1.
2.
If (ey + 1) cos x dx + ey sin x dy = 0, then
(a) sin x (ey + 1) = C
(c) x sin (ey + 1) = C
dy
If cos2x dx + y = tan x, then
(a) y =(tan x -1) + Ce-tanx
(c) y = (tan x 1)+ Ce-cot x
3.
(b) cosx (ey + 1) = C
(d) x cos(ey + 1) = C
(b) y = (cot x 1) + Ce-tanx
(d) y = (cot x 1) + Ce-cotx
If (y + sinx cosx) dy + y (sinx + cosx) dx = 0.
y2
(a) y (-cosx + sinx) + 2 = C
y2
(c) y cos x sin x + 2 = C
4.
y2
(b) y(cosx sinx) + 2 = C
(d) None of these
If (x2y 2xy2)dx (x3-3x2y) dy = 0, then
x
y3
y
y2
1
n
C
2
x2
(a) y + 1n x = C (b) x
5.
x x
(b) log y + y = C
-x
(a) e (x + y ) = C (b) e (x -y ) = C
x
(d) log y -xy = C
(c) e (x y ) = C
(d) e
x2
2
-x y
=C
The order and degree of the differential equation
dy
dx
d2y
dx 2
(a) 2, 2
1, 6
8.
x
(c) log y + xy = C
(x2 + y2 + 2x) dx + 2ydy = 0 then
7.
(d) None
If (y xy2)dx-(x + x2y)dy = 0, then
x x
(a) log y - y = C
6.
x
y3
2
(c) y -1n x = C
3/ 2
= are respectively
(b) 2, 6
The degree of the differential equation
(c) 2, 3
(d)
d y
2
dx
y x
1
4
d3y
3
= dx is given by
(a) 2
9.
(b) 3
(c) 4
(d) 1
The order and degree of the differential equation
d y
dx 3
4
3
d2y
2
= dx is given by
(a) 1, 2
4, 8
(b) 2, 8
(c) 3, 8
10.
The general solution of the differential equation ydx- xdy = xydx is
(a) y = Axex
(b) Ax = yex
(c) y = Aex
(d) y = Ae-x
11.
The differential equation which is linear is
dy
x2 y
(a) dx
= sin y,
dy
(c) (1 + y) dx +sin x = 0
12.
13.
dy
(b) dx - x2y = sin x
dy
(d) dx + y (y + x) = x2
If (x + y) dx + (x y) dy = 0 then
(a) x2 + 2xy y2 = C
(c) x2 + 2xy + y2 = C
(b) x2 2xy y2 = C
(d) x2 2xy + y2 = C
An I.F. of the differential equation
dy
(1-x2) dx - xy = 1 is
(a) x
14.
15.
x
2
(b) 1 x
(c)
1 x
1
(d) 2 loge(1-x2)
dy
The solution of the differential equation dx = ex-y + x2e-y is
1
1
(a) ey = ex + 3 x2 + C
(b) ey = ex + 3 x3 + C
1
(c) ey = ex + x3 + C
(d) e-y = 3 x3 + ex +C
The differential equation ydx- 2xdy = 0 represents
(d)
(a) A family of straight lines
(c) A family of Cireles
16.
17.
(b) A family of Parabolas
(d) A family of Catenaries
Pdx + x siny dy = 0 is exact, then P can be
(a) siny + cos y
(b) sin y
(c) x2 cos y
The differential equation of the system of circles touching the y-axis at the origin
is
dy
(a) x2 + y2 2xy dx = 0,
dy
(c) x2 y2 + 2xy dx = 0,
18.
(d) cos y
dy
(b) x2 + y2 + 2xy dx = 0,
dy
(d) x2 y2 2xy dx = 0,
Differential equation of the parabolas having their axis parallel to the y-axis is
d 2 y dy
2
(a) dx + dx + y = 0
d2y
2
(b) dx + y2 = 0
d3y
3
(c) dx = 0
dy
(d) dx -
d3y
dx 3 =0
19.
20.
The orthogonal trajectory of the rectangular hyperbola dy = C 2 are given by
(a) y(x y) = k
(b) x2 y2 = k2
(c) x2 + y2 = k2
(d) x(x +
y) = k
1
2
The value of D a cos ax is
x
x
(a) 2a cos ax
(b) 2a sin ax
2
x
(c) 2a sin ax
(d) none of
these
Answers
1
A
11
B
2
A
12
A
3
A
13
C
4
A
14
A
5
D
15
B
6
A
16
C
7
A
17
C
8
C
18
C
9
C
19
B
10
B
20
B