Outline
Introduction
Elements of power monitoring
system
Some examples
A simple Experiment
Introduction
The technology of power monitoring has evolved
over the last decade from simple failure
notification to the delivery of data about a wide
range of different conditions.
This system should include three elements: 1) a
proactive power monitoring system at the
unmanned site which collects data and directs
reports and alarms to multiple locations; 2) a
data transport system, compatible with the
service provider's telecommunications network,
which communicates data between unmanned
sites, the alarm center and maintenance
personnel; and 3) an intelligent alarm center
which automatically collects and correlates data
from all of the sites, and redirects alarms to
responsible personnel.
Networked power monitoring
systems integrate and carry a variety
of power and facility data. They
include three separate subsystems
for data acquisition, data transport,
and data management
Data Acquisition Subsystem
The system installed at each remote site monitors
electrical and physical parameters 24 hours a day,
seven days a week, 365 days a year.
Proactive monitoring provides analog signals to assist
the user in making intelligent decisions. If a binary
warning signal indicates that a threshold has been
exceeded, the analog measurement provides the
magnitude of the signal. For example, if a cell voltage
generated a binary warning signal at 2.24VDC and the
voltage was stable at 2.23VDC, no maintenance action
would be initiated. However, if the cell voltage had
decreased to 1.7VDC, a dispatch to the site might be
required. In either case, the remote site would
immediately be contacted via the Data Transport
Subsystem to determine the true conditions.
Example: EPM420
Modbus-RTU
SCADAPLC
EPM420
TransducerRTU
EPM
,
  (,
, ) 
, ,  LED
Data transport subsystem
Data must be moved from the
remote location to a common site
where the user has ready access to
many systems. In the past, this was
done using the PSTN.
Today, users are requesting a more
secure transport system which
encompasses their installed network
elements.
Data Management Subsystem
A Data Management Subsystem has
the capacity to receive all the
information sent by the remote sites,
present the analog readings in a
graphical user interface format.
These Management Subsystems use
generic hardware and firmware, but
each is adapted to the needs of the
particular user.
Some examples
RS-232 
(CDCC)
(ADCC)(DDCC)
375 370
(1820)
78
1022 (1198)
506
(1940)
1190
()
IPP 
 1252
 278
 x3 1689MW
(464)
608
1124 IPP 563
 x2 852MW
790
712
607
x1 1237MW
IPP
263
565 
 3778MW
65
852
1193
1865
1237
1111
(1194)
(888)
425
3778MW
(4635)
746
1050
792
434
517
93
87
704
310
IPP
810 
(800) IPP
1643 820
512
37
IPP
(1656)
 573
92 
212
IPP
752
756
IPP
 1909
(2913)
925
52
53
531
730
2357MW
292
958
(629)
 1136
(1039)
519
1107
(1800)
29210MW
171
(D/S: 161/22.8/11.4kV)
(S/S: 69/22.8/11.4kV)
(D/S: 161/22.8/11.4kV)
(P/S: 161/69kV)
    ()
   (%)
2,602
6.8
28,233
74.1
5,144
13.5
2,103
5.5
1,921
5.0
182
0.5
38,082
100.0
 96 723 32,791 
 16.2 %
30,000
25,000
20,000
15,000
(MW) 10,000
5,000
00
06
12
()
18
24
89
6-2 (88)
514.4 442.2
(15.5%)
(18.1%)
452.7
(15.9%)
2,848
810.0
(28.4%)
38.0
(2.6%)
508.7
(17.9%)
1200
(4.2%)
6-1 (88)
145.3
(10.0%)
369.1
(25.3%)
527.3 1,458
(36.2%)
35.0
(2.4%)
253.8 
(17.4%)
89.2
(6.1%)
()
()
(
)
 1000 MVA 345kV/23.75kV
()
(a) 345 kV
(c) 69 kV
(b) 161 kV
(d) 11.4 kV
 
 
OLTC
(P/S) 200MVA
161kV/69kV/11kV
11kV/220V
ABB (Air Blast Breaker)
161kV 
1.
2.
3.
1. 
  
   kW 
 15
1. 
  
   (  )
   
(
)(
)
1. 
 
()0730~2230
()10
00~12001300~1700
 
 (  )07 
30~10  00  12  00~13  00  17  00~22 
30()0700~22
30
1. 
 
 00  00~07
302230~2400
2. 
 =   
 ()
 
/
/
24  
10:00 ~ 12:00
13:00 ~ 17:00
2. 
&
2. 
  ()
  ()
  ()
  ()
2. 
 
 
10%     ( ) 
   10%  
2. 
A. ()
B. (  )
C. 
(A+B)  (80% -0.15%+0.3%)
D. ()
 = A+B+C+D
2. 
()
()
(/)
3.45
(6 Hrs)
2.00
(9 Hrs)
0.82
(9 Hrs)
(/)
20.7
18.0
1.94
(15 Hrs)
29.1
7.38
0.77
(9 Hrs)
6.93
 46.8 /
 36.03 /
1 KW()
10.05
(/)
3.45
(6 Hrs)
20.7
2.00
(9 Hrs)
18.0
0.82
(9 Hrs)
7.38
 46.8 /
(/)
0.82
(24 Hrs)
19.68
 19.68 /
1 KW()
27.1217.55
3. 
3. 
3. 
3. 
/
 /
(
)
(DTMF ( Dual Tone
Multifrequency  ) )
DTMF 
EM78567 
SIN TONE 
DTMF 
PC 8051 
DTMF MAX232 
IC PC RS232 
2.3 
MT8870 
MAX232 IC 
RS232 PC RS232 
***1***4/0 
PSTN 
DTMFDial Tone
1. 
100V~200V 
20Hz
2. On/Off-hook
hook
on-hookoffhook
on-hook off-hook
3. Dial Tone
Dial Tone
350Hz 440Hz 
4. DTMF(Dual Tone Multi-Frequency)
DTMF 12 
8051 
30H~37H 
40H~45H 
MT8870 
74155 
OFF8051 
MAX232 RS232 
VB 3.11 
VB 
VB 
mscomm 
VB 
VB 
8051 
VB 
ADO(ActiveX Data Objects)
 SQL 
A 5254154 B 
5256416 A 
B 
125V 
90V 
B()MT8870 
DTMF MT8870 STD Hi Low
4.4 
MT8870 
***1/0xxx***4
xxxx 
EM78567 
PC 
125V 
90V /
1. /
2. 
RS232 
4.7 
4.8
(I)
(I)
30%
Direct
Load Control
51.429.619.0
80%
/
[15]
RS-232 
Time of Use Rate
15 
15 
10
10
FamaOMC-1/E 
FBE PLC 
Fama PLC 
FIX PLC 
Fama PLC 
FIX 
Fama PLC 
UPS
PC Windows
NT 4.0 
PC-Based 
Fama Paradym-31[38]
Intellution FIX32 
Fama OMC-1/E 
(Fama PLC)
(FBE
PLC)
I/O 
1. Fama PLC
I/O FBE PLC
2. 
1. 
Fama PLC FBEPLC 
Fama PLC 
1. 
RS-232 
2. 
FBE PLC
RS-232 
RS-232 
ICP CON SST-900 
RS-232 
31
()
RS-232 
:
(1)
32 ()
kWh meter pulse
kWh meter 1/1000 
(1/1000 kiloWatt-hour)
kWh meter 1(Watthour)
n pulse
n1(Watt-hour) /hour =n (Watt)
A 
3.5 
(1) 
(2) 
(a) 
(b) 
(c) 
5
(d)
(3) 
(a) 
RS-232 DCD
PC spDCD 
(b) 
(c) 
spDSR 
kW10
(4) 
Internet 
Internet 
VNC 
 (Ethernet)10 BaseT
(server)(backbone)
 (Packets)
kWhkW 
1 
10 
10 100 
3.1
3.2 3.3 (N+1)-1 
(kWh)PC 
(kWh)
1. 
(IEEE Std. 141-1993)
1. 
1. 
1. 
1. 
1. 
1. 
1. 
3. ()
(Circuit-breakers)
(Switches)
(Disconnectors (Isolators))
(Switch-disconnectors)
(Contactors)
(Earthing switches)
(Make-proof earthing switches)
(Fuses)
(Surge arresters)
3. ()
()
()
3. ()
 (Air
Blast Circuit Breaker, ABB)
 (Magnetic
 (Air
 (Oil
Blast Circuit Breaker, MBB)
Circuit Breaker ,ACB)
Circuit Breaker ,OCB)
 (Mini-oil
or Poor-oil Circuit Breaker, OCB
PCB)
 (Vacuum
 SF6(SF6
Circuit Breaker ,VCB)
Gas Circuit Breaker ,GCB)
3. ()
 
(Air Load Break Switch ,LBS)
(Oil Break Switch, OBS)
(Ring Main Unit ,RMU)
(HRC FUSE )
(FUSE LINK)
3. ()
Moving Contact&
Fixed or Stationary Contact
600V
3300V
3. ()
In
2~6In ()
>7In()
(1)
BIL(Basic
Impulse Level)
3. ()
SF6
a.1%
b.
()
SF6
4. 
4. 
 (Power
Transformer)
 (Distribution Transformer)
(Furnace Transformer)
(Rectifier Transformer)
(Testing Transformer)
(Instrument Transformer)
4. 
V1/V2n1/n2
 V1 /(4.44 f n1)
I1/I2n2/n1
V24.44 f n2
4. 
-- 
-- 
()
-- 
Y
90
A
105
E
120
 
B
130
F
155
H
H 
180
C   180  
 IP (Ingress Protection)
()
IP X X
()
()
0 
1  50
2 12.5
3  2.5
4 
5
1
6 
2
()
0 
1 
2 15
3 (60)
4 ()
5 ()
6 ()
7 
8 
1
2
3
4
5. /
(Power Factor) 
Active Power
P
Power Factor 
 
Apparent Power S
KW
KVA
3 VL I l cos  I l cos 
IL
3 VL I L
2
2
VI
P Q
5. /
(Power Factor) 
5. /
5. /
5. /
5. /
5. /
PL1 I12 cos 22
cos 21
 2 
,PL2  PL1 
2
PL2 I2 cos 1
cos 22
PL1  PL2
2
I2
I1
cos 21 
 PL1  1 
2
cos 2 
5. /
5. /
PO
cos
S 
0
PO  P1
cos1
PO
cos
P O  P1
cos1
cos0
P1 cos1  cos0
 (K) =
 1
P0
cos1
cos1
28.5%
48 % (1000 KVA -> 480Var)
5. /
Vr = Vs - BC
= Vs  IR + j IX
Vs
Vr
Vd = Vs - Vr
= Vs Vs  IR + jIX
= IR + jIX
 = Vd / Vs
5. /
EXTR1000 KVA with 6% impedance
300 kVar capacitor bank
5. /
 80%
1%0.3%
 80%1%
0.15%
5. /
5. /
B480V
C     11.4KV  
5. /
5. /
Harmonics
 (
60Hz)
(Fourier series)
 
5. /
 (VSD)
 (Rectifier
 (UPS)
 
 
 
 
 
 AC to DC)
5. /
5. /
 (Total
Harmonic
Distortion, THD) 
V2  V3  V4  .....
2
VTHD % 
V1
I 2  I 3  I 4  .....
2
I THD % 
I1
 100%
 100%
cn
cn % 
 100 %
c1
5. /
H = n P  1; n= 1, 2, 3, 
P=6
H= 5, 7, 11, 13, 17, 19, 
P=24
P=12
H= 11, 13, 23, 25, 
P=18
H= 17, 19, 35, 37, 
H= 23, 25, 47, 49, 
5. /
 
 ()
5. /
IEEE/Std 519-1992 
1.3.3kV~22.8kV
2.34.5kV~161kV50%
 *ISC /IL20
ISC
IL12
69kV
69kV
69kV
(%)
3.0
1.5
1.0
(THD%)
5.0
2.5
1.5
161kV
0.10.1
34.5~161kV
0.150.15
3.3~22.8kV
0.30.3
5. /
--- 
(single-tune band-pass,
ST)(high-pass, HP)
5. /
RLC
(R)
Z  R  j( L  1
C )
0 
L
Q
R
1
LC
L
1
 C
R
LC
5. /
 RLC
1
1
1 1
Z 
( 
)
jC
R jL
1
L( R 2 C  L)
1.
2.
3.
4.
5.
6.
1. 
 ()
 
 
 
 
1. 
PROTECTION  PREVENTION
1. 
2. 
(1).  (Reliability)
(2). (Selectivity) 
(3). (Speed) 
(4). (Simplicity) 
(5). (Economics) 
2. 
(1). 
(2).  
(3). 
(4).  
VIpfPfT
3. 
3. 
(CT)
(PT, VT)
3. -
(CT, Current Transformer)
3. -
3. -
VS
Ie
3. -
 1.5
1440A2000/5A
 
1.5
3A
3. -
burden 
 CTCT
 CT
1020
10%5%
CT
3. -
CT
 (VA)
 ()
 (V)(saturation
voltageknee voltage)CT
(Excitation curve)CT
3. -
(CT)
()CT
CT()
()
()
(VA)(5)2 (CT5A)
(V)(5)(1020)
3. -
ANSI C57.13CCT20
10%2000/5100VAC
()100VA/(5A)24
()5A204400
CT2000/5A100VAC400
IEC-185CT 2000/5
10P20100VA
10P20ANSI-C57.13CCT20
(100VA)10%
10P105P105P20
3. -
CT
 CT
 CT(
CTCT)
 CT
CT
1.CT
2.CT
CTY
3.CT
4.CT
back-up
5.CTCTCT
6.CT
7.(change-over-switch)3
(transducer)CT
3. -
(PT, Potential Transformer)
110V115V120V
PT
Class 1.0
(MCB)
3. -
3. -
3. -
 (Protective)
 (Monitoring)
 (Regulating)
 (Auxiliary)
 (Reclosing)
 (Sync check)
3. -
Current relays
 Voltage relays
 Power relays
 Frequency relays
 Temperature relays
 Flow relays
 Vibration relays
 Pressure relays
3. -
Electromechanical relays-EM
Type
 Solid state relays
 Static relays
 Digital relays
 Thermal relays
 (Intelligence Electronic Device, IED)
3. -
Full Feeder Functionality
Feeder Data Base
System Automation
3. -
Overcurrent relays
 Differential relays
 Distance relays
 Undervoltage relays
 Overvoltage relays
 /Inverse/Definite time relays
 Directional relays
 Phase comparison relays
 Over speed relays
3. -
1.
2.
3.
a)
b)
c)
d)
3. -
(50/51/50N/51N)
 (Definite Time)
 (Inverse Time)
IECNIVIEILI
ANSILIMIDIAIVISIEI
 --
(I/I P ) - 1
 TP
t(
(I/I P ) - 1
  )  D s 
(I/I P ) - 1
 TP
Tp
I/Ip
3. -
(50/51/50N/51N)
 (Definite Time)
 (Inverse Time)
IECNIVIEILI
ANSILIMIDIAIVISIEI
 --
3. -
(IEEE Std C37.2-1996)
21
25
27
32
40
41
43
3. -
(IEEE Std C37.2-1996)
46
50/50N
51/51N
52
59/59Vo
67/67N
68
3. -
(IEEE Std C37.2-1996)
79
81
85
86
87
89
94
3. -
86/94
DCUPS
4. 
CT/PT
5. 
 
 
 
 
5. 
A
B
5. 
(Coordination Time IntervalCTI)
0.3~0.5
ANSI CTI0.2 ~0.50.3
5. 
 T-Back-upT-Main + 0.3 
 T-Main
 T-Back-up
5. - 
5. - 
6. 
1). 
-
2). 
ANSI
3). 
6. 
6. -Protection Scheme
6. -Protection Scheme
(<1MW)
(>1MW)