0% found this document useful (0 votes)
2K views9 pages

Isolated Sloped Footing

This document provides design details for an isolated sloped footing including load cases, soil properties, material specifications, footing dimensions, reinforcement requirements, and stress calculations. The footing is designed to support a column with dimensions of 0.23m x 0.65m and withstand loads up to 120 tons. Punching shear, bending moment, and bearing capacity calculations are presented to verify the proposed 1.93m x 2.35m x 0.68m footing meets strength and serviceability limits. Reinforcement schedules and construction quantities are also included.

Uploaded by

arif_rubin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
2K views9 pages

Isolated Sloped Footing

This document provides design details for an isolated sloped footing including load cases, soil properties, material specifications, footing dimensions, reinforcement requirements, and stress calculations. The footing is designed to support a column with dimensions of 0.23m x 0.65m and withstand loads up to 120 tons. Punching shear, bending moment, and bearing capacity calculations are presented to verify the proposed 1.93m x 2.35m x 0.68m footing meets strength and serviceability limits. Reinforcement schedules and construction quantities are also included.

Uploaded by

arif_rubin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 9

DESIGN

Project

OF

I S O LAT E D

SLOPED

NATIONAL ENTERPRISE

User

AAM

Date

21-Oct-16

Footing Identifier =

Time

F1

Safe Bearing Capacity of Soil =


Depth of Founding Level below Ground

30

T/m2

(Df) =

Weight Density of Soil & Backfill together

1.8

T/m3

Load Factor for Limit State Method

(LF) =

1.5

Factor

Concrete Grade

(Fck) =

20

N/mm2

Steel Grade

(fy) =

415

N/mm2

Column Dimensions: E_W


Column Dimensions: N_S
Offset from face of column
Crack width

(L1) =
(B1) =
=
=

0.23
0.65
50
0.3

m Width
m Width
mm
m

LOAD CASES
Case

Load (T)
P

I
II
III
IV
V
VI
VII
VIII

DL + LL
DL + LL
DL + LL
DL + LL
DL + LL
DL + LL
DL + LL
DL + LL

120

Moments (T.M)
MZ( @Z )
MX( @X )
M_E-W
M_N-S
0

Soil over
Stress
Factor

1
1
1
1
1
1
1
1

Trial Footing Size


Length - L
Width - B

1.93
2.35

M E_W
M N_S

if (P > Pp) then 'Revise Footing Size'


Depth of Footing at Centre
Eff. Cover to Bott. Reinf. d'

L/B
AREA

1.22
4.5355
Section Modulus

Z_NS
Z_EW
680
70

1.8
1.5
mm
mm

m2
m3
m3
Depth of Footing at Edge
de=D-d'=

Distances from CL of to a) Column Face, b) De from & its Distance from Edge,
Perimeter & Punching Area for Shear ECT,.
For Moment

For punching shear

L1 (E-W)
L (E-W)
B1 (N-S)
B (N-S)
Lpu=(L1+De)
Bpu=(B1+De)

0.23
1.93
0.65
2.35
0.84
1.26

E-W
0.115
0.85
0.725
0.24

Xf
Lf
Xd
Ld

N-S
0.325
0.85
0.935
0.24

perimeter

4.2

Area of footing @ critical section for one way shear


E-W

(((0.23+2*610/1000)+1.93)/2*(344-200)/1000)+((200-70)/1000*1.93)

N-S

(((0.65+2*610/1000)+2.35)/2*(344-200)/1000)+((200-70)/1000*2.35)
E-W

J=

0.35
0.27

C=

0.42
M_E-W

Shear due to Moment =

1.525

2.14366413
Overburden Pressure
Df - D =
0.00
IF (foundation depth-D) is <= 0, then this component is 0
*Volume of concrete x 2.5 + (Total volume of excavation i.e. L x B x D - volume of concrete) x 1.8
OB Load(Ptot)
1.25
Eb = {M_E-W} / (P + Pob)
OB Press(Pob)
0.276
El = {M_N-S} / (P + Pob)
R = 0.138 or 0.15 * fck

R=

0.138

p-max=Ptot*(1+6*Eb/B+6*El/L)
p-min=Ptot*(1-6*Eb/B-6*El/L)

20

P-edge=Ptot*(1+6*Eb/B)
P-face=Ptot*(1+12*Eb/B^2*X
P-d =Ptot*(1+12*Eb/B^2*Xd
M-face = Lf^2*{P-edge/3+P-fa

V-De = Ld*{(P-edge+P-d)*0.5
Punching shear stress =
((A-Ap)*(Ptot-Pob)) /
(P.Perimeter*De)+((M_E-W*a*c_E-W) /
(0.85J_E-W))+((M_N-S*a*c_N-S) /
Case

(0.85*J_N-S))

I
I
III
IV
V
VI
VII
VIII

Ptot
(P+Pob)/A

26.73

M-(E-W)/
M/Z

M-(N-S)/
M/Z

p-max
t/m2

p-min
t/m2

0.00

0.00

26.73

26.73

Err:504

26.73

26.73

Err:504
Limit state
De = SqRt((Mu / K Fck) * b)

De (cm)=

P-edge
t/m2
26.73

Permissible Punching Shear Stress


Ks = (0.5 + c)
c = L / B
c = 0.25 * Sqrt(Fck)

Ks =
c =

= Ks * c
0.85
111.80

=
t/m2

R = Mu / b * de2 - N/mm2
Pt (Req) = 0.5*Fck/Fy{[1-(1-4.6*Mu/B*de^2)/Fck]^0.5}*b*de
Pt (Req)
Min = 0.12%
Ast - Reinforcement to be required = Pt (req) * A * d
Ast - Reinforcement Provided
Pt (Provided) @ Efffective depth d from face of column
=0.85*sqrt(0.8*Fck)*(sqrt(1+5*)-1)/6*
Allowable Shear Stress (t/m2)

=0.8 * Fck / 6.89 * pt


Actual Shear stress (t/m2)

8.12

for E_W

Bearing pressure = Pu/bD in t/m2

for N_S

1.20
1.80
4535500
149500

Permissible bearing pressure = 0.45 fck (sqrt(A1/A2))

A1 = (min of (Lf x Bf or ( b + 4Df )x ( D + 4 Df )


A2 = b x D
where sqrt(A1/A2) should not be greater than 2

Footing Size
Pedestal Dimensions: E_W =
Pedestal Dimensions: N_S =
Length - L: E_W =
Width - B: N_S =
Depth =
Column face
Footing Edge
Ast =

8.19

0.23
0.65
1.93
2.35
680
200

m
m
m
m
mm
Bottom Reinf.

Quantities
Footing
1 Excavation
2 PCC
3 RCC
4 Formwork
5 Reinforcement
Total reinforcement per cft =

Pedestal
1.95
0.59
1.79
1.7
54

m3
m3
m3
m2
Kgs

1 Concrete
2 Formwork
54

1.79

35.314

AT E D

SLOPED

FOOTING

BY

LIMIT

S TAT E

METHOD

Comments: EXECUTION

13:24

0.85

Ld

De

Z-Axis

BP/2

0.24

+
-

Case I
No Tension

Lf =

X - Axis

P-face

P-face

0.85

B pu =

B 1 = 0.65

B =

2.35

1.26

L1 =0.23

Ld

Lf
+
-

Xf = 0.12
Xd =0.725
Lf
Actual /
Allowable

P -fa ce
P -fa ce

Pd
Pd

P e d ge

(P-max
- Pob)
26.46
(0.28)
(0.28)
(0.28)
(0.28)
(0.28)
(0.28)
(0.28)
93.54

For SBC

Fdn Size OK

Punching Shear
Stress (EW)
Stress (NS)

Depth OK
Depth OK
Depth OK

Depth (bending)
Bearing pressure

Depth OK
OK

epth of Footing at Edge


610
mm

1.93 m

200

93.54

(actual /
allowable
allowable)
30.00
0.88
30.00
30.00
30.00
30.00
30.00
30.00
30.00
0.88

Case I
No Tension

Case II
Tension Allowed

L1 (E-W)=
B1 (N-S)=
d eff= 610

mm

Dcentre= 680
D (for one way shear)
For punching shear

Pedge

Ld

P e d ge

0.88

L=

Pd

Lpu = 0.84

+
+

D_os=344 For E-W

area, Ap

Dmin= 200

D_os=344 For N-S

L (E-W)=

1.93 m

&

1.06
=

0.49 m2

(Area of trapaezoid)

0.61 m2

(Area of trapaezoid)
E-W

N-S
0.45
0.49
0.63

N-S

1-(1/(1+2/3*SQRT(Lpu/Bpu)))
J=
[2*(De*Lpu^3)/12]+[2*(Lpu*De^3)/12]+
[De*(Bpu*Lpu^2/2))]

1-(1/(1+2/3*SQRT(Bpu/Lpu)))

C= Lpu/2

Bpu/2

[2*(De*Lpu^3)/12]+[2*(Lpu*De^3)/12

M_N-S
1.08

(0.85*J_E-W)

M=

concrete) x 1.8

2.76
WITH NO TENSION
P-edge=Ptot*(1+6*El/L)
P-face=Ptot*(1+12*El/L^2*Xf)
P-d =Ptot*(1+12*El/L^2*Xd)

-edge=Ptot*(1+6*Eb/B)
-face=Ptot*(1+12*Eb/B^2*Xf)
-d =Ptot*(1+12*Eb/B^2*Xd)
-face = Lf^2*{P-edge/3+P-face/6-Pob/2}L TM

-De = Ld*{(P-edge+P-d)*0.5-Pob}L T/m

P-face
t/m2
26.73

FOR - M_E-W only


P-d
M-face
t/m2
tm
26.73

22.46

22.5
33.7
22.79

FOR - M_N-S only


V@De
t

Punch.sh
strs t/m2

14.92

14.92
22.38

49.15

49.15
73.72

Depth OK

P-edge
t/m2
26.73

P-face
t/m2
26.73

95.46
Depth OK

0.39
0.109
0.12
1720
1414
0.29
38.03
34.76
Depth OK
OK

Summary

Long Side
(E_W)

Kgs
22

Nos.
18

Pedestal

0.855007

m3
m2

Dia
10

Spacing
135

Short Side
(N_S)

Kgs
32

P-face

0.24

Ld

Pedge

Case I
No Tension

Case II
Tension Allowed

0.23 m
0.65 m
d eff/2= 305

D (for Punching shear)


D_ps=536 For E-W

Case II
Tension Allowed

P-face
Pd

Case I
No Tension

P-face

Pd

Lf

P-face

Pedge

D_ps=536 For N-S

B (N-S) =

2.35 m

Column offset+2xEffective depth


D_os
Footing base dimension

D min

N-S

+2/3*SQRT(Bpu/Lpu)))

e*Lpu^3)/12]+[2*(Lpu*De^3)/12]+ [(De*Lpu*Bpu^2)/2)]

(0.85*J_N-S)

FOR - M_N-S only


P-d
t/m2
26.73

M-face
tm
18.45

18.45
27.67
22.79

V@De
t
12.26

12.26
18.38

0.39
0.109
0.12
1413
1728
0.28
.

37.90
34.76
Depth OK

Nos.
22

Dia
10

Spacing
90

You might also like