers.
Amp. B 1 e c
ForasystemofidenFcalfermions,the
Amp.
sinh()
probabilitythatasingleparFclestatewith
= 14.7m! T /B
energyEisoccupiedisgivenby
1
fD (E, T ) = (E)/k T
B
e
+1
inthisexpressionisthechemicalpotenFal,
oRendenedastheenergywherefD(E,T)=.
isanimportantenergyscalethatismaterial
dependent.AtT=0,wedenetheFermienergy
EFbyEF=(T=0).
AtT=0,theFermienergyisthedividingline
betweenlledandunlledquantumstates.
TheenergydependenceoffD(E,T)changes
dramaFcallyasafuncFonofT.
When/kT>>1(lowtemperatures)the
funcFonresemblesastepfuncFoncenteredat
E=EFand
When/kT<<1(hightemperatures)the
funcFonissmearedout.
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page3of22
TheFreeElectronFermiGasII
Image: Sutton, McGill Physics
TheSommerfeldmodelofametalusesFermi
DiracStaFsFcstotakeintoaccountthequantum
natureofelectrons.Weignorethedetailsofthe
atomicpotenFal.
(r) = exp(ik r)
k
EachelectronsaFsesthefreeparFcle
k (r) = exp(ik r)
SchrodingerequaFonwithperiodicboundary
condiFonswithperiodL:
kx , ky , kz = 0; 2/L; 4/L; . . . (1)
(2)
k (r) = exp(ik !r) "
with
3
4 3
2
Vkspacekx=, kyk
=
2
N
,
k
=
0;
2/L;
4/L; . . .
3 Fz
L
(1)
Thus,thereisonedisFncttripletofquantum
numberskx,ky,kzforthevolumeelement(2/L)3,
andTWOelectronscanlleachstate(accounFng
1
forspin).
kF = (3 2 n) 3 , n N/L3
(3)
Forelectronsinanionicsolidofaverage
potenFalV0theenergyisgivenby
2 k2
h
h2 k 2
(3)
E(k) = V0 +
=
(shiRzeroofenergyupbya
2me
2me
constantV0)
k (r) = exp(ik r)
Inatypicalmetalwehavemanyfree
k (r) = exp(ik r)
(2)
kx , ky , kz = 0; 2/L; 4/L; . . .
electrons.Theyoccupystateswiththelowest
energyrst,thenllprogressivelyhigher
! "3
energystates.
4 3
2
Vkspace = kF = 2 N
3 0; 2/L; 4/L;
L ...
kx , ky , kz =
IfwehaveNelectrons,thevolumeofkstates
lledisasphereofradiuskF:
Vkspace
4
= kF3 = 2 N
3
1
2
L
kF = (3 2 n) 3 , n N/L3
(4)
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
"3
kF = (3 2Page4of22
n) 3
1
kF = (3 2 n) 3 , n N/L3
Image: J. Ellise, McGill
TheFreeElectronFermiGasII
2 k2
h
2 k2
h
Thecorrespondingelectronenergywhenk=k
E(k) = V0 +
=
Fis
2m
2m
e
e
simply
(5)
2
2 kF 2
h
h2
EF =
=
(3 2 n) 3
2me
2me
ThisleadstotheinterpretaFonthattheFermi
surfaceisasurfaceofconstantenergyEFink
space.
material
Fermi
Fermi
energyEF temperatureTF
Na
3.24eV
38000K
Formanymetals,theFermienergyisveryhigh
comparedtothethermalenergyatroom
temperature,kBT
Mg
7.0eV
82000K
Fe
11.1eV
130000K
ItisoRenusefultodenetheFermitemperature
asTF=EF/kB.Since300K<<TF,theFermifuncFon
inequaFon[1]tellsusthefollowing:
Cu
7.0eV
81000K
MgB2*
0.3eV
3200K
Whitedwarf
stars*
0.3MeV
3X109K
3He*
0.1meV
1.5K
i)wecanusuallyfocusontheelectronswithina
smallenergywindowkBTaboutEF.
ii)EF
*Considerwhythesematerialshavesuch
dierentvaluesforEFthanmoreordinarymetals.
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page5of22
(3
n) 3 , n4/L;
N/L
kxk
, kFy , k=
0; 2/L;
. .!
. "3 =
z =
(r)
=V
exp(ik
r)4 k 3
kspace
Vkspace
kF 3= (3
n
F n)2 , N
2
3 k
= 43 k
=
2
N
F
kx , ky ,!kz"=
0; L2/L; 4/L; . . .
3
2=
1
3
"3
2
LN/L3
2
2 kF 2
h
h2
EF =
=
(3 2 n) 3
2me
2me
! "3
exp(ik r)
Vkspace = 43 kF3 = 2h2 kN2 2
24 2 3
21
L
h
k
3h2 k2
2
h2(6)
k2
V
=
k
=
2
N
3, n
(r)
=
exp(ik
r)
kspace
k
=
(3
n)
N/L
=
E(k)
=
V
+
F
k
+
=
F
3
L
0
; 2/L; 4/L; .E(k)=-V
..
0
2me
2me
2me3
e
! "3 kF = (3 2 n) 13 ,2m
2
2
n
N/L
h2 k F 2
2
3
EF = 2me = 2me (3 n)
2
3
kF3 = 2 N 2
(3
, n N/L
kkxF, k=
0; 2/L;
4/L;
...
y, k
z = n)
L
1
3
h2 k 2
h2 k 2
3 , n=
2 = (3 2 n)
2E(k)
k
V
N/L
=
+
F
h2 k F 2
2
0
2m
2me
!
"
3
e
EF = 4 2m
=2hk2k2m2e (3
3
h
h2 k2 n)
2 iG2n x
2
2
h3 k+
I
nrealmetals,onemusttakeintoaccountthe
h
k
h
2
V
=
k
=
2
N
E(k)=-V
=
F
e = Gn =
n/a
kspace 0 3+ 0
1
=2m
F
3 ThewavefuncFonsoluFonsofthefreeelectron
(3
n)
3 E(k)=-V
2
2m
2m
e L 2me EF = 2m
2me ikr
e
n) 3 , n N/L
eiGn x Gn = n/a
k (r)
u
(r)e
periodicityofthelapce,whichmodiesthe
2 2
2=
2
k
h k
case(planewaves)arealsomodiedtoreect
= h2mke
2
3E(k) = V0 + 2m
e
k
=
(3
n)
,
n
N/L
h
k
h
2
F
iG
x
potenFalandhencethewavefuncFonsoluFons
2 (3 n)
#
EFe = n2m h2G
=
2
2 2
2
kFn2m
h2
=
n/a
theperiodicityofthepotenFal.
h2 k2Fn)
hiG
ikr
nx 2
3
E
=
=
(3
3= n/a
2 2
2 2
e
G
E
=
=
(3
n)
(r)
=
u
(r)e
=
Ck eikr
F
n
k
k
F
k
2me
2me 2me
2me
V0 + h2mke = htotheSchrodingerequaFon.
k
2me
h k
h k
k (r) = uk (r)eikr
(8)
E(k)=-V
0 + 2m = 2m
2
iG
x
h2
HenceBlochstheorem:
e
Gn = n/a
= 2me (3 2 n) 3
ikr
iG
x
#
n
nx
T = n1 a1 + n2 a2 + n3 a3
=
Theproblemiseasiesttotackleinreciprocal
ekh(r)
Gnhu=
n/a
k (r)e
ikr
eiG#
Gn = n/a
k
2
(r)
=
u
(r)e
=
Ck eikr
EF = 2m = 2m (3
k
k
ikxn)
i(k+G
)x integers. a1 , a2 , a3 primitive
n
,
n
,
n
lattice
vectors
ikr
n
ikr
1
2
3
k(x)
ukk(r)e
(x)e#k (r)
= =
space.Forarealspacelapcewithlapce
ukC
(r)e
=u
k,n Ae
k (r)=
k
ikx
i(k+G )x
ikr
(x)
=
u
(x)e
=
C
Ae
=
n/a
k
k
k,n
n
2whereisafuncFonthathastheperiodicity
(r)m=
translaFonvectors
G = m 1 b1 + m 2 b
k+
3 b3uk (r)e
ikr
#
eiGx (r)
Gn =
n/a
ikr
=
u
(r)e
ikr
k
k
T
=
n
a
+
n
a
+
n
a
)e
1
1
2
2
3
3
(r)
=
u
(r)e
=
Ck eikrlattice vectors
m
,
m
,
m
integers.
b
,
b
,
b
primitive
reciprocal
(9)
#
k ofthepotenFalandareFouriercoecients.
k
1
2
3
1 2 3
ikx
i(k+G
n )x
kT
(x)
uk1(x)e
Ae
T
an21a+
a32
+Cnk,n
k vectors
==
n=
n=
23 a
3na13, n2 , n3 integers. a1 , a2 , a3 primitive lattice
1 a1n+
2 +n
TheNearlyFreeElectronModelI
1
3
F
e
2 2
2
F 3
e
2 2
2
3
2 2
2 2
2
3
(r) = u (r)eikr
1 k (x)
2 AeG
3
k (x)
=2uk (x)e
= Ck,n
=3 uk (x)e
=Ae 1Ck,n
k
#
#
nn1 , n,2kn
, n3,
aikx
vectors
1 , a2 , a3i(k+G
i(k+G
ikx
n )x
n integers.
integers.
nprimitive
, nn)x , nlattice
primitive
lattice vectors
b3
V (r) =
VG eiGr
W3ecanwritedowntheSchrodingerequaFon
T
= n1 a1 + n2=a2m+1 bn13+
a3m2 b2 +m
GT
= m1 b1 a
+ m2 b2 +am3+
b3
G lattice vectors
m2 , m3a1, aintegers.
b1usingtheseresults.
, b2 , blattice
reciprocal
1 1+n
2 2 , nn33
1 ,b
3 primitive
Recallthatwemaydenethereciprocallapce
n21m
,n
integers.
vectors
2 , a3 primitive
G==nm
b +
b +a3m
m
m1 ,Tm=
m3a +integers.
lattice vectors
3 reciprocal
3
2, n
1 , b22, b32primitive
n1a 1+ nba
2 2
3 3 a , a , a primitive lattice vectors
n1 , n2 , 1n31 integers.
$ 2
%
1 2 3
vectorsby:
2
integers.
a
,
a
lattice
vectors
m
,
m
integers.
b
,
b
,
b
primitive
reciprocal
lattice
vectors
1 , n12,, n
3
1
2 , a3 primitive
1 + n2 a2 + n3 an
3m
2
3
1
2
3
h
k
G = m1 b1 + m2 b2 + m3 b3
(r)
E =C#
iGr
k +V eV
G CkG = 0
ntegers. a1 , a2 , a3 G
primitive
lattice
vectors
V
G
m
b
+
m
b
+
m
b
G
= m=
b
+
m
b
+
m
b
2m
1 1 1 21 2 m 2
3
32 , m 3
3
,
m
integers.
b
,
b
,
b
primitive
reciprocal
lattice
vectors
G
1
2
3
1 2 3
mm
, m3,mintegers.
b1 , b2 , b3 primitive
latticereciprocal
vectors
1 , m,2m
integers.
b , b , breciprocal
primitive
m3 b31
b1 + m2 b2 +
integers. b1 , b2 , b3 primitive reciprocal lattice vectors
TheperiodicityofthepotenFalV(r)allowusto
write:
#
VG eiGr
V (r) =
lattice vectors
ThesoluFonforthisequaFonofcoecients
#
V
(r)
=
VG eiGr
givesusthewavefuncFonsandenergystatesof
G
theelectronsinthepotenFal.
1
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page6of22
k (r) = exp(ik r)
eiGn x. . .Gn = n/a
kx , ky , kz = 0; 2/L; 4/L;
! "3
ikr
2 = uk (r)e
V
= 4 k 3 = 2 Nk (r)
TheNearlyFreeElectronModelII
kspace
Image: Sutton, McGill Physics
(6)
kF = (3 2 n) 3 , n N/L3
k (r) = u0k (r)e
2me
2me
2
2 kF 2
h
h2
EF =
=
(3 2 n) 3
2me
2me
#
ikr
ikr
(r)
=
u
(r)e
=
C
e
k
k
k
T=n a +n a +n a
1 1
2 2
n1 , n2 , n3 integers.
ConsidertheperiodicpotenFalin1DforillustraFon
3 3
k
a1 , a2 , a3
prim
T = n1 a1 + n2 a2 + n3 a3
2 k2
h
h2 k 2
=
2me n1 , 2m
n2e, n3 integers. a1 , a2 , a3
2
2
3
G = m1 b1 + m2 b2 + m3 b3
primitive
lattice vectors
h2 k F 2
h2
m
,
m
,
m
integers. b1 , b2 , b3 pr
1
2
3
EF = 2me = 2me (3 n)
iGn x
e
G
n = n/a
G = m1 b1 + m2 b2 + m3 b3
m1 , m2 , m3 integers. b1 , b2 , b3 primitive reciprocal lattice vecto
iGn x
e
Gn = n/a
(8)
k (r) = uk (r)eikr
#
V
(r)
=
VG eiGr
$
#
Foragivenstatewithwavevectork,onlystateswith
G
h
k (r) = uk (r)eikr =
Ck eikr
E(k) = V0 +
John Ellis Cambridge McGill Physics
k=kG,k2GwillcontributeFourier
componentstotheoverallwavefuncFon.
k (r) = uk (r)e
T = n1 a1 + n2 a2 + (9)
n3 a3
ikr
$ 2
h
k2
E Ck +
VG CkG =
2m !
&!
G "
n
,
n
,
n
integers.
a
,
a
,
a
primitive
lattice
vectors
Ek
1
2
3
1
2
3
Forastatewithsmallk,thestateswithk=kG,
#k = 21 Ek + Ek/a
Forthesestatestheenergybecomes:
'1
k2Gareallmuchhigherinenergy.Forasmall
" &! E E
"2
G = m 1 b 1 + m 2 b2 + m 3 b 3 !
2
k
k/a
1
2
#
=
E
+
E
+
|V
|
k
potenFalthesestatesdonotmixstrongly,andhence
k/a
/a
m1 , m2 , m3 integers. b1 , b2 ,kb3 primitive
reciprocal
lattice vectors
2
2
thedispersionrelaFonresemblesthefreeelectron
case.
ForkstatesneartheBZboundary(/ain1D)the
statewithk=k/aisverycloseinenergyand
henceaectsthedispersionrelaFon(degenerate
perturbaFontheory)
Theeectisthatanenergygapopensupnear
#
V
(r)
=
VG eiGr
theBZedge.Therearenoallowedstatesinthat
G
gap.
TheposiFonofEFwithrespecttogap
determineswhetherasystemisaninsulator,
1
semiconductor,ormetal.
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page7of22
k (r) = uk (r)e
TheNearlyFreeElectronModelIII
Image: John Ellis, Cambridge
Onecanunderstandthisgapasarisingfrom
contribuFonstothewavefuncFonfromtwo
standingwaveswithk - /a.Onehasamaximum
chargedensityneartheBZedge(higherenergy)and
onehasaminimumchargedensitythere(lower
energy)
HigherorderharmonicsofthepotenFalVGwilllink
statesathigherenergiesandgivegapsathighBZ
edges.
SinceanykvectorinahigherBZmaybemappedby
areciprocallapcevectorGintotherstBZ,itis
oRenconvenienttofoldtheenergybandbackinto
the1stBZ.Thisisknownasthereducedzone
scheme.
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
T = n1 a1 + n2 a2 + n3 a3
n1 , n2 , n3 integers. a1 , a2 , a3 prim
G = m1 b1 + m2 b2 + m3 b3
m1 , m2 , m3 integers. b1 , b2 , b3 pr
#k =
1
2
"
Ek + Ek/a
Page8of22
&!
Ek
E1 Ck +
VG CkG = 0Ek Ek/a
2
#
h
2 k$
2m
#
=
E
+
E
#
k
k
k/a
1
G
20
2
2 E2G C=k%m
+ b V+
=
iGr
GC
kG
#
m
b
+
m
b
v
=
$
#(k)
V
(r)
=
V
e
h
k
1
1
2
2
3
3
g
k
G
2m
G
+ |V/a |2
E GCk&+
VG CkG = 0 h
'1
m2m
b"12 , b2 , b3 primitive
reciprocal lattice vectors
" 3 !integers.
1 , m2 , m
2
G
E
E
k
k/a
1
2
1
Ek +"E
+ |V/a |
k/a ' 1
!
" #&k!=
2
2
T
heapplicaFonofaforce(sayelectromoFve)
v
=
$k #(k)
2
$
%
2
g
E
E
k 2 k/a
1
2
2
&!
'1
#
h
d#
dk
dk
E
+
E
+
|V
|
h
k
!
"
"
k
k/a
/a
#
2
2
2 Ek Ek/a 2
changesthewavepacketenergybyanamount
2 C=
F=
v0g =
$k #(k)
==
h
E Ck +
+ |V/aV|G
kG
#k = 21 Ek + Ek/a
V
(r)
VG eiGr
1
2
dt
dt
dt
2m
G
vg = $k #(k)
Aknowledgeofthebandstructureofamaterial
G
h
1
d#
dk
dk
v
=
$
#(k)
=
F
v
=
$
#(k)
=
h
g
k
givesadeepinsightintotheelectronicproperFes.
1
g
k
$ 2
%
!
" &! E E
"2
g = ' 21$k #(k)
1
vh
dt #
dt
dt
2
1
k
k/a
2
h
kk0 ))m (
h
=
#(k)
#(k
)
+
(
h
(k
h
(k
k
))
1
Ek + Ek/aThedispersionrelaFongivesknowledgeofthe
+
|V
|
0
0
d#
dk
dk
/a
2
Eh Ck +fD (E,
VGTC
=0 T
) kG
= (E)/k
= F vg2=
$
k #(k) =F
oranelectriceldofstrengthE,wehave
B
2m
e
+1
eecFvemassandgroupvelocity:
dt
dt
dt
d#
dk
dk
G
dk
= d#
F vg = 1 dk
$k #(k) = h
dk
1
= F vdt
$k #(k) =
dt
dth
g =
1
1
#(k)
&
'
=
eE
1
dt vg = $
dt
dt
k
"
! $
"#(k)
2
$k1
2
ij 1 = E
kik/a
h
1 !#(k) = #(k0m
E
dt
h
j (
2 kk
2
)
+
(
h
(k
))m
h
(k
k
))
0|
02
#k = 2 Ek + Ek/a 2 h
+ |V/a
!
Wavepackets:semiclassicalmodel
1
1 k0 ))m1 (
#(k) =#(k)
#(k=
+ )(
h
(k
(k(h(kk
0 ) #(k
0 ))
+
(
h(k k0 ))mh1
k0 ))
0
2
1
2
1
1
1
mij = 2 $ki $kj #(k)vg = $k #(k)
WheretheeecFvemasstensorisdenedby
h
1
1
1
1
(r) = exp(ik r)
mij m=ij 2=
$ki2 $
#(k)
k
$kij $kj #(k)
h
h
kz = 0; 2/L; 4/L; . . .
ce
"3
d#
dt
proporFonaltotheslopeofthebandwhenitcrosses
2
= 34 kF3 = 2
NInpracFcethismeansthatthevelocityisinversely
= F vg =
L
theFermilevel,andthemassisinversely
= (3 2 n) 3 , n
N/L3
1
k) = V0 +
2 kF 2
h
2me
dk
dk
$k #(k) = h
dt
dt
2 k2
h
2me
2
h2
(3
2me
1
2
proporFonaltothesecondderivateof.
#(k) = #(k0 ) + (
h(k k0 ))m1 (
h(k k0 ))
=
2 k2
h
2me
2
TheenFreFermisphereisshiRedbya
n)
Thusat,shallow,bandstendtocontainslow
3
1
uniformamount(dependsonscaveringrate).
moving,heavyelectrons.
mij 1 =
2 $ki $kj #(k)
Gn x
Gn = n/a
Considerthegroupvelocityvgofawavepacketof
= uk (r)eikr
electrons,madeupasasuperposiFonofwave
#
k (r) = uk (r)eikr =
Ck eikr
funcFons.
Image: John Ellis, Cambridge
Fromknowledgeofthebandstructure,itis
possibletoesFmateconducFvity.
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
= n1 a1 + n2 a2 + n3 a3
n3 integers. a1 , a2 , a3 primitive lattice vectors
Page9of22
Bandstructure2Ddivalentmetal
PotenFalturnedon
1stBZ
2ndBZ
Considera2Ddivalentmetal.Thereare2electrons
perunitcell,soweshouldexpectafullband,and
henceaninsulatoreg.diamond.
Howeversomedivalentmetals(Ca)aremetallic.
Whyisthis?Metalsneednearbyemptystatesin
ordertopropagatecharge.
Considerthecaseofa2DsquarelapcepotenFal.
ThefreeelectronFS(acircle)hasthesameareaas
therstBZ,andhencespillsovertothesecondBZ.
1stBZ
2ndBZ
HoweverturningonapotenFalraisesthe
energyofthestatesneartheedgesoftheBZ
andlowersthemnearthecorners.Hence
electronsaretransferredfromthesecondto
rstBZ,resulFnginametal.
Electrons
Holes
1stBZ
2ndBZ
Freeelectron
circle
Inthereducedzonescheme,thisresultsin
smallFSpockets,bothholeandelectronlike
Images: Singleton, Band theory of solids
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page10of22
Vkspace
(3)
4
= kF3 = 2 N
3
2
L
BandstructureCopper
Images: S. Blundell Oxford
(4)
kF = (3 2 n) 3 , n N/L3
Copperisa3Dmonovalentmetalwith
conguraFon[Ar]3d104s1.[Ar]3d10electronsgive
risetoFghtlyboundbands,farbelowEF.One4s
electrononeFSsheet.
2 k2
h
h2 k 2
E(k) = V0 +
=
fcccrystallapce(bccreciprocallapce).Therst
2me
2m
Brillouinzone(BZ)isatruncatedpolyhedra e
(5)
2
2 kF 2
h
h2
EF =
=
(3 2 n) 3
2me
2me
(6)
eiGn x
(8)
Gn = n/a
TheshortestdistancetotheBZedgeisalong
the<111>direcFon.Usingthelapce
parametersforCu,inthefreeelectron
approximaFonkF/k<111>=0.903(shouldnot
(7)
touchzoneedge)
HowevertheexperimentallydeterminedFS
touchestheBZedgealongthe<111>
direcFon.Thisarisesfrommixingofstatesof
similarenergiesneartheBZedge.
k (r) = uk (r)eikr
(9) QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page11of22
GeneralrulesforconstrucFng
Fermisurfaces
Formanysimplediandtrivalentmetals,theFS
maybeschemaFcallyconstructedbyfollowing
thesesteps:
1. Drawafreeelectronspherebasedonthe
numberofvalenceelectrons
2. SuperimposethisontotherstfewBrillouin
zones.
3. WheretheFSmeetstheBZboundarywhere
thebandgapopensup,splitandroundo
thesurface.
4. TranslatetheresulFngsecFonsbackintothe
rstBZ,usingtheperiodicityofkspace
Evenusingtheserules,simplemetalsmayhave
exceedinglycomplexFermisurfaces.Thesecanbe
diculttocalculate,especiallyforthosematerials
withdandfbandswhichtendtobeveryat.
Image: University of Florida
Eg.Rhenium,hexagonalcrystal
structurewith6(!)bandscrossingthe
Fermilevel.
Anexcellentwebresourceisthe
periodictableofFermisurfacesfound
ontheUniveristyofFloridaswebsite:
www.phys.u.edu/fermisurface/
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page12of22
FermiSurfaceofSr2RuO4
Image: C. Bergemann, Cambridge
ItissomeFmesusefultothinkofrealspace
orbitalswhenconstrucFngFermisurfaces.This
approachiscalledtheFghtbindingapproximaFon
Sr2RuO4isalayeredruthenatematerialthatis
alsoanunconvenFonalsuperconductoratlow
temperature.StronglyanisotropicconducFon
(AB>>Chencequasi2Dmetal)
Tetragonalcrystalstructure.
Thedyz(dxz)statehasweakx(y)
dependence.WethusexpecttheFSformedby
thesestatestobeaatsheetperpendicularto
thex(y)direcFon.Wheretheyintersect,they
pinchotoformcylinderscenteredaboutthe
centerandcornersoftheBZ.
4delectronshybridizetoformthreelow
energystatesdxydyzdxzwhicharepopulated
by4electrons.
Thedxystatehasweakzdependenceand
formsacylinderinthecenteroftheBZ.
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page13of22
ExperimentalprobesoftheFermi
surfaceQuantumOscillaFons
Inverycleanmetals,inlargemagneFcelds
andatlowtemperatures,anoscillatory
componentisobservedintransport,
thermodynamicandmagneFcmeasurements.
h
2 kZ2
E=
+ (! + 1/2)
hc
Thefrequency,angularandtemperature
2m
dependenceofthesignalcanbeusedto
characterizetheFermisurface.
eB
m
ConsideraeldalongthezdirecFon.The
c =
electronexperiencesaLorentzforce:
h
2 kZ2F = eB v
E=
+ (! + 1/2)
hc
2m
IfthescaveringFmeislarge,theelectron
canundergomanycyclotronorbitsor
eB
frequencyc =
F = eB v
Image: I. Shiekin, Grenoble
2
Allowed
kspace
orbits
(Landau
tubes)
2
Inreciprocalspace,theelectroncantakeany
valueofkz,butthevalueofkxandkyare
quanFzedsuchthat:
h
2 kZ2
E=
+ (! 2+ 21/2)
hc
h
kZ
2m
E=
+ (! + 1/2)
hc
2m
eB
with:
c =
eB
m
c =
m
TheseorbitsformLandautubesinkspace
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page14of22
SrFe2As2(amagneFcmetal)
ExperimentalprobesoftheFermi
surfaceQuantumOscillaFonsII
Theresultisthatthedensityofelectron
statesg(E)acquiresastronglypeakedenergy
dependence(eachpeakcorrespondingtoa
MagneFzaFon
Landautube):
IfthemagneFceldisvaried,thepeaksshiR
inenergy.IfapeakcrossestheFermienergy,
thestateispopulated,thenempFesasit
movesaway.
B1(Tesla1)
Fouriertransform
Inrealexperimentsseveral
ofdata(two
h
2 kZ2
dierentperiodiciFesareoRen
E=
+ (! + 1/2)
hcfrequencies)
2m
observed.Howdowemake
h
2 kZ2
E=
+ (! + 1/2)
hc
quanFtaFvesenseofthem?
2m
eB
=
c
InrealexperimentsseveraldierentperiodiciFes
m
eB
areoRenobserved.HowdowemakequanFtaFve
c =
m
senseofthem?
F = eB v
BohrSommerfeldquanFzaFoncondiFon(see
F = eB v
"
#
Kivel):
!
1
p dr = n +
h
!
21
p dr = (nq+ )h
wherepisthecanonicalmomentum:
p = mv + A2
cq
ThisleadstooscillaFonsthatareperiodicin
!
!
p = mv + Aq !
inversemagneFc,1/B.
c
! k dr +
A dr
! p dr = h
cq !
! p dr = h
! k dr +Page15of22
A dr
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
c
A dr = " A d =
!
A dr =
" A d =
E=
c =+ (! + 1/2)hc
F = eBm v
2m
eB
ExperimentalprobesoftheFermi
=
F
=
eB
v
!
m 1
2 2
h
k
+ 1/2)
)hhc
surfaceQuantumOscillaFonsIII
E =p drZ =
+ (n
(! +
2
2m
c
F = eB q v1
p
dr
= (n
p = mv
+ +A )h
Applyingthisyields
c 2
eB
!
!
=
c " q q#!
!
m+
mv
A1 h A dr
p dr =pph
= dr
k= +
dr
nc+
2c !
!!
!!
q
q
pA
dr
==
h
pF==
kmv
dr
+
v d A
+
UsingStokestheoremonthesecondterm:
dr
"eB
AA
= dr
c
c
!!
!!
q!
A
dr ==h
p dr
"
k
+ d
A dr
"drA
# =
!
1c
!
p dr! = n +
h
2
A dr = " A d =
whereisthemagneFcux.Usingq=efor
q
p = mv + A
theelectronandcollecFngtermsgives:
c#
!
!"
1 hc
q!
=
n
+
p dr =n h
k dr2 + e A dr
c#
!
! h "
1
A
=
n
+
real
A
dr
=
"
d =
ShowingthatthemagneFcuxisquanFzed.
eB
2
"
#
Sincetheuxisjusttheeldthreadingthe
1 hc
n = n +realwecanwrite:
realspaceorbit,ofareaA
p =dr =
n+
h
A dr
! " A d =
2
A dr =
1
1
1
2e 1
=
=
B
Bn+1 Bn
h
Arecip
2
"A
q d =
# A
p ="mv +
1 chc
=
n
+
n
!
!
!
" "2 # e q#
TheLorenzforcetellsushowtheareasofthe
p dr = h
hc
k dr
1 +1hc A dr
=
n
+
A
=
n
+ c
n
realspaceandreciprocalspaceorbitsarerelated
real
!
!eB 2 2e
# =
A dr = "hce"#"2 2A 1d
=
B+
Areal
recip=
AAreal
n
h
eB " 2 #
1
2e
"
#2 # 1
"
=
e
1n +hc
h
cArecip
nn =
ABrecip
Wecancombingthesetoshowthat
=
n + B 2 A2real
h
2 e
""
##
1
2e
hc
11
A= =
nn++
Bn realh
cArecip
eB
22
" #2
e
SonallywecanobtainarelaFonbetweenthe
Arecip =
B 2 Areal
h
frequencyoftheoscillaFonsandtheareaofthe
"
#
1
1
2e
reciprocalspaceorbits
=
n+
Bn
h
cArecip
2
ThisisknownastheOnsagerrelaFonandshows
howoscillaFonstudiesmayactasacaliperof
theFermisurface.
e
ThefrequencyisproporFonaltotheextremal
#
hc
1
crosssecFonalareaperpendiculartotheapplied
Areal =
n+
eB
2
eld.
" #2
e
Arecip =
B 2 Areal
h
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
"
#
Page16of22
1
1
2e
=
n+
Bn
h
cArecip
2
"
ExperimentalprobesoftheFermi
surfaceQuantumOscillaFonsIV
OrbitsmaybeobservedenclosinglledorunlledporFonsoftheFermisurface.
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page17of22
n = n
"+
21 hce
n = n +
"
#
hc "2 e 1#
ExperimentalprobesoftheFermi
Areal = hc n + 1
Areal =eB n + 2
eB
2
surfaceQuantumOscillaFonsV
" " ##22
ee
Arecip
B 22A
Arecip
= = h B
Areal
real
h
"
#
OscillaFonsmaybeobservedinmany
1 #
1
2e "
1
= 2e
n+ 1
physicalquanFFes,forinstanceresisFvity(the
B
=n h cArecip n +2
ShubnikovdeHaaseect)orinmagneFzaFon
Bn1
h
1cArecip1 2e 2 1
A dr =
" A d =
"
1 hc
n = n +
2 e
Thetemperaturedependenceoftheamplitudeis
"
#
"
#
1 hc
determinedbyconsideringthetemperature
hc
1
n = n +
dependenceoftheFermiDiracfuncFon.
2 e Areal = eB n + 2
"
#
" #2
hc
1
e
Areal =
n+ A
=
B 2 Areal
recip
eB
2
h
" #2
"
#
e
2
1
2e
1
Arecip =
B Areal =
n+
h
B
h
cA
2
n
recip
=
=
(thedeHaasvanAlpheneect).
"
#
h
Arecip1
1 B 1Bn+1 1Bn 2e
1
2e
1
1
1
1
2e 1
=
n
+
=
=
2 2
=
B
h
cA
2
B
Bn+1h kf Bn
h
Arecip
n
recip
AtypicalmeasurementofthedHvAeect
B
Bn+1 Bn
h
Arecip
Ef =
= Ei + h
2m
involvesmeasurementofthedierenFal
1
1
1
2e 1 2 2
2 2
h
k
=
f kf " = ki"
h
k
suscepFlbiltywithcounterwoundpickupcoils,
B
Bn+1 Bn
h
fA
Ef =
= Ei + h
E
=recip f = Ei + h
2m
suchthatthepickupvoltageis
2m
h
2 kf2
kf " =dM
ki"dB
Ef =
= Ei + h
kf " = ki"
V =
2m
dB dt
kf " = ki"
dM dB
InaddiFontothefrequency,theamplitudeof
dM dB
V
=
V =
theoscillaFonsmaytellusagreatdeal.
dB dt
dB dt
dM dB
1
V
=
Amp. B e c
Image: C. Bergemann, Cambridge
dB dt
Amp. B 1 e c
1
Amp.
Amp. B e c
TheanalyFcexpressionis:
sinh()
WhereisthescaveringrateandCisthe
cyclotronfrequency.Theelddependencecan
Amp.
= 14.7m! T /B
sinh()
giveinformaFononscavering.
= 14.7m! T /B
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page18of22
ExampleofaquantumoscillaFon
study:Ag5Pb2O6nearlyfree
electronsuperconductor
Neckorbit(low
frequency)
Bellyorbit(high
frequency)
1stBrillouinzone
Twofrequencies,correspondingtoneckandbelly
orbits(extremalorbits).
Angulardependencegivessuccessivecross
secFonalcuts,perpendiculartoappliedeld.
Weaktemperaturedependence(lightmasses).
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page19of22
F = eB v
OtherProbesoftheFermi
Surface:ARPES
AngularResolvedPhotoEmission
Spectroscopyispowerfultechniquethatuses
thephotoelectriceecttoprobethe
electronicstatesnearthesurfaceofasample.
Anincomingphotonofenergyejects
electronofmomentumkF
q
p
=
mv
+
A
"
#
!
1
Final
c
p dr
!
! = n+ 2 h!
measured
q
p dr = h
k drq +
A energyand
dr
p = mv + A c
momentum
c
!!
A
dr==h
p dr
!
!!
A dr =
q!
k"
dr+A d
A =
dr
c
" A d =
"
#
1 hc
#
1 2 hc e
n = n + "
#
hc "2 e #1
Areal = hc n +
1
Areal = eB n + 2
eB #
2
"
" e#2 2
e
2 2A
Arecip
Arecip =
=
BB
Arealreal
h
h
""
# #
1 IniFalElectron
2e
1
1 1 = 2e
n + state
=
n
+
Bn
h
cArecip
2
B
h
cA
2
n
recip
UseconservaFonofmomentumandenergyto
n = " n +
1
1
1
2e 1
=
workouttheiniFalstateofthetheelectron
1 B B1n+1 B1n
h
2e
Arecip 1
=
2 2
Bn+1
B
h
Arecip
n
h
kf
Ef =
h
22m
kf2
= Ei + h
Ef =
f "= E
i"i + h
Momentumparalleltothesurfaceisconserved
2m
k
=k
kf " = ki"
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page20of22
OtherProbesoftheFermi
Surface:ARPESII
Images: A. Damascelli, UBC
Occupied
states
Dierentk
states
(detector
angles)
Fermilevel
setby
calibraFngto
astandard
Example:Sr2RuO4(again!)
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page21of22
EssenFalFurtherReading
Thepreceedingnotesgiveaverybriefoverview
ofelectronicbandstructure,Fermisurfaces,and
theexperimentalprobesusedtomeasurethem.
Youshouldreadwidelyonthesubjectandbe
comfortablewiththemainideas.
ARPEStechniques
ProbingtheFermiSurfaceofCorrelated
ElectronSystemsA.DamascelliPhysica
Scripta.Vol.T109,6174,2004
FreeElectronModel:basicconceptsin
IntroducFontoSolidStatePhysics9thedKivel,
Chapter6.
NearlyFreeelectronModel:
BandTheoryandElectronicProperFesofSolids
J.Singleton,OxfordMasterSeriesinCondensed
MaverPhysics,Chapter3(2001).
QuantumoscillaFonsandthedeHaasvanAlphen
Eect:
J.Singleton,chapter8(goodintroducFon)
MagneFcOscilaFonsinMetalsD.Shoenberg,
CambridgeUniversityPress,(1984).
QMsmallgrouplecturenotes:www.qm.phy.cam.ac.uk/sutherland/teaching/
Page22of22