100% found this document useful (1 vote)
2K views15 pages

Nicholas Mining Method Selection

This document outlines a two-stage numerical process for selecting an underground mining method based on a deposit's characteristics. Stage 1 involves ranking potential mining methods based on the deposit's geometry, grade distribution, and rock mechanics properties. The top-ranked methods would then be further evaluated in Stage 2, where more detailed mine planning and costing is done to determine the optimal and most economically feasible mining method. Key data needed includes geologic maps, a grade model, and rock mechanics data for the ore zone, hanging wall, and footwall. Defining the deposit's geometry, grade distribution, and rock strength properties allows identification of the most suitable mining methods.

Uploaded by

DivyanshSharma
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
2K views15 pages

Nicholas Mining Method Selection

This document outlines a two-stage numerical process for selecting an underground mining method based on a deposit's characteristics. Stage 1 involves ranking potential mining methods based on the deposit's geometry, grade distribution, and rock mechanics properties. The top-ranked methods would then be further evaluated in Stage 2, where more detailed mine planning and costing is done to determine the optimal and most economically feasible mining method. Key data needed includes geologic maps, a grade model, and rock mechanics data for the ore zone, hanging wall, and footwall. Defining the deposit's geometry, grade distribution, and rock strength properties allows identification of the most suitable mining methods.

Uploaded by

DivyanshSharma
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

METHOD SELECTION

-A

NUMERICAL APPROACH

Chapter 4

David E. Nicholas
Vice-President
C a l l & Nicholas, Inc.
Tucson, Arizona

INTRODUCTION

I n t h i s paper, a numerical p r o c e s s f o r
s e l e c t i n g a mining method, with t h e emphasis
on underground mass mining t e c h n i q u e s , such
a s caving, induced caving, and s t o p i n g , i s
proposed.
I n t h e p a s t , s e l e c t i o n of a mining method
f o r a new property was based p r i m a r i l y on
o p e r a t i n g experience a t s i m i l a r type d e p o s i t s
and on methods a l r e a d y i n use i n t h e d i s t r i c t
of t h e deposit.
Then, t h e chosen method was
modified during t h e e a r l y y e a r s of mining a s
ground c o n d i t i o n s and o r e c h a r a c t e r were b e t t e r understood.
Today, however, t h e l a r g e
c a p i t a l investment r e q u i r e d t o open a new mine
o r change an e x i s t i n g mining system make it
imperative t h a t t h e mining methods examined
during t h e f e a s i b i l i t y s t u d i e s and t h e method
a c t u a l l y s e l e c t e d have a high p r o b a b i l i t y o f
attaining the projected production r a t e s .
Although experience and e n g i n e e r i n g judgment
s t i l l provide major i n p u t i n t o t h e s e l e c t i o n of
a mining method, s u b t l e d i f f e r e n c e s i n t h e
c h a r a c t e r i s t i c s of each d e p o s i t , which may
a f f e c t t h e method chosen o r t h e mine d e s i g n ,
can u s u a l l y be p e r c e i v e d o n l y through a n a l y s i s
of measured c h a r a c t e r i s t i c s .
The parameters t h a t must be examined when
choosing a mining method i n c l u d e :
1) geometry and grade d i s t r i b u t i o n o f t h e
deposit;
2) rock mass s t r e n g t h f o r t h e o r e zone, t h e
hanging w a l l , and t h e f o o t w a l l ;
3 ) mining c o s t s and c a p i t a l i z a t i o n r e q u i r e ments;
4) mining r a t e ;
5) type and a v a i l a b i l i t y of l a b o r ;
6 ) environmental concerns; and
7) o t h e r s i t e - s p e c i f i c c o n s i d e r a t i o n s .
T h i s paper encompasses a d e t a i l e d look a t t h e
f i r s t two parameters s i n c e t h e y , p l u s mining
c o s t s , have t h e g r e a t e s t impact on t h e s e l e c t i o n of a mining method.
The proposed method s e l e c t i o n p r o c e s s i s
f o r a p r o j e c t where d r i l l i n g h a s d e f i n e d s u f f i c i e n t geologic r e s e r v e s , b u t l i t t l e o r no
underground development h a s been done.
Since each d e p o s i t has i t s own c h a r a c t e r i s t i c geanetry/grade d i s t r i b u t i o n , and rock

mechanics p r o p e r t i e s , mining method s e l e c t i o n


should be a t l e a s t a two-stage p r o c e s s .
I n Stage 1 , t h e d e p o s i t i s d e s c r i b e d i n
terms of geometry, grade d i s t r i b u t i o n , and
rock mechanics p r o p e r t i e s . Using t h e s e parame t e r s , t h e mining methods can be ranked t o
determine which a r e most a p p l i c a b l e ; they can
then be considered i n g e n e r a l terms o f mining
and c a p i t a l i z a t i o n c o s t , mining r a t e , type
and a v a i l a b i l i t y of p e r s o n n e l , environmental
concerns, and o t h e r s i t e - s p e c i f i c considerations.
I n Stage 2, t h e most l i k e l y mining methods
a r e c o s t e d o u t , based on a g e n e r a l mine p l a n .
Mining and c a p i t a l i z a t i o n c o s t s a r e used t o
determine a cut-off grade f r a n which a minable
r e s e r v e can be c a l c u l a t e d ; economic comparisons
can t h e n be made t o determine t h e optimum mini n g method and economic f e a s i b i l i t y .
During t h e mine planning phase of Stage 2,
rock mechanics information would be used t o
provide r e a l i s t i c e s t i m a t e s of underground
opening s i z e , amount of s u p p o r t , o r i e n t a t i o n
of openings, and caving c h a r a c t e r i s t i c s , and
open p i t s l o p e a n g l e s . I f ground c o n t r o l o r
o p e r a t i o n a l problems should be encountered w i t h
t h e methods being c o n s i d e r e d , m o d i f i c a t i o n s
could be made. Although planning on paper
extends s t a r t - u p time, it i s cheaper t o e r r
on paper than t o f i n d t h e e r r o r a f t e r mining
has begun.
METHOD SELECTION

STAGE 1

The main purpose of Stage 1 i s t o s e l e c t


those mining methods which should be considered
i n g r e a t e r d e t a i l . The s i m p l e s t way t o do t h i s
i s by d e f i n i n g those c h a r a c t e r i s t i c s r e q u i r e d
f o r each mining method and then d e t e r m i n i n g
whether t h e c h a r a c t e r i s t i c s of t h e d e p o s i t a r e
s u i t a b l e . However, no one mining method i s s o
r e s t r i c t i v e t h a t it can be used f o r o n l y one
s e t of c h a r a c t e r i s t i c s , a s i n d i c a t e d by t h e
c l a s s i f i c a t i o n system proposed by Boshkov and
Wright (1973). I n t h e mining method s e l e c t i o n
proposed, geometry, grade d i s t r i b u t i o n , and
rock mechanics c h a r a c t e r i s t i c s a r e ranked
according t o t h e i r a c c e p t a b i l i t y f o r t e n
g e n e r a l mining methods.

DESIGN AND OPERATION OF CAVING AND SUBLEVEL STOPING MINES


Data Required
The most important d a t a r e q u i r e d f o r s e l e c t i o n of a mining method and i n i t i a l mine layout
a r e geologic s e c t i o n s and l e v e l maps, a grade
model of t h e d e p o s i t , and rock mechanics chara c t e r i s t i c s o f t h e d e p o s i t , f o o t w a l l , and hanging w a l l . Much o f t h i s d a t a can be o b t a i n e d
from d r i l l c o r e , and, i f it i s not c o l l e c t e d
during t h e i n i t i a l core logging o r a s s a y i n g ,
it w i l l be l o s t .
Geology. Basic geology i n t e r p r e t a t i o n i s of
major importance i n any mineral e v a l u a t i o n .
Geologic s e c t i o n s and l e v e l maps which show
major rock t y p e s , a l t e r a t i o n zones, and major
s t r u c t u r e s , such a s f a u l t s , v e i n s , and f o l d
I t may be a d v i s a b l e
a x e s , should be prepared.
t o d e f i n e t h e a l t e r a t i o n zones on a s e p a r a t e
s e t o f maps, which can then be o v e r l a i n onto
t h e rock type geology maps. These g e o l o g i c
s e c t i o n s and l e v e l maps should be prepared a t
t h e same s c a l e a s w i l l be used f o r mine planning.
S e c t i o n s should be drawn t o t r u e s c a l e ,
without any v e r t i c a l e x a g g e r a t i o n , because it
makes it e a s i e r t o v i s u a l i z e t h e r e l a t i v e layo u t of mine workings. The a r e a included on
t h e maps should extend h o r i z o n t a l l y i n a l l
d i r e c t i o n s 1.75 times t h e depth beyond t h e
l i m i t of t h e orebody. Although an a r e a t h i s
s i z e may seem e x c e s s i v e , it w i l l ensure t h a t
t h e r e i s s u f f i c i e n t information f o r e v a l u a t i n g
t h e l i m i t of ground s u r f a c e movement due t o
mining: t h i s information i s needed t o l o c a t e
s h a f t s , a d i t s , and b u i l d i n g s , e t c .
The importance of a complete s e t o f i n t e r p r e t e d s e c t i o n s and l e v e l maps cannot be overs t a t e d . They a r e necessary f o r d e f i n i n g grade
d i s t r i b u t i o n , a s w e l l a s u n i t s of s i m i l a r rock
mechanics c h a r a c t e r i s t i c s .
Geometry of Deposit and Grade D i s t r i b u t i o n .
During Stage 1 of t h e method s e l e c t i o n p r o c e s s ,
geometry and grade d i s t r i b u t i o n a r e d e f i n e d .
The geometry of t h e d e p o s i t i s d e f i n e d i n terms
of g e n e r a l shape, o r e t h i c k n e s s , plunge, and
depth (Table 1 ) . Grade d i s t r i b u t i o n i s d e f i n e d
a s uniform, g r a d a t i o n a l , o r e r r a t i c (Table 1 ) .
Defining t h e geometry and grade d i s t r i b u t i o n
of a d e p o s i t r e q u i r e s development o f a grade
model. The t y p e of model c o n s t r u c t e d w i l l depend on t h e complexity of t h e geology and how
w e l l it i s understood, a s w e l l a s on t h e d r i l l
hole spacing. The grade model should be p u t on
s e c t i o n s and l e v e l maps a t t h e same s c a l e a s
t h e geology maps and should be contoured by
g r a d e , o r t h e blocks should be c o l o r e d by grade
categories.
These contoured o r c o l o r e d grade
s e c t i o n s and l e v e l maps, when o v e r l a i n o n t o
t h e g e o l o g i c s e c t i o n s and l e v e l maps, w i l l
i n d i c a t e t h e dominant rock t y p e s , a s w e l l a s
t h e i r s p a t i a l r e l a t i o n s h i p s t o t h e orebody.

Table 1:

D e f i n i t i o n of Deposit Geometry and


Grade D i s t r i b u t i o n
Geometry of Deposit

1) General shape
equi-dimensional:
platey

tabular:

a l l dimensions a r e on the
same order of magnitude
two dimensions a r e many
times t h e t h i c k n e s s ,
which does not usually
exceed 100 m (325 f t )
dimensions vary over
short distances

irregular:

2) Ore t h i c k n e s s
narrow:

<10 m (<30 f t )

intermediate:

10 m

30 m (30 f t

thick:

30 m

100 m (100 f t - 325 f t )

very t h i c k :

>I00 m (>325 f t )

100 f t )

3) Plunge
flat:

<20

intermediate:

20

steep :

>55"

55'

4 ) Depth below s u r f a c e

provide a c t u a l depth
5) Grade d i s t r i b u t i o n
uniform
t h e grade a t any p o i n t i n t h e d e p o s i t does
n o t vary s i g n f i c a n t l y from t h e mean grade
for t h a t deposit
gradational
grade v a l u e s have zonal c h a r a c t e r i s t i c s ,
and t h e grades change gradually from one
t o another
erratic
grade v a l u e s change r a d i c a l l y over s h o r t
d i s t a n c e s and do n o t e x h i b i t any d i s c e r n i b l e p a t t e r n i n t h e i r changes
Rock Mechanics C h a r a c t e r i z a t i o n . I n Stage 1
t h e rock p r o p e r t i e s need t o be c l a s s i f i e d so
t h a t an o v e r a l l rock mechanics p i c t u r e of t h e
d e p o s i t i s provided. A number of c l a s s i f i c a t i o n systems have been presented (Deere, 1968;
Coates, 1970; Bieniawski, 1973; Barton e t a l . ,
1974; and Laubscher, 1977). A l l t h e s e systems
include t h e b a s i c measurements of rock subs t a n c e ( i n t a c t . rock) s t r e n g t h , some measurement o f t h e f r a c t u r e i n t e n s i t y , and some measurement of t h e f r a c t u r e s t r e n g t h . The c l a s s i f i c a t i o n systems of Bieniawski, Barton e t a l . ,
and Laubscher use i n d i v i d u a l parameters t o
c a l c u l a t e an o v e r a l l rock mass q u a l i t y . The

METHOD SELECTION
d e f i n i t i o n of rock substance s t r e n g t h , f r a c t u r e
spacing, and f r a c t u r e shear s t r e n g t h used i n
t h e method s e l e c t i o n i s presented i n Table 2.
Table 2:

1) Rock Substance Strength

(uniaxial strength[Pa]/overburden pressure


[Pal
<8
8 - 15
>15

Fractures/m
>16
10
16
3 - 10
3

Method Selection Process


Ten b a s i c mining methods, not including
hydraulic o r s o l u t i o n mining, should be considered i n any s e l e c t i o n process:
1) Open p i t
a method where mining s t a r t s
a t t h e surface and waste i s removed t o
uncover t h e ore; includes s t r i p mining
and quarrying
2) Block caving
a method i n which columns
of rock a r e undercut and cave under t h e i r
own weight; t h e roof material i s expected
t o cave a s well; includes panel and continuous caving.
3) Sublevel stoping - a method of stoping i n
which t h e ore i s b l a s t e d by benching,
r i n g d r i l l i n g , o r long hole; most of t h e
o r e i s drawn o f f a s it i s b l a s t e d , leavi n g an open stope.
4) Sublevel caving
an induced caving
method i n which t h e ore i s b l a s t e d by
r i n g d r i l l i n g from d r i f t s ; overlying
rock i s expected t o cave a s t h e ore i s
drawn.
5) Longwall - a method i n which t h e d e p o s i t ,
usually a coal seam, i s removed i n a continuous operation along a long working
face; using an extensive s e r i e s of props
over t h e face and working a r e a s ; mined
o u t a r e a s usually cave.
a method i n which a
6) Room-and-pillar
g r i d of rooms i s developed, leaving p i l l a r s , u s u a l l y of uniform s i z e , t o support
t h e roof; t h e p i l l a r s may o r may not be
removed a t a l a t e r time;
a stoping method i n
7) Shrinkage stoping
which most of t h e b l a s t e d ore i s l e f t t o
accumulate i n t h e stope u n t i l t h e stope
i s completely mined. The broken o r e i s
then drawn off a l l a t once.
8 ) Cut-and-fill
a stoping method i n which
each s l i c e of rock i s removed a f t e r
b l a s t i n g and i s then replaced with some
type of f i l l m a t e r i a l , leaving space t o
mine t h e next s l i c e .
9) Top s l i c i n g
a method i n which staggered
h o r i z o n t a l l i f t s a r e mined; t h e overlying
rock i s supported by a timber mat and t h e
overlying rock i s expected t o cave.
10) Square-set
a method i n which timber
squares a r e formed t o replace t h e rock
mined and t o support t h e surrounding
rock; includes o t h e r timbered stoping
methods, such a s s t u l l stoping.

2) Fracture Spacing

very close:
close :
wide :
very wide:

strength. These maps, when overlain onto t h e


geology and grade o u t l i n e , w i l l s p a t i a l l y def i n e rock mechanics c h a r a c t e r i s t i c s .
The use of any of t h e e x i s t i n g c l a s s i f i c a t i o n systems w i l l a l s o provide t h e data t o
determine t h e c l a s s e s defined i n Table 2 .

Rock Mechanics ~ h a r a c t e r i s t i c s

weak:
moderate:
strong:

- A NUMERICAL APPROACH

(f t )

% RQD

(>5)
(3 - 5)
(1 - 3)
(<I)

0
20
40
70

20
40
70
100

3) Fracture Shear Strength


weak :

clean j o i n t with a smooth surface


o r f i l l with m a t e r i a l whose
s t r e n g t h i s l e s s than rock substance s t r e n g t h

moderate:

clean j o i n t with a rough surface

strong:

j o i n t i s f i l l e d with a m a t e r i a l
t h a t i s equal t o o r stronger
than rock substance s t r e n g t h

Rock substance s t r e n g t h i s t h e r a t i o of t h e
uniaxial compression s t r e n g t h t o t h e overburden
s t r e s s . The u n i a x i a l compression s t r e n g t h can
be estimated using t h e method o r i g i n a l l y presented by Terzaghi and Peck (1967), which was
then modified by Deere (1968), Jennings and
However,
Robertson (1960) , and P i t e a u (1970)
a b e t t e r estimate of t h e u n i a x i a l compression
strength could be obtained r e l a t i v e l y inexpens i v e l y by using a point load t e s t i n g machine.
The overburden s t r e s s i s determined from t h e
depth and density of rock.

Fracture spacing can be defined i n terms of


f r a c t u r e s per meter o r RQD, Rock Quality Designation (Table 2 ) . RQD i s t h e sum length of a l l
pieces of core g r e a t e r than o r equal t o two
times t h e core diameter divided by the t o t a l
length of a d r i l l run. However, I believe t h e
f r a c t u r e s per meter measurement i s b e t t e r
because it provides a more q u a n t i t a t i v e
description of t h e rock fragment s i z e . Fract u r e shear s t r e n g t h i s determined by observat i o n (Table 2 ) .
As p a r t of t h e geologic log, one should
estimate o r measure t h e u n i a x i a l compression
strength and t h e f r a c t u r e s per meter, o r RQD
measurement, and the f r a c t u r e shear s t r e n g t h .
This d a t a can then be i n t e r p r e t e d on s e c t i o n s
and l e v e l maps a t t h e same s c a l e a s the geologic maps. The cumulative sum technique
(Piteau and Russell, 1972) can be used t o help
define zones of s i m i l a r rock substance
s t r e n g t h , f r a c t u r e spacing, and f r a c t u r e

Boshkov and Wright (1973) , Morrison (1976) ,


Laubscher (1977) , and Tymshare, Inc. (1981)
have presented schemes f o r s e l e c t i n g mining
methods. Boshkov and Wright (1973) l i s t e d t h e

42

DESIGN A N D OPERATION O F CAVING AND SUBLEVEL STOPING MINES

n ~ i n i n qmethods p o s s i b l e f o r c e r t a i n combinat i o n s of o r e w i d t h , plunge o f o r e , and s t r e n g t h


o f o r e . Morrison (1976) c l a s s i f i e d t h e mining
methods i n t o t h r e e b a s i c g r o u p s , r i g i d p i l l a r
s u p p o r t , c o n t r o l l e d s u b s i d e n c e , and c a v i n g ; he
t h e n used g e n e r a l d e f i n i t i o n s of o r e w i d t h ,
s u p p o r t t y p e , and s t r a i n energy accumulation
a s t h e c h a r a c t e r i s t i c s f o r d e t e r m i n i n g mining
method ( F i g u r e 1 ) . Laubscher (1977) developed
a d e t a i l e d r o c k mechanics c l a s s i f i c a t i o n from
which c a v a b i l i t y , f e a s i b i l i t y of open s t o p i n g
o r room and p i l l a r m i n i n g , s l o p e a n g l e s , and
g e n e r a l s u p p o r t r e q u i r e m e n t s c o u l d be d e t e r mined.
Tymshare, I n c . (1981) developed a
numerical a n a l y s i s t h a t d e t e r m i n e s one o f f i v e
mining methods, (1) open p i t , ( 2 ) n a t u r a l cavi n g , ( 3 ) induced c a v i n g , ( 4 ) s e l f - s u p p o r t i n g ,
and ( 5 ) a r t i f i c i a l l y s u p p o r t i n g , and c a l c u l a t e s
t h e tonnage and g r a d e f o r t h e t y p e o f d e p o s i t
d e s c r i b e d . T h i s method i s meant t o be used a s
a pre-feasibility t o o l for geologists.

I propose a s e l e c t i o n method which combines


p o r t i o n s of a l l t h e above methods. The s e l e c t i o n p r o c e s s h a s two s t e p s :
(1) determine t h e
c h a r a c t e r i s t i c s of t h e d e p o s i t , a s d e f i n e d i n
T a b l e s 1 and 2 ; and ( 2 ) f o r each mining method,
add up t h e v a l u e s from T a b l e s 3 and 4 f o r t h e
combination of c h a r a c t e r i s t i c s d e f i n e d i n S t e p
1.

Each mining method h a s been ranked a s t o t h e


s u i t a b i l i t y of i t s geometry/grade d i s t r i b u t i o n
(Table 3 ) , and o r e zone (Table 4 a ) , hanging
w a l l ( o v e r l y i n g w a l l r o c k ) (Table 4 b ) , and
f o o t w a l l ( u n d e r l y i n g r o c k s ) rock mechanics
c h a r a c t e r i s t i c s (Table 4 c ) . There a r e f o u r
ranks :
preferred:

t h e characteristic i s preferred
f o r t h e mining method;

probable:

i f the characteristic exists, the


mining method can be used;

unlikely:

i f t h e c h a r a c t e r i s t i c e x i s t s , it
i s u n l i k e l y t h a t t h e mining
method would be a p p l i e d , b u t
d o e s n o t completely r u l e o u t t h e
method; and

0-30m (0-100ft)

rl

x o r r o v

lo

W l d e

1 I1 I

O r e

eliminated:

i f the characteristic exists,


t h e n t h e mining method could
n o t be used.
The v a l u e s used f o r e a c h rank a r e l i s t e d i n
T a b l e 5. Values f o r t h e e l i m i n a t e d rank were
chosen s o t h a t i f t h e sum of t h e c h a r a c t e r i s t i c v a l u e s e q u a l l e d a n e g a t i v e number, t h e
A z e r o v a l u e was
method would b e e l i m i n a t e d .
chosen f o r t h e u n l i k e l y rank because it does
n o t add t o t h e chance o f u s i n g t h e method, b u t
n e i t h e r d o e s it e l i m i n a t e t h e method. The
v a l u e s u s e d f o r p r o b a b l e and p r e f e r r e d were
chosen s o t h a t t h e c h a r a c t e r i s t i c s f o r one
p a r a m e t e r c o u l d b e ranked w i t h i n a mining
method and between mining methods.
T a b l e 5:

Invormobly

W i d e

O r e

+30m(+100ft)

F i g u r e 1:

A Method S e l e c t i o n Scheme

( a f t e r M o r r i s o n , 1976)

Rank Value

Ranking

Value

preferred
probable
unlikely
eliminated

3 - 4
1 - 2
0
-4 9

An example i s p r o v i d e d t o i l l u s t r a t e t h e
s t e p s i n u s i n g t h i s s e l e c t i o n system and t o
p o i n t o u t problems w i t h t h e system. The f i r s t
s t e p i s t o l i s t t h e geometryjgrade d i s t r i b u t i o n
and r o c k mechanics c h a r a c t e r i s t i c s of t h e
d e p o s i t ( T a b l e 6 , column 1 ) . The c h a r a c t e r i s t i c columns i n T a b l e s 3 and 4 a r e t h e n i d e n t i f i e d f o r t h e d e p o s i t , and t h e v a l u e s added up
f o r t h e geometry/grade d i s t r i b u t i o n , o r e zone
r o c k mechanics, h a n g i n g w a l l rock mechanics,
and f o o t w a l l r o c k mechanics f o r each mining
method ( T a b l e 6 , columns 2 and 3 ) .

METHOD SELECTION - A NUMERICAL APPROACH


Table 3: Ranking of Geome.try/Grade
General
Shape

D i s t r i b u t i o n f o r D i f f e r e n t Mining Methods

Ore Thickness

Mining Method

Ore Plunge
F

Grade
Distribution
U

Open P i t
Block Caving
Sublevel S t o p i n g
Sublevel Caving
Longwall
Room

&

Pillar

Shrinkage S t o p i n g
Cut

&

Fill

Top S l i c i n g
Square S e t

M = Massive
T/P = Tabular o r
Platy
I = Irregular

N = Narrow
I = Intermediate

T = Thick
VT = Very Thick

The t h r e e g r o u p s o f rock mechanics c h a r a c t e r i s t i c s s h o u l d be t o t a l e d .


T h i s t o t a l should
t h e n be added t o t h e geometry/grade d i s t r i b u t i o n sum (Table 7 ) . Using t h e above t y p e o f
c h a r a c t e r i s t i c g r o u p i n g , one can s e e which
g r o u p i n g ( s ) r e d u c e t h e chance o f u s i n g a p a r t i c u l a r mining method, o r , f o r c a s e s where t h e
t o t a l sum i s n e a r l y e q u a l , one c a n d e t e r m i n e
which c h a r a c t e r i s t i c s a r e t h e most s u i t a b l e
f o r t h e mining method.
A f t e r t h e mining methods have been ranked
(Table 8 ) , based on geometry/grade d i s t r i b u t i o n and rock mechanics c h a r a c t e r i s t i c s , t h e r e
may be a number o f methods which a p p e a r
suitable.
I n o u r example, t h e open p i t method i s t h e
obvious c h o i c e from a geometry and r o c k
mechanics c h a r a c t e r i s t i c s p o i n t o f view.
The
n e x t f o u r methods, b l o c k c a v i n g , t o p s l i c i n g ,
s q u a r e - s e t , and c u t - a n d - f i l l , a r e grouped
t o g e t h e r . I t i s worthwhile a t t h i s t i m e t o
look a t t h e r a n k i n g o f a l l t h e mining methods
by i n d i v i d u a l c h a r a c t e r i s t i c s ( T a b l e 9 ) .
Examination of T a b l e 9 r e v e a l s t h a t t h e c h o i c e
of a mining method i n v o l v e s compromise.
For
example, c u t - a n d - f i l l would be a good method
from t h e r o c k mechanics p o i n t o f view, b u t it
h a s t h e w o r s t geometry/grade d i s t r i b u t i o n
c h a r a c t e r i s t i c s , whereas t o p s l i c i n g h a s one
of t h e w o r s t rock mechanics c h a r a c t e r i s t i c s ,
b u t i t s geometry/grade d i s t r i b u t i o n c h a r a c t e r i s t i c s are considered t h e b e s t .

F = Flat
I = Intermediate
S = Steep

U = Uniform
G = Gradational
E = Erratic

I t would n o t b e r e a s o n a b l e t o move d i r e c t l y
t o S t a g e 2 a t t h i s p o i n t , s i n c e p r e p a r i n g det a i l e d mine p l a n s - f o r a l l a p p l i c a b l e methods
d e l i n e a t e d i n S t a g e 1 would b e e x t r e m e l y timeconsuming and c o s t l y .

C o n t i n u i n g w i t h o u r example, t h e f i v e
methods w i t h s i m i l a r t o t a l v a l u e s s h o u l d b e
examined g e n e r a l l y i n t e r m s o f mining c o s t s .
Although a l l f i v e methods were r a n k e d a s
a p p l i c a b l e , mining c o s t s may be s i g n i f i c a n t l y
d i f f e r e n t f o r e a c h method.
Morrison (1976)
h a s ranked t h e mining methods by i n c r e a s i n g
u n i t mining c o s t , which I have m o d i f i e d
s l i g h t l y , a s follows:
1) open p i t
6 ) room-and-pillar
2) b l o c k c a v i n g
7) s h r i n k a g e s t o p i n g
3) s u b l e v e l s t o p i n g 8 ) cut-and-f ill
4) s u b l e v e l c a v i n g
9) t o p s l i c i n g
5) l o n g w a l l
10) s q u a r e - s e t
On t h e b a s i s o f r e l a t i v e o p e r a t i n g c o s t , t h e
methods would b e ranked a s f o l l o w s :
1) open p i t
4) t o p s l i c i n g
2) b l o c k c a v i n g
5) square-set
3) c u t - a n d - f i l l
Based on t h i s s i m p l i f i e d r a n k i n g b y mining c o s t ,
I would e v a l u a t e open p i t and b l o c k c a v i n g
f i r s t . C u t - a n d - f i l l would t h e n be c o n s i d e r e d
if n e i t h e r o f t h e s e two methods proved f e a s i ble.

DESIGN AND OPERATION OF CAVING AND SUBLEVEL STOPING MINES

44

4 b : Hanging W a l l

T a b l e 4 : Ranking o f Rock Mechanics


Characteristics f o r Different
Mining Methods
Key:

Mining
Method

Rock
Substance
Strength

Fracture
Strength

Fracture
Spacing
W V W

-49

1 4

Room &
Pillar

Shrinkage
Stoping

Cut

TOP
Slicing

Square S e t

V C C

Open P i t

Block
Caving

Sublevel
Stoping

-49

Sublevel
Caving

Longwall

Rock S u b s t a n c e S t r e n g t h
W = Weak
M = Moderate
S = Strong

F r a c t u r e Spacing
VC = Very C l o s e
C = Close
W = Weak
VW = Very Weak
Fracture Strength
W = Weak
M = Moderate
S = Strong

4 a : Ore Zone

&

Fill

4c: Footwall

Mining
Method

Rock
Substance
Strength

Fracture
Strength

Fracture
Spacing

W M S

VCC

Open P i t

Block
Caving

Sublevel
Stoping

Sublevel
Caving

Longwall

W V W

Room &
Pillar

Shrinkage
Stoping

Cut

TOP
Slicing

Square S e t

&

Fill

Table 6: Example of Numerical Method S e l e c t i o n Process


Geometry/Grade
Distribution

(Column 1)

General shape:

(Column 2)

etc.

block caving
open p i t
( v a l u e s from Table 3 )

tabular o r
platey
very t h i c k
flat
uniform
130 m (425 f t )

Ore t h i c k n e s s :
Ore plunge:
Grade d i s t r i b u t i o n :
depth (used l a t e r ) :

(Column 3)

Rock Mechanics C h a r a c t e r i s t i c s

( v a l u e s from Table 4)

Ore Zone
Rock substance
strength:
F r a c t u r e spacing:
Fracture strength:

moderate
close
moderate

4
2
3
-

1
4
3
-

4
4
3
-

1
3
2

11

4
2
2
-

3
3
1
-

Hanging Wall
Rock substance
strength :
F r a c t u r e spacing:
Fracture strength:

strong
wide
moderate

Footwall
Rock substance
strength :
F r a c t u r e spacing:
Fracture strength :

Table 7: Example

moderate
close
weak

C h a r a c t e r i s t i c s Values Totaled f o r D i f f e r e n t Mining Methods


Rock Mechanics C h a r a c t e r i s t i c s

Geometry/Grade
Distribution

Ore

HW

F
W

Total

Grand
Total

Open P i t

12

11

28

40

Block Caving

13

21

34

Sublevel Stoping

10

14

24

Mining Method

Sublevel Caving

16

29

-37

19

-18

-38

18

-20

Shrinkage Stoping

10

20

30

Cut

10

25

32

Longwall
Room

&

&

Pillar

Fill

13

Top S l i c i n g

15

19

34

Square S e t

10

25

33

46

DESIGN AND OPERATION OF CAVING AND SUBLEVEL STOPING MINES

'Table 8 :

Ranklnq R e s u l t s

Total Polnts

method t h a t i s h i g h l y mechanical o r t e c h n i c a l
and r e q u i r e s s k i l l e d personnel should not be
chosen, of course. Environmental concerns a r e
more and more becoming a c o n t r o l l i n g f a c t o r i n
method s e l e c t i o n . Also, t h e environmental cond i t i o n s underground must be considered.
Whether o r not subsidence i s permitted can
determine what methods a r e f e a s i b l e .

Met hod
open p i t
block caving
top s l i c i n g
square-set
cut-and-fill
shrinkage s t o p i n g
s u b l e v e l caving
sublevel stoping
room-and-pillar
longwall

Remember, t h e purpose of t h i s numerical


method s e l e c t i o n system i s not t o choose t h e
f i n a l mining method.
I t i s intended t o i n d i c a t e those methods t h a t w i l l be most e f f e c t i v e
given t h e geometry/grade d i s t r i b u t i o n and rock
mechanics c h a r a c t e r s i t i c s , and which w i l l r e If
q u i r e more d e t a i l e d study i n Stage 2 .
nothing e l s e , t h i s s e l e c t i o n system w i l l allow
miners/engineers t o consider what c h a r a c t e r i s t i c s a r e important f o r t h e mining methods
being considered.

Having narrowed t h e p r e f e r r e d mining methods t o two, each should now be g e n e r a l l y examined i n terms of mining r a t e , l a b o r a v a i l a b i l i t y , environmental concerns, and o t h e r
site-specific considerations, i n order t o
determine whether t h e s e parameters w i l l
e l i m i n a t e any method from f u r t h e r consideration.

METHOD SELECTION

STAGE 2

Mining r a t e should be d i c t a t e d by t h e mining


method chosen and t h e s i z e of t h e d e p o s i t .
However, i n i n s t a n c e s where a m i l l a l r e a d y
e x i s t s i n t h e area, a production r a t e t h a t i s
perhaps higher o r lower t h a n t h a t d i c t a t e d by
t h e l e a s t c o s t l y mining method may be r e q u i r e d .
T h e r e f o r e , a compromise must be made.

The purpose of Stage 2 i n t h e method s e l e c t i o n p r o c e s s i s t o l a y o u t g e n e r a l mining p l a n s


f o r t h o s e methods d e l i n e a t e d i n Stage 1, d e t e r mine c u t - o f f g r a d e s , and then c a l c u l a t e minable
r e s e r v e s s o t h a t economic analyses can be made
i n o r d e r t o determine which mining method w i l l
provide t h e g r e a t e s t r e t u r n on investment.

Other f a c t o r s a f f e c t i n g t h e mining method


s e l e c t e d would be t h e market f o r t h e r e s o u r c e
b e i n g mined and t h e a v a i l a b l e l a b o r pool.
If
t h e l a b o r pool i s l a r g e and u n s k i l l e d , a

I t i s n o t t h e purpose of t h i s paper t o d i s cuss d e t e r m i n a t i o n of cut-off grade o r minable


reserves.
Rock mechanics c h a r a c t e r i s t i c s of
t h e d e p o s i t t h a t a r e c r i t i c a l f o r mine planning

Table 9 : Ranking of Mining Methods by Each C h a r a c t e r i s t i c

Geometry/Grade
Distribution

t o p = 15
bcv = 13
s c v = 13
p i t = 12
sst = 10
s h s = 10
8
sqs =
c&f =
7
lng = -37
r & p = -38

Ore

pit =
bcv =
lng =
c&f =
sqs =
scv =
r&p=
shs =
top =
sst =

HW

9
8
8
8
8
7
7
6
6
5

pit =
r&p =
sst =
c&f =
sqs =
bcv =
scv =
shs =
top =
lng =

Rock
Mechanics
Total

FW

11
8
7
7
7
6
6
6
6
5

c&f =
sqs =
pit =
shs =
bcv =
top =
lng =
scv =
r&p =

sst

10
10
8
8
7
7
6
3
3
2

pit =
c&f =
sqs =
bcv =
shs =
lng =
top =
r&p=
scv =
sst =

28
25
25
21
20
19
19
18
16
14

Grand
Total

pit =
bcv =
top =
sqs =
c&f =
shs =
scv =
sst =
lng =
r&p=

-- .

p i t = open p i t
bcv = block caving
s s t = sublevel stoping

scv =
lng =
r&p =
shs =

s u b l e v e l caving
longwall
room & p i l l a r
shrinkage stoping

c&f = cut & f i l l


top = top s l i c i n g
s q s = square s e t

METHOD SELECTION - A NUMERICAL APPROACH


and s e l e c t i n g a mass mining method w i l l be d i s cussed.
Rock Mechanics Data
In order t o estimate c a v a b i l i t y of a d e p o s i t ,
stope widths, p i l l a r s i z e s , and slope angles,
more rock mechanics d a t a i s required f o r Stage
2 than f o r Stage 1. Most of t h i s a d d i t i o n a l
d a t a should have been c o l l e c t e d a t t h e same
time a s the d a t a f o r Stage 1. Design of p i t
slopes and underground openings depends l a r g e l y
on the geology of t h e a r e a , t h e s t r e n g t h of t h e
rock mass, and the pre-mine s t r e s s . Strength
of the rock mass i s a function of the strength
of the i n t a c t rock, t h e s t r e n g t h of t h e geologic s t r u c t u r e s ( j o i n t s , f a u l t s , e t c . ) , and
the c h a r a c t e r i s t i c s of t h e geologic s t r u c t u r e
( o r i e n t a t i o n , length, spacing, e t c . ) . Once t h e
geologic s t r u c t u r e d a t a a r e a v a i l a b l e , potent i a l f a i l u r e geometries can be defined and s t a b i l i t y analyses can be made using the s t r e n g t h
properties.
Strength Properties. Basic s t r e n g t h p r o p e r t i e s
needed f o r Stage 2 of t h e method s e l e c t i o n
process are uniaxial compression s t r e n g t h ,
s t i f f n e s s (Young's Modulus), Poisson's r a t i o ,
t e n s i l e strength, i n t a c t rock shear s t r e n g t h ,
n a t u r a l f r a c t u r e shear s t r e n g t h , and f a u l t
gouge shear strength. Rock u n i t s , such a s
s a l t , s h a l e s , e t c . , may r e q u i r e creep t e s t i n g
under controlled temperature and humidity.
A l l the s t r e n g t h p r o p e r t i e s , except perhaps
the f a u l t gouge s t r e n g t h , can be measured using
u n s p l i t d r i l l core specimens. The number of
specimens required f o r r e p r e s e n t a t i v e t e s t i n g
depends somewhat on v a r i a b i l i t y of t h e rock
u n i t ; however, t h r e e t o s i x samples per rock
type per t e s t type should be s u f f i c i e n t f o r
Stage 2. During d r i l l i n g , u n s p l i t core samp l e s must be saved f o r rock t e s t i n g . W
e
recommend c o l l e c t i n g t h r e e samples per rock
type per t e s t type per d r i l l hole ( C a l l , 1979).
By sampling each hole, a c o l l e c t i o n of samples
w i l l be b u i l t up, from which samples f o r t e s t ing can be selected.

Geologic Structure. Rock mass s t r e n g t h a l s o


depends l a r g- e l y on t h e c h a r a c t e r i s t i c s of t h e
geologic s t r u c t u r e s , o r i e n t a t i o n , spacing,
length, strength, e t c . Fracture shear s t r e n g t h
has already been discussed i n t h e rock s t r e n g t h
section. For Stage 2 of t h e method s e l e c t i o n ,
areas with similar j o i n t o r i e n t a t i o n s a r e def i n e d a s s t r u c t u r a l domains; d i s t r i b u t i o n of
the f r a c t u r e s e t c h a r a c t e r i s t i c s and p o t e n t i a l
f a i l u r e paths a r e defined f o r each domain.
-

Geologic s t r u c t u r e s a r e divided i n t o two


categories: major s t r u c t u r e s and rock f a b r i c .
Major s t r u c t u r e s a r e f a u l t s , f o l d s , d i k e s ,
e t c . , which have lengths on t h e order of t h e
deposit s i z e and a r e usually considered i n d i vidually i n design. Rock f a b r i c i s predominantly j o i n t s and f a u l t s t h a t have a high

frequency of occurrence and a r e not continuous.


S t r u c t u r a l data can be obtained by using det a i l l i n e mapping (Call e t a l . , 19761, c e l l
mapping, o r o r i e n t e d core mapping. D e t a i l l i n e
mapping i s a technique t h a t involves the measurements of f r a c t u r e c h a r a c t e r i s t i c s of a l l
j o i n t s which i n t e r s e c t a l i n e . This mapping
technique i s a spot sample within a s t r u c t u r a l
domain; it provides t h e d a t a f o r determining
d i s t r i b u t i o n of j o i n t s e t c h a r a c t e r i s t i c s on a
joint-by-joint b a s i s . C e l l mapping, which
involves measuring t h e mean o r i e n t a t i o n and
f r a c t u r e c h a r a c t e r i s t i c s f o r each f r a c t u r e s e t
within a 10 m t o 15 m (30 f t t o 50 f t ) wide
c e l l , can be done by t h e geologist during h i s
mapping of surface and underground rock exposures. This method provides t h e d a t a needed
t o evaluate v a r i a b i l i t y i n geologic s t r u c t u r e
on an a r e a l b a s i s and i s , thus, a means of
d e l i n e a t i n g s t r u c t u r a l domains.
C e l l mapping and d e t a i l l i n e mapping a r e
used i n those instances where some type of rock
exposure e x i s t s . However, i n cases i n which
s t r u c t u r e d a t a can be obtained only from d r i l l
core, a few o r i e n t e d core holes should be included i n t h e d r i l l i n g program. Oriented core
holes provide t h e same information a s d e t a i l
l i n e mapping, except t h a t oriented core d a t a
w i l l not provide j o i n t length c h a r a c t e r i s t i c s .
The o r i e n t e d core d a t a can, a l s o , a i d t h e
geologist i n h i s i n t e r p r e t a t i o n of t h e geology.
Pre-mine S t r e s s . Pre-mine s t r e s s i s one of t h e
most d i f f i c u l t parameters t o determine.
Because of t h e complex t e c t o n i c s a s s o c i a t e d
with many mineral d e p o s i t s , the s t r e s s f i e l d
w i l l probably be v a r i a b l e , depending on proximity t o t h e nearest major geologic s t r u c t u r e .
Techniques such a s s t r e s s - r e l i e f overcoring
and hydrofracturing a r e a v a i l a b l e , but they
a r e generally expensive and d i f f c u l t t o j u s t i f y
u n t i l t h e f e a s i b i l i t y of mining t h e d e p o s i t has
been e s t a b l i s h e d . The pre-mine s t r e s s f i e l d
can be estimated using t h e geologic h i s t o r y ,
o r i e n t a t i o n of geologic s t r u c t u r e s , and type
of f a u l t movement (Abel, personal communicat i o n ) . Although t h i s method i s i n d i r e c t and
could be misleading about t h e pre-mine s t r e s s
f i e l d , it i s probably b e t t e r t o use i t o r
assume a h y d r o s t a t i c s t r e s s f i e l d than t o
assume t h e e l a s t i c theory.
Hydrology. Hydrologic conditions can a f f e c t
s t r e n g t h p r o p e r t i e s of t h e rock, a s well a s t h e
c o s t of mining.
Information needed includes a
water t a b l e map, l o c a t i o n of water sources, and
l o c a t i o n s of geologic s t r u c t u r e s t h a t would be
water-bearing.
Because a pump t e s t would provide a q u a n t i t a t i v e estimate of t h e pumping r e quirements necessary during mining, one should
be made.

48

DESIGN AND OPERATION OF CAVING AND SUBLEVEL STOPING MINES

Rock Mechanics I n p u t f o r S e l e c t i o n
~f Mass Mining Methods
I f t h e e n g i n e e r h a s t h e n e c e s s a r y informat i o n , a s d i s c u s s e d above, he can p r o v i d e
r e a l i s t i c e s t i m a t e s on s i z e o f o p e n i n g s , supp o r t r e q u i r e m e n t s , c a v a b i l i t y , and s l o p e a n g l e s
f o r s e l e c t i n g a m i n i n g method. A t t e m p t i n g t o
determine t h e s e parameters w i l l enable t h e
e n g i n e e r t o s e e which d a t a i s c r i t i c a l i n t h e
a n a l y s i s o r i s l a c k i n g ; t h e r e f o r e , when d e v e l opment s t a r t s o r f u r t h e r e x p l o r a t i o n i s i n
p r o g r e s s , t h e d a t a c o l l e c t i o n program c a n be
properly set-up.
Open p i t . Although t h i s symposium i s c o n c e r n e d
p r i m a r i l y w i t h underground mass m i n i n g methods,
t h e open p i t method s h o u l d be c o n s i d e r e d d u r i n g
A t what d e p t h o f o v e r t h e method s e l e c t i o n .
b u r d e n t o g o underground i s p r i m a r i l y a funct i o n o f t h e m i n e r a l v a l u e and t h e s t r i p p i n g
ratio.
Using a method s i m i l a r t o t h a t p r e s e n t e d by S o d e r b e r g ( 1 9 6 8 ) , a n e s t i m a t e o f t h e
maximum s t r i p p i n g r a t i o f o r a g i v e n m i n e r a l
v a l u e was c a l c u l a t e d ( F i g u r e 2 ) . The m i n e r a l
v a l u e i s a f u n c t i o n o f t h e m a r k e t p r i c e and
t h e cut-off grade.
I n order t o estimate s t r i p p i n g r a t i o , t h e s l o p e a n g l e and t h e l i m i t o f
t h e o r e zone i n s e c t i o n a r e needed ( S o d e r b e r g ,
1 9 6 8 ) . S l o p e a n g l e c a n have m a j o r i m p a c t o n
t h e s t r i p p i n g r a t i o ; consequently, r a t h e r than
s i m p l y u s i n g a 45" s l o p e a n g l e , t h e most
r e a l i s t i c s l o p e a n g l e s h o u l d be d e t e r m i n e d
from t h e a v a i l a b l e d a t a . An a s s e s s m e n t o f t h e
f i n a l s l o p e a n g l e s c a n be made by d e f i n i n g
p o t e n t i a l f a i l u r e g e o m e t r i e s from t h e o r i e n t a t i o n o f t h e g e o l o g i c s t r u c t u r e s and t h e n choosi n g a s l o p e a n g l e t h a t m i n i m i z e s t h e number o f
daylighted structures.
I f shear strength,
l e n g t h , and s p a c i n g d a t a a r e a v a i l a b l e , a s t a b i l i t y a n a l y s i s c a n be made. With t h e e s t i m a t e s o f t h e m i n e r a l v a l u e and t h e s t r i p p i n g
r a t i o , w h e t h e r a n open p i t method s h o u l d be
c o n s i d e r e d can be d e t e r m i n e d ( F i g u r e 2 ) .

Mineral Value @/Ton ore)


Figure 2:

S t r i p p i n g R a t i o v s . M i n e r a l Value.

attrition.
However, by comparing f r a g m e n t s i z e
d i s t r i b u t i o n w i t h e x i s t i n g caving d e p o s i t s ,
u s i n g t h e same f r a g m e n t a t i o n a n a l y s i s ( F i g u r e
3 ) , c a v a b i l i t y o f t h e d e p o s i t b e i n g examined
can be determined.
The fragment s i z e d i s t r i b u t i o n c u r v e c a n b e g e n e r a t e d from d e t a i l l i n e
d a t a o r from f r a c t u r e p e r f o o t d a t a ( T a b l e 1 0 ) .
D e t a i l s o f t h e a n a l y s i s c a n b e found i n White
( 1 9 7 7 ) . Because t h e a n a l y s i s i s two-dimens i o n a l , o r i e n t a t i o n of t h e d r i l l h o l e s o r
c r o s s - s e c t i o n s a n a l y z e d s h o u l d be c o n s i d e r e d .
The f r a g m e n t a t i o n c a n a l s o b e e v a l u a t e d u s i n g
RQD and t h e c a v a b i l i t y i n d e x ( F i g u r e 4) o r
L a u b s c h e r ' s Rock Mass Reading System ( 1 9 7 7 ) .

Block caving.
During Stage 2, t h e c a v a b i l i t y
o f t h e d e p o s i t s h o u l d be examined i n g r e a t e r
d e t a i l t h a n d u r i n g S t a g e 1. Once t h e c a v a b i l i t y i s d e t e r m i n e d , t h e minimum d r a w p o i n t spaci n g , s u p p o r t a b l e d r i f t s i z e , and s u b s i d e n c e
l i m i t s h o u l d a l s o be d e t e r m i n e d .

fragment s i z e a n a l y s i s
was d e v e l o p e d by W h i t e , N i c h o l a s & Marek
( 1 9 7 7 ) . The a n a l y s i s r e s u l t s i n a d i s t r i b u t i o n o f fragment s i z e based on f r a c t u r e spaci n g , b u t it d o e s n o t i n c l u d e t h e e f f e c t s o f

C~ISpl

Inspbollon IThm1.n

trn4.a)
Y

d I21111

4. W h - 0
5. lakI.hm.

The c a v a b i l i t y o f a d e p o s i t i s d e t e r m i n e d
by t h e f r a g m e n t s i z e d i s t r i b u t i o n a t t h e drawp o i n t and t h e u n d e r c u t w i d t h r e q u i r e d t o s u s t a i n a cave.
I f t h e fragment s i z e i s c o a r s e ,
t h e u n d e r c u t w i d t h may be g r e a t e r t h a n t h e
width o f t h e d e p o s i t , o r t h e drawpoints w i l l
be p l u g g e d much o f t h e t i m e , t h e r e b y r e d u c i n g
m i n i n g r a t e and i n c r e a s i n g s e c o n d a r y b l a s t i n g
cost.
A two-dimensional

SIEVE

SIZE

11100 L..Il

*dl"

P ~ l l0 . 0 ~ 1 1 ~
Yushw

S l h

IN1

F r a g n e n t S i z e D i s t r i b u t i o n Curves o f
some E x i s t i n g Block Caving Mines
( a f t e r White, 1977)
D a t a a r e from l i m i t e d a r e a s and d o n o t
n e c e s s a r i l y r e p r e s e n t a n average f o r
t h a t mine.

F i g u r e 3:

NOTE:

17th L...(l

Y u h

METHOD SELECTION

- A NUMERICAL APPROACH

Table 10:

a r c h ( F i g u r e 5a) h a s t h e p o t e n t i a l f o r caving.
However, t h e maximum t r a n s f e r d i s t a n c e can be
reduced by some t y p e of boundary weakening.

vf
Percent r e t a i n e d a t s i z e X = Vt
6N
where V = t o t a l volume = t
~3
V

49

= volume g r e a t e r t h a n s i z e X

-.

B = ( l / f r a c t u r e spacing) *
6
;
N = number o f fragments i n sample; and
X = fragment s i z e t o be analyzed.

Data Pointm
rrm c l i m a x
and u r a d

-.-.
..
..

TRANSPER I
DISTANCE
a . s t ~ p . w i d t h i n 2~ maxim?
tranmfar dimtance

PILWLR

PIWAR
TRANSPER
I DISTANCE

TRANSFER
I DISTANCE

'

b . S t o p e w i d t h im g r e a t e r t h a n
231 maximum t r a n m f e r d i a t a n c e

F i g u r e 5:

P r e s s u r e Arch Concept.

CAVABILITX INDEX ( C I )

F i g u r e 4:

RQD v s . C a v a b i l i t y Index

( a f t e r McMahon and Kendrick, 1959)

Undercut w i d t h r e q u i r e d t o s u s t a i n a cave i s
most c r i t i c a l f o r t h o s e d e p o s i t s where t h e f r a g mentation i s c o a r s e and t h e a v e r a g e u n d e r c u t
width of t h e d e p c s i t is l e s s t h a n approximately
150 m (500 f t ) . Using L a u b s c h e r ' s c l a s s i f i c a t i o n (1977) o r t h e p r e s s u r e a r c h concept
(Alder e t a l . , 1951) , t h e u n d e r c u t w i d t h
r e q u i r e d t o s u s t a i n a cave can be e s t i m a t e d .
Laubscher p r o v i d e s a n h y d r a u l i c r a d i u s , a r e a /
p e r i m e t e r , f o r h i s f i v e c l a s s e s of rock.
In
t h e pressure arch concept, t h e rock i s conside r e d t o have a maximum d i s t a n c e t h a t it can
t r a n s f e r t h e l o a d ( F i g u r e 5 ) . The a b i l i t y o f
t h e rock t o t r a n s f e r a v e r t i c a l s t r e s s i n a
l a t e r a l d i r e c t i o n o v e r an underground opening
depends on t h e s h e a r s t r e n g t h of t h e r o c k , t h e
h o r i z o n t a l s t r e s s , and t h e s t r e n g t h o f t h e
rock p i l l a r s . Although e a c h d e p o s i t h a s i t s
own maximum t r a n s f e r d i s t a n c e , a c o r r e l a t i o n
between depth and maximum t r a n s f e r d i s t a n c e
has been determined ( F i g u r e 6 )
Based on t h e
p r e s s u r e a r c h c o n c e p t , i f t h e u n d e r c u t width
does n o t exceed t w i c e t h e maximum t r a n s f e r
d i s t a n c e then o n l y t h e r o c k under t h e p r e s s u r e

DEPTH

Figure 6:

(10

T r a n s f e r D i s t a n c e v s . Depth.

Once it h a s been determined t h a t t h e d e p o s i t


i s c a v a b l e , drawpoint s p a c i n g and g a t h e r i n g
d r i f t s i z e should be determined f o r t h e g e n e r a l
mine d e s i g n .
Drawpoint s p a c i n g i s p r i m a r i l y a f u n c t i o n of
t h e o r e and o v e r l y i n g w a s t e fragment s i z e d i s t r i b u t i o n and t h e p i l l a r s t r e n g t h . The g e n e r a l
consensus h a s been t h a t t h e s m a l l e r t h e f r a g ment s i z e t h e narrower t h e width of draw, cons e q u e n t l y , t h e c l o s e r t h e drawpoint s p a c i n g .
Also, when t h e o v e r l y i n g m a t e r i a l i s more f r a g mented t h a n t h e o r e , t h e drawpoint s p a c i n g

DESIGN AND OPERATION OF CAVING AND SUBLEVEL STOPING MINES


shculd bc; cl.oser- i n :,rder tcj miriirnize di.Lutiori.
However, comparison of e x i s t i n g p r o p e r t i e s i n d i
c a t e s t h e c o r r e l a t i o n between fragment s i z e and
draw width a r e a i s weak (Figure 7) ; e s p e c i a l l y
c o n s i d e r i n g t h e i n d i c a t i o n s from t h e Henderson
Mine where t h e o r e i s moderately t o w e l l f r a g mented, t h e drawpoint spacing i s wide, 1 2 . 2 m
X 1 2 . 2 m (40 f t X 40 f t ) , and t h e o r e recovery
appears t o be good. The ground between t h e
drawpoints can be considered a p i l l a r (Figure
8 ) , and, i f analyzed a s such, it can be used
t o determine t h e minimum drawpoint spacing.
The load on t h e p i l l a r i s t h e most d i f f i c u l t
parameter t o determine. The worst loading cond i t i o n occurs when t h e undercut i s w i t h i n 100
f t of t h e p i l l a r and t h e rock i s being loaded
by t h e abutment s t r e s s e s . Kendorski (1975)
e s t i m a t e s t h a t t h i s abutment loading i s two
t i m e s t h e overburden s t r e s s , while Panek
(1978) e s t i m a t e s t h a t i t i s t h r e e t i m e s t h e
overburden s t r e s s . Using t h r e e t i m e s t h e
t r i b u t a r y - a r e a - l o a d t o determine load on t h e
p i l l a r and W i l s o n ' s (1972) p i l l a r a n a l y s i s t o
determine load c a r r y i n g c a p a c i t y , a minimum
drawpoint s p a c i n g can be e s t i m a t e d . Using t h e
fragmentation curves and t h e graph i n F i g u r e 7
and t h e p i l l a r a n a l y s i s , an e s t i m a t e of t h e
drawpoint s p a c i n g can be made.

Pillar

CRE IGHTON

Figure 8:

DRAW AREA (M')

Figure 7:

A r e a loading pllla:

Fragment S i z e v s . Draw Area


( a f t e r White, 1979) .

The o r e g a t h e r i n g d r i f t s i z e and support


r e q u i r e d a r e important i n e s t i m a t i n g c o s t of
t h e mining method.
The d r i f t s should be
o r i e n t e d s o a s t o minimize p o t e n t i a l f a i l u r e
g e o m e t r i e s , which a r e u s u a l l y normal t o t h e
s t r i k e of t h e predominant s t r u c t u r e s . Laubs c h e r (1977) and Barton and Lunde (1974) have
c o r r e l a t e d t h e i r rock c l a s s i f i c a t i o n s t o supp o r t requirements.
Because B a r t o n ' s work was
p r i m a r i l y on t u n n e l s , which g e n e r a l l y have
more s u p p o r t t h a n a d r i f t i n a mining operat i o n , h i s work may not be a p p l i c a b l e t o

D e f i n i t i o n of P i l l a r between
Drawpoints.

determining s u p p o r t requirements f o r a mine.


I f one of t h e s e c l a s s i f i c a t i o n systems i s used,
t h e rock c l a s s e s can be i n t e r p r e t e d on t h e
l e v e l maps, where t h e g a t h e r and haulage d r i f t s
a r e shown. From t h e s e l e v e l maps, t h e percent
of a r e a t h a t t h e d i f f e r e n t support systems w i l l
be r e q u i r e d can be determined and t h e support
c o s t estimated.
I f n e i t h e r of t h e s e systems
have been used b u t information on t h e o r i e n t a t i o n , s p a c i n g , s h e a r s t r e n g t h , and p o s s i b l y
l e n g t h of t h e j o i n t s e t s and f a u l t systems i s
a v a i l a b l e , t h e s u p p o r t required f o r t h e d r i f t s
can be determined by (1) i d e n t i f y i n g p o t e n t i a l
f a i l u r e g e o m e t r i e s , ( 2 ) determining t h e load a t
t h e edge of t h e opening, and ( 3 ) determining
which support s y s t e m ( s ) can c a r r y t h e load
calculated i n s t e p 2.
The subsidence l i m i t should be d e f i n e d f o r
l o c a t i n g b u i l d i n g s and s h a f t s which a r e t o l a s t
the l i f e of t h e deposit.
In t h e absence of a
major g e o l o g i c s t r u c t u r e , a 45" angle p r o j e c t e d
o n t o t h e s u r f a c e from t h e bottom of t h e ore
zone i s u s u a l l y considered t h e c l o s e s t t o t h e
d e p o s i t one should l o c a t e long-term f a c i l i t i e s .
However, most a c t u a l ground movement t a k e s

METHOD SELECTION

- A NUMERICAL APPROACH

p l a c e w i t h i n a 60" a n g l e from t h e d e p o s i t . I f
a major f a u l t e x i s t s , it w i l l p r o b a b l y c o n t r o l
t h e l i m i t of s u b s i d e n c e .
Stoping. The two i m p o r t a n t p a r a m e t e r s i n t h e
economics of a s t o p i n g method f o r which a r o c k
mechanics s t u d y can p r o v i d e e s t i m a t e s a r e t h e
width of t h e s t o p e s and t h e s i z e o f t h e p i l lars.
I n sublevel stoping, t h e width of a stope
i s a f u n c t i o n o f t h e immediate and i n t e r m e d i a t e
The immediate r o o f
roof (Alder and Sun, 1968)
i s c h a r a c t e r i z e d by t h e p r e s s u r e a r c h c o n c e p t
already discussed.
The maximum s t o p e w i d t h i s
t w i c e t h e maximum p r e s s u r e a r c h . P i l l a r s
spaced t h i s d i s t a n c e must be a b l e t o c a r r y
tributary-area-load.
The immediate r o o f i s
t h a t ground under t h e p r e s s u r e a r c h which w i l l
behave a s beam, p l a t e , o r a r c h . J o i n t o r i e n t a t i o n , spacing, and l e n g t h can be used t o d e f i n e
I n many i n s t a n c e s , t h e beam
t h e s t o p e width.
developed by b o l t i n g can be used. The p i l l a r s
w i t h i n t w i c e t h e maximum t r a n s f e r d i s t a n c e d o
n o t have t o c a r r y t r i b u t a r y - a r e a - l o a d , b u t
r a t h e r t h e l o a d under t h e p r e s s u r e a r c h , h a l f way t o t h e n e x t s u p p o r t . Using Wilson's p i l l a r
a n a l y s i s (1972) and t h e p o t e n t i a l f a i l u r e
geometries through t h e p i l l a r , t h e p i l l a r l o a d
c a r r y i n g c a p a c i t y can be d e t e r m i n e d ( N i c h o l a s ,
1976).

F i g u r e 9:

E c c e n t r i c i t y v s . Height o f Draw
E l l i p s o i d ( a f t e r J a n e l i d and K v a p i l ,
1966).

SUBLEVEL INTERVAL

SUBLEVEL IMERVAL

For s h r i n k a g e s t o p i n g , t h e same t y p e o f
a n a l y s i s needs t o be made a s f o r s u b l e v e l
stoping, except t h a t t h e c a v a b i l i t y o f t h e
o v e r l y i n g rock h a s t o b e e v a l u a t e d .
Support
requirements can b e e s t i m a t e d , a s d i s c u s s e d
under block caving.
S u b l e v e l caving. F o r s u b l e v e l c a v i n g , r o c k
mechanics d a t a on t h e c a v a b i l i t y o f t h e hanging wall, the sublevel d r i f t s i z e , t h e support
needed, and t h e s p a c i n g between t h e s u b l e v e l
J a n e l i d and Kvapil (1966)
d r i f t s is required.
have p r e s e n t e d g u i d e l i n e s f o r t h e l a y o u t o f a
s u b l e v e l mine. The hanging w a l l must come in
behind t h e o r e zone; o t h e r w i s e s u b l e v e l c a v i n g
w i l l n o t work. Using a n a l y s e s s i m i l a r t o t h o s e
i n block caving w i l l p r o v i d e an e s t i m a t e o f t h e
dimension needed t o i n i t i a t e t h e cave and t h e
fragment s i z e d i s t r i b u t i o n . J a n e l i d and Kvapil
a l s o r e l a t e d d r i f t s i z e t o t h e required width
of draw. Another a s p e c t o f a s u b l e v e l d e s i g n
is t h e support required f o r t h e s e d r i f t s .
If
e x t e n s i v e s u p p o r t i s r e q u i r e d , t h e method may
n o t be f e a s i b l e .
Support requirements can be
estimated, a s discussed previously.
V e r t i c a l s p a c i n g of d r i f t s i s mainly a
f u n c t i o n o f equipment, b u t t h e h o r i z o n t a l spaci n g between d r i f t s i s d e t e r m i n e d by t h e w i d t h
of t h e draw e l l i p s o i d and t h e s t a b i l i t y of t h e
rock. J a n e l i d and K v a p i l r e l a t e d d r i f t spaci n g t o t h e d i s t a n c e between s u b l e v e l s and
t h e e c c e n t r i c i t y of t h e e l l i p s o i d (Figure 9 ) .
The ground between t h e d r i f t s can be c o n s i d e r e d p i l l a r s ( F i g u r e 1 0 ) and a n a l y z e d a s such.

I
DRIFT SPACING

F i g u r e 10:

DRIFT
HEIGHT
%RIFT
WIDTH

S u b l e v e l Caving Geometry.

The w o r s t l o a d c o n d i t i o n
n e a r e s t t h e cave. T h e r e
i n g o c c u r r i n g , which c a n
s t a b i l i t y of p i l l a r s c a n

o c c u r s f o r t h e ground
i s some abutment l o a d b e e s t i m a t e d , and t h e
be determined.

Concluding Comments
Mining method s e l e c t i o n s h o u l d be based p r i m a r i l y on t h e geometry and g r a d e d i s t r i b u t i o n
o f t h e d e p o s i t , t h e r o c k mechanics c h a r a c t e r i s t i c s of t h e o r e z o n e , hanging w a l l and f o o t w a l l , and on t h e mining and c a p i t a l i z a t i o n
c o s t , with f i r s t p r i o r i t y given t o t h e rock
mechanics c h a r a c t e r i s t i c s .
S e l e c t i o n of t h e
mining method s h o u l d o c c u r i n two s t a g e s .
S t a g e 1:

D e f i n e t h e geometry/grade d i s t r i b u t i o n and r o c k mechanics c h a r a c t e r i s t i c s o f t h e d e p o s i t and r a n k


t h e mining methods a c c o r d i n g t o
t h e i r a b i l i t y t o accommodate t h e s e
characteristics.

52

DESIGN AND OPERATION OF CAVING AND SUBLEVEL STOPING MINES


S t a g e 2:

Develop a n i n i t i a l mine p l a n o f
t h e two o r t h r e e h i g h e s t r a n k i n g
m i n i n g methods t o p r o v i d e a b e t t e r
e s t i m a t e o f t h e mining and c a p i t a l i z a t i o n c o s t and t o d e t e r m i n e
c u t - o f f g r a d e and m i n a b l e r e s e r v e s .
REFERENCES

A b e l , J . F . , 1978, p e r s o n a l communication.
A l d e r , L . , and Sun, M . , 1968, Ground c o n t r o l
i n bedded f o r m a t i o n s : Research D i v i s i o n ,
V i r g i n i a P o l y t e c h n i c I n s t i t u t e , B u l l . 28,
266 p .
Alder, H., P o t t s , E . ,
Research on s t r a t a
c o a l f i e l d of Great
Conf. a t L e i g e , p .

and Walker, A . , 1951,


c o n t r o l on t h e northern
Inichar-Intl.
Britain:
106-120.

B a r i e n t o s , G . , and P a r k e r , J . , 1974, Use o f


p r e s s u r e a r c h i n mine d e s i g n a t White P i n e :
T r a n s . , Soc. Mng. Eng. (USA) , v. 255,
p . 75-82.

J a n e l i d , I . , and K v a p i l , R . , 1966, S u b l e v e l
c a v i n g : I n t l . J o u r . of Rock Mechanics and
Mining S c i e n c e s , v. 3, p. 129-153.
J e n n i n g s , J. E., and Robertson, A. M . , 1969,
"The S t a b i l i t y o f S l o p e s Cut I n t o N a t u r a l
Rock, " Proc. , 7 t h I n t l . Conf. on S o i l
Mechanics and Foundation Engineering,
S o c i e d a t Mexicana d e Mecanica de S u e l o s ,
Mexico, v o l . 2, p. 585-590.
Kendorski, F r a n c i s S . , 1975, Design methods i n
r o c k mechanics:
1 6 t h Symp. on Rock
Mechanics, M i n n e a p o l i s , Minnesota.
Laubscher, D. H . , 1977, "Geomechanics C l a s s i f i c a t i o n o f J o i n t e d Rock Masses - Mining
Applications," Transactions of t h e I n s t i t u t e
o f Mining & M e t a l l u r g y o f South A f r i c a , v o l .
86.
McMahon, B., and Kendrick, R . , 1969, P r e d i c t i n g
t h e block caving behavior of orebodies:
AIME p r e - p r i n t #69-AU-51, 15 p .
Morrison, R. G. K., 1976, A Philosophy o f
Ground C o n t r o l , McGill U n i v e r s i t y , Montreal,
Canada, p. 125-159.
-

B a r t o n , N . , L i e n , R . , and ~ u n d e ,J . , 1 9 7 4 ,
" E n g i n e e r i n g C l a s s i f i c a t i o n o f Rock Masses
f o r t h e Design o f Tunnel S u p p o r t , " J o u r n a l
o f t h e I n t e r n a t i o n a l S o c i e t y f o r Rock
Mechanics, v o l . 6 , no. 4 , p . 189-236.
B i e n i a w s k i , 2 . T . , 1973, " E n g i n e e r i n g C l a s s i f i c a t i o n o f J o i n t e d Rock Masses," The C i v i l
E n g i n e e r i n S o u t h A f r i c a , December, p. 335343.
Boshkov, S. H., and W r i g h t , F. D . , 1973,
" B a s i c and P a r a m e t r i c C r i t e r i a i n t h e S e l e c t i o n , Design and Development o f Underground
Mining S y s t e m s , " Chap. 1 2 . 1 i n SME Mining
E n g i n e e r i n g Handbook, v o l . 1, American
I n s t i t u t e o f Mining, M e t a l l u r g i c a l and
P e t r o l e u m E n g i n e e r s , New York, p . 12.2 12.13.
C a l l , R. D . , 1 9 7 9 , Development d r i l l i n g : Open
p i t mine p l a n n i n g and d e s i g n , Crawford, J.
T . , 111, and ~ u s t r u l i d ,W. A . , e d i t o r s ,
AIME, New York, pp. 29-40.
C a l l , R. D . , S a v e l y , J. P . , and N i c h o l a s , D.
E . , 1976, " E s t i m a t i o n o f J o i n t S e t Charact e r i s t i c s from S u r f a c e Mapping D a t a , "
U.S. Symposium on Rock Mechanics, p . 282.1282.9.

17th

C o a t e s , D . F . , 1 9 7 0 , Rock Mechanics P r i n c i p l e s ,
Queens P r i n t e r , O t t a w a , Mines Branch Monog r a p h 874, p. 1-46 - 1-50.
Deere , D . U . , 1968, " G e o l o g i c a l Considerat i o n s , " Chap. 1 i n Rock Mechanics i n Engin e e r i n g P r a c t i c e , e d . , K . G. S t a g g and 0.
G. Z i e n k i e w i c z , John Wiley & Sons, London,

Nicholas,
design
Marble
lished
175 p .

D. E., 1976, Underground mine p i l l a r


u t i l i z i n g r o c k mass p r o p e r t i e s ,
Peak, Pima County, Arizona, unpubM. S. t h e s i s , U n i v e r s i t y o f Arizona,

Panek, L o u i s A . , 1978, G e o t e c h n i c a l f a c t o r s i n
u n d e r c u t - c a v e mining: SME-AIME Mtg., Lake
Buena V i s t a , F l o r i d a .
P i t e a u , D. R., 1970, E n g i n e e r i n g geology cont r i b u t i o n t o t h e s t u d y of s t a b i l i t y o f
slopes i n rock with p a r t i c u l a r reference
t o DeBeers Mine, v o l . 1, Ph.D. t h e s i s ,
U n i v e r s i t y o f W i t w a t e r s r a n d , Johannesburg,
p . 114-115.
P i t e a u and R u s s e l l , 1971, Cumulative sums t e c h n i q u e : A new a p p r o a c h t o a n a l y z i n g j o i n t s
in r o c k : P r o c . , 1 3 t h Symp. on Rock
Mechanics, S t a b i l i t y o f Rock S l o p e s , p . 129.
Soderberg, A., and Rausch, D. O., 1968, P i t
p l a n n i n g and l a y o u t :
P f l e i d e r , E . P. , ed.
S u r f a c e Mining, AIME, New York, p . 151.

T e r z a g h i , K . , and P e c k , R . , 1968, Soil


Mechanics i n E n g i n e e r i n g P r a c t i c e , John
Wiley & S o n s , N e w York, 729 p .

Tymshare , I n c , 1981, Computer e v a l u a t i o n of


mining p r o j e c t s :
Mining J o u r n a l , v o l .
no.
, p . 111.

METHOD SELECTION - A NUMERICAL APPROACH


White, D . E., 1977, P r e d i c t i n g f r a c p e n t a t i o n
c h a r a c t e r i s t i c s o f a b l o c k c a v i n g orebody,
unpublished M.S. t h e s i s , U n i v e r s i t y o f
Arizona, 1 0 1 p.

J.

White, D. H., N i c h o l a s , D. E . , and Marek,


M.,
1977, Fragmentation s t u d y o f t h e T h i c k
Lakeshore Mine, unpublished c o n f i Sulfide
d e n t i a l r e p o r t p r e p a r e d f o r Hecla Mining
Company.

Wilson, A. H . , 1972, Research i n t o t h e d e t e r Park I . An


mination of p i l l a r s i z e
hypotehsis concerning p i l l a r s t a b i l i t y :
Mining Engineer (London), v. 131, no. 141,
p. 409-417.

Woodruff, S e t h D . , 1966, S t a b i l i t y o f Wide


Openings found i n Methods o f Working Coal
and Metal Mines,
Theory and A p p l i c a t i o n
of Rock Mechanics t o Roof C o n t r o l and Supp o r t Problems, v. 1, c h a p t . 6: Pergamon
P r e s s Ltd., London, p. 257-305.
ACKNOWLEDGMENTS
The a u t h o r w i s h e s t o e x p r e s s h i s g r a t i t u d e
t o Susan Jones and Lynn McLean f o r t h e i r e d i t o r i a l review o f t h i s p a p e r .
P o r t i o n s of t h i s p a p e r a r e t a k e n from "The
F e a s i b i l i t y Study - S e l e c t i o n o f a Mining
Method I n t e g r a t i n g Rock Mechanics and Mine
Planning" (NichoJas and Marek, 1981) , p r e s e n t e d a t t h e 1981 Rapid Excavation and
Tunneling Conference

You might also like