VII.
Computations
a. Distance Computations
Station
A: Baguio
B: Mt. Sto. Tomas
Latitude
Longitude
16o248.44
16o2014.06
120o3556.2
120o3330.9
Baguio to Mt. Sto. Tomas (8.37 km.)
Using the Great Circle Method:
cos D = sinAsinB+cosAcosBcosL
where:
A = latitude of station A
B = latitude of station B
L = longitude of B longitude of A
cos D =
sin(16o248.44)sin(16o2014.06) + cos(16o248.44)
cos(16o2014.06)cos (120o3330.9- 120o3556.2)
cos D = .99999912
D = .07583678 (degrees)
D = 432.71
Transforming to kilometers:
D = 1.8424 [4+(32.71/60)]
D = 8.37 km
= 5.20 miles
Dagupan to Mt. Sto. Tomas (38.89 km.)
Station
A: Mt. Sto. Tomas
B: Dagupan
Latitude
Longitude
16o2014.06
16o225.31
120o3330.9
120o2143.1
Using the Great Circle Method:
cos D = sinAsinB+cosAcosBcosL
where:
A = latitude of station A
B = latitude of station B
L = longitude of B longitude of A
cos D =
sin(16o2014.06)sin(16o225.31) + cos(16o2014.06)
cos(16o225.31)cos (120o2143.1- 120o3330.9)
cos D = .999981157
D = .351728768 (degrees)
D = 216.6
Transforming to kilometers:
D = 1.8424 [21+(6.6/60)]
D = 38.89 km
= 24.165 miles
B. Azimuthal Projection
Station
Latitude
Longitude
16o248.44
16o2014.06
A: Baguio
B: Mt. Sto. Tomas
120o3556.2
120o3330.9
Azimuthal Projection from A to B:
cos C = [sinB-cosDsinA]/[sinDcosA]
= [sin(16o2014.06)-cos(432.71)sin(16o248.44)]
[sin(432.71)cos(16o248.44)]
C = 149o2718.3
sin L = sin (longitude of B - longitude A)
= sin (120o3330.9- 120o3556.2)
= sin (0o225.3)
= -0.0007
since (sinL<0)
C1 = 360o - 149o2718.3
C1 = 210o3241.7 (azimuthal projection from A to B)
C2 = 210o3241.7 - 180o
C2 = 30o3241.7
Mt. Sto. Tomas
D = 8.37 km
= 5.20 miles
Latitude : 16o2014.06
Longitude : 120o3330.9
= 30o3241.7
Baguio
Latitude : 16o248.44
Longitude : 120o3556.2
= 210o3241.7
Azimuthal Projection from A to B:
Station
A: Mt. Sto. Tomas
B: Dagupan
Latitude
Longitude
16o2014.06
16o225.31
120o3330.9
120o2143.1
cos C = [sinB-cosDsinA]/[sinDcosA]
= [sin(16o225.31)-cos(216.6)sin(16o2014.06)]
[sin(216.6)cos(16o2014.06)]
= - 0.8435
C = 147o3055.7
sin L = sin (longitude of B - longitude A)
= sin (120o2143.1 - 120o3330.9 )
= sin (-0o1147.8)
= -.00343
since (sinL<0)
C = 360-C
C = 360o-147o3055.7
C1 = 212o294.21 (azimuthal projection from B to A)
C2 = 212o294.21 - 180o
C2 = 32o294.21
Mt. Sto. Tomas
Latitude : 16o2014.06
Longitude : 120o3330.9
= 212o294.21
Dagupan
D = 38.89 km
= 24.165 miles
Latitude : 16o225.31
Longitude : 120o2143.1
= 32o294. 21
C. Tilt Angle
***** Dagupan to Mt. Sto. Tomas *****
2247 m
O
38.89 km.
=
=
tan-1 2247/ 38.89 k
3.306779111 o
***** Baguio to Mt. Sto. Tomas *****
=
=
tan-1 2247/ 8.37 k
0.153815181 o
d. Tower Height
Antenna Height is assumed to be equal to 6.10 m. This is because
there is a line-of-sight between the two station and the topography is not
reflective. The value 6.1 m has been obtained from the tower manufacturers
reference sheet in which the lowest section of the tower is equal to 6.1 m.
We chose this value to obtain minimum tower cost and also for the
consideration of new structures to be built in the future.
Th1 = 6.1 m.
Th2 = 6.1 m.
Effective Tower Height
T1 = Th1 + D/2 + 5
T2 = Th2 + D/2 + 5
T1 = 6.1 + 1.8/2 + 5
T2 = 6.1 + 1.8/2 +5
T1 = 12 m
T2 = 12 m
e. Signal Computation
(Dagupan, Pangasinan Mt. Sto. Tomas, Baguio @ frequency = 6.46 GHz)
Parameters:
Po = 26 dBm
FGHz = 6.46
D = 38.89 km. = 24.16 mi.
L = 4 (correction factor)
a = (for mountainous)
b = (for tropical countries)
Receiver threshold = -80 dBm
Flex Loss LRT= 0.05 dB.x 4 = 0.2 dB
Waveguide loss Lw = 4.58dB per 100 m ( EWP63 Elliptical Waveguide)
Connector loss Lc = 0.2 dB per piece
Solving for the Fade Margin Objective (FMo):
FMo = -5 log (0.3/(L)(a)(b)(FGHz/4)(50)( Dmi3))
FMo = -5 log (0.3/(4)(1/4)(1/4)( 6.46 /4)(50)(24.16)3)
FMo = 29.88626037 dB
Computing for the Target Received Signal Level (TRSL):
TRSL = Receiver Threshold + FMo
TRSL = - 80 dBm + 29.88626037 dB
TRSL = - 50.11373963 dBm
Solving for the total waveguide loss (Lt):
Lw1 = Lw(TH1 + D + Allowance)
Lw1 = (4.58 dB/100 m)(6.10 + 15 + 5)
Lw1 = 1.19538 dB
Lt = 2Lw1
Lt = 2(1.19538 dB )
Lt = 2.39076 dB
D the distance between the radio equipment and the base of the tower
Allowance for bending purposes
Solving for total connector loss (Lct):
Lct = N(Lc)
Lct = 4(0.2 dB)
Lct = 0.8 dB
N number of connectors
Computing for the Free-Space Path Loss (FSL):
FSL = 92.4 + 20 log(FGHz) + 20 log(Dkm)
FSL = 92.4 + 20 log(6.46) + 20 log(38.89)
FSL = 140.4014092 dB
Solving for the required Antenna Gain (AgdB):
TRSL = Po Lt - Lct - LRT FSL + 2AgdB
- 50.11373963 = 26dBm 0.8 dB 2.39076 dB 0.2 dB 140.4014092+ 2Ag
Ag = (- 50.11373963 dBm - 26 dBm + 2.39076 dB + 0.2 dB + 0.8 dB +
140.4014092)/2
Ag = 33.8392148 dB = 35.9792148 dBi
Solving for the required antenna diameter (B):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
B = log-1 ( (B 20 log(FGHz) 7.5)/20)
B = log-1 ( (35.9792148 20 log(6.46) 7.5)/20)
B = 4.108925073 ft. = 1.2524 m.
Use B = 1.8 m. = 5.905511811 ft.
Solving the new antenna gain (AgdBi):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
AgdBi = 20 log (6.46) + 20 log (5.905511811) +7.5
AgdBi = 39.12980121 dBi = 36.98980121 dB
Computing for the Actual Received Signal Level (ARSL):
ARSL = Po - Lct Lt LRT +2AgdB FSL
ARSL = 26 - 0.8 2.39076 0.2 +2(36.98980121)- 140.4014092
ARSL = -43.81256681 dBm
Computing for the Actual Fade Margin (FM):
FM = ARSL Receiver Threshold
FM = -43.81256681 (- 80)
FM = 36.18743322 dB
Solving for the Undp:
Undp = (L)(a)(b)(10-5)(FGHz/4)(Dmi3)(50)(10-(2FM/10))
Undp = (4)(1/4)(1/4)(10-5)(6.46/4)(24.163)(50)(10-(2(36.18743322)/10))
Undp = 1.647732416 x 10 -6
Solving for the reliability (R):
R = 100(1 Undp)
R = 100(1 1.647732416 x 10 -7)
R = 99.99998352 %
Signal Diagram (Dagupan, Pangasinan to Mt. Sto. Tomas @ f = 6.46 GHz
Tx
Rx
61.29442121
58.1438348
26 dBm
24.30462
-42.11718678
-79.10698799
-43.81256678
ARSL
-48.4183596
-50.1137396
TRSL
-82.2575744
- 80 dBm
Rx Threshold
*****(Dagupan, Pangasinan Mt. Sto. Tomas, Baguio @ frequency = 6.8
GHz)*****
Parameters:
Po = 26 dBm
FGHz = 6.8
D = 38.89 km. = 24.16 mi.
L = 4 (correction factor)
a = (for mountainous)
b = (for tropical countries)
Receiver threshold = -80 dBm
Flex Loss LRT= 0.05 dB. X 4 = 0.2 dB
Waveguide loss Lw = 4.43dB per 100 m ( EWP63 Elliptical Waveguide)
Connector loss Lc = 0.2 dB per piece
Solving for the Fade Margin Objective (FMo):
FMo = -5 log (0.3/(L)(a)(b)(FGHz/4)(50)( Dmi3))
FMo = -5 log (0.3/(4)(1/4)(1/4)( 6.8 /4)(50)(24.16)3)
FMo = 29.99764235 dB
Computing for the Target Received Signal Level (TRSL):
TRSL = Receiver Threshold + FMo
TRSL = - 80 dBm + 29.99764235dB
TRSL = - 50.00235765 dBm
Solving for the total waveguide loss (Lt):
Lw1 = Lw(TH1 + D + Allowance)
Lw1 = (4.43 dB/100 m)(6.10 + 15 + 5)
Lw1 = 1.15623 dB
Lt = 2Lw1
Lt = 2(1.15623 dB )
Lt = 2.31246 dB
D the distance between the radio equipment and the base of the tower
Allowance for bending purposes
Solving for total connector loss (Lct):
Lct = N(Lc)
Lct = 4(0.2 dB)
Lct = 0.8 dB
N number of connectors
Computing for the Free-Space Path Loss (FSL):
FSL = 92.4 + 20 log(FGHz) + 20 log(Dkm)
FSL = 92.4 + 20 log(6.8) + 20 log(38.89)
FSL = 140.8469371 dB
Solving for the required Antenna Gain (AgdB):
TRSL = Po Lt - Lct - LRT FSL + 2AgdB
- 50.00235765 = 26dBm 0.8 dB 2.31246 dB 0.2dB 140.8469371 + 2Ag
Ag = (- 50.00235765 dBm - 26 dBm + 2.28114 dB + 0.2 dB + 0.8 dB +
140.8469371)/2
Ag = 34.07851973 dB = 36.21851973 dBi
Solving for the required antenna diameter (B):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
B = log-1 ( (B 20 log(FGHz) 7.5)/20)
B = log-1 ( (36.21851973 20 log(6.8) 7.5)/20)
B = 4.012518742 ft. = 1.223016 m.
Use B = 1.8 m. = 5.905511811 ft.
Solving the new antenna gain (AgdBi):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
AgdBi = 20 log (6.8) + 20 log (5.905511811) +7.5
AgdBi = 39.5753291 dBi = 37.4353291 dB
Computing for the Actual Received Signal Level (ARSL):
ARSL = Po - Lct Lt LRT +2AgdB FSL
ARSL = 26 - 0.8 2.31246 0.2+2(37.4353291) 140.8469371
ARSL = -43.28873891 dBm
Computing for the Actual Fade Margin (FM):
FM = ARSL Receiver Threshold
FM = -43.28873891 (- 80)
FM = 36.71126109 dB
Solving for the Undp:
Undp = (L)(a)(b)(10-5)(FGHz/4)(Dmi3)(50)(10-(2FM/10))
Undp = (4)(1/4)(1/4)(10-5)(6.8/4)(24.163)(50)(10-(2(36.71126109)/10))
Undp = 1.36269 x 10 -7
Solving for the reliability (R):
R = 100(1 Undp)
R = 100(1 1.36269 x 10 7 )
R = 99.99998637 %
Signal Diagram (Dagupan, Pangasinan to Mt. Sto. Tomas @ f = 6.8 GHz
Tx
Rx
61.7790991
58.42228973
26 dBm
24.34377
-41.6325089
-79.067838
-43.2887389
ARSL
-48.34612764
-82.42464737
-50.00235764
TRSL
- 80 dBm
Rx Threshold
*****(Dagupan, Pangasinan Mt. Sto. Tomas, Baguio @ frequency = 6.740
GHz)*****
Parameters:
Po = 26 dBm
FGHz = 6.740 GHz
D = 38.89 km. = 24.16 mi.
L = 4 (correction factor)
a = (for mountainous)
b = (for tropical countries)
Receiver threshold = -80 dBm
Flex Loss LRT= 0.05 dB. X 4 = 0.02 dB
Waveguide loss Lw = 4.44 dB per 100 m ( EWP63 Elliptical Waveguide)
Connector loss Lc = 0.2 dB per piece
Solving for the Fade Margin Objective (FMo):
FMo = -5 log (0.3/(L)(a)(b)(FGHz/4)(50)( Dmi3))
FMo = -5 log (0.3/(4)(1/4)(1/4)( 6.740 /4)(50)(24.16)3)
FMo = 29.97839727 dB
Computing for the Target Received Signal Level (TRSL):
TRSL = Receiver Threshold + FMo
TRSL = - 80 dBm + 29.97839727 dB
TRSL = - 50.02160273 dBm
Solving for the total waveguide loss (Lt):
Lw1 = Lw(TH1 + D + Allowance)
Lw1 = (4.44 dB/100 m)(6.10 + 15 + 5)
Lw1 = 1.15884 dB
Lt = 2Lw1
Lt = 2(1.15884 dB )
Lt = 2.31768 dB
D the distance between the radio equipment and the base of the tower
Allowance for bending purposes
Solving for total connector loss (Lct):
Lct = N(Lc)
Lct = 4(0.2 dB)
Lct = 0.8 dB
N number of connectors
Computing for the Free-Space Path Loss (FSL):
FSL = 92.4 + 20 log(FGHz) + 20 log(Dkm)
FSL = 92.4 + 20 log(6.740) + 20 log(38.89)
FSL = 140.7699568 dB
Solving for the required Antenna Gain (AgdB):
TRSL = Po Lt - Lct - LRT FSL + 2AgdB
- 50.02160273 = 26dBm 0.8 dB 2.31768 dB 0.2dB 140.7699568+ 2Ag
Ag = (- 50.02160273 - 26 dBm + 2.31768 dB + 0.2 dB + 0.8 dB + 140.7699568
0.8)/2
Ag = 34.03301703 dB = 36.17301703 dBI
Solving for the required antenna diameter (B):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
B = log-1 ( (B 20 log(FGHz) 7.5)/20)
B = log-1 ( (36.17301703 20 log(6.740) 7.5)/20)
B = 4.02708647 ft. = 1.227456 m.
Use B = 1.8 m. = 5.905511811 ft.
Solving the new antenna gain (AgdBi):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
AgdBi = 20 log (6.740) + 20 log (5.905511811) +7.5
AgdBi = 39.49834878 dBi = 37.35834878 dB
Computing for the Actual Received Signal Level (ARSL):
ARSL = Po - Lct Lt LRT +2AgdB FSL
ARSL = 26 - 0.8 2.31768 0.2+2(37.35834878) 140.7699568
ARSL = -43.37093923 dBm
Computing for the Actual Fade Margin (FM):
FM = ARSL Receiver Threshold
FM = -43.37093923 (- 80)
FM = 36.62906077 dB
Solving for the Undp:
Undp = (L)(a)(b)(10-5)(FGHz/4)(Dmi3)(50)(10-(2FM/10))
Undp = (4)(1/4)(1/4)(10-5)(6.740/4)(24.163)(50)(10-(2(36.62906077)/10))
Undp = 1.40278 x 10 -7
Solving for the reliability (R):
R = 100(1 Undp)
R = 100(1 3.21208 x 10 -7)
R = 99.99998597 %
Signal Diagram (Dagupan, Pangasinan to Mt. Sto. Tomas @ f = 6.740 GHz
Tx
Rx
61.69950878
58.37417703
26 dBm
24.34116
-41.71209924
-79.07044802
-43.37093924
ARSL
-48.36276274
-82.39577977
-50.02160274
TRSL
- 80 dBm
Rx Threshold
*****(Dagupan, Pangasinan Mt. Sto. Tomas, Baguio @ frequency = 7.08
GHz)*****
Parameters:
Po = 26 dBm
FGHz = 7.08 GHz
D = 38.89 km. = 24.16 mi.
L = 4 (correction factor)
a = (for mountainous)
b = (for tropical countries)
Receiver threshold = -80 dBm
Flex Loss/ m LRT= 0.05 dB. X 2 = 0.2 dB
Waveguide loss Lw = 4.37 dB per 100 m ( EWP63 Elliptical Waveguide)
Connector loss Lc = 0.2 dB per piece
Solving for the Fade Margin Objective (FMo):
FMo = -5 log (0.3/(L)(a)(b)(FGHz/4)(50)( Dmi3))
FMo = -5 log (0.3/(4)(1/4)(1/4)( 7.08 /4)(50)(24.16)3)
FMo = 30.08526407 dB
Computing for the Target Received Signal Level (TRSL):
TRSL = Receiver Threshold + FMo
TRSL = - 80 dBm + 30.08526407 dB
TRSL = - 49.91473593 dBm
Solving for the total waveguide loss (Lt):
Lw1 = Lw(TH1 + D + Allowance)
Lw1 = (4.37 dB/100 m)(6.10 + 10 + 5)
Lw1 = 1.14057 dB
Lt = 2Lw1
Lt = 2(1.14057 dB )
Lt = 2.28114 dB
D the distance between the radio equipment and the base of the tower
Allowance for bending purposes
Solving for total connector loss (Lct):
Lct = N(Lc)
Lct = 4(0.2 dB)
Lct = 0.8 dB
N number of connectors
Computing for the Free-Space Path Loss (FSL):
FSL = 92.4 + 20 log(FGHz) + 20 log(Dkm)
FSL = 92.4 + 20 log(7.08) + 20 log(38.89)
FSL = 141.197424 dB
Solving for the required Antenna Gain (AgdB):
TRSL = Po Lt - Lct - LRT FSL + 2AgdB
- 49.91473593 = 26dBm 0.8 dB 2.28114 dB 0.2 dB 141.197424 + 2Ag
Ag = (- 49.91473593 dBm - 26 dBm + 2.28114 dB + 0.2 dB + 0.8 dB +
141.197424)/2
Ag = 34.28191404 dB = 36.42191404 dBi
Solving for the required antenna diameter (B):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
B = log-1 ( (B 20 log(FGHz) 7.5)/20)
B = log-1 ( (36.42191404 20 log(7.08) 7.5)/20)
B = 3.945140228 ft. = 1.202479 m.
Use B = 1.2 m. = 3.937 ft.
Solving the new antenna gain (AgdBi):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
AgdBi = 20 log (7.08) + 20 log (3.937) +7.5
AgdBi = 39.925816 dBi = 37.785816 dB
Computing for the Actual Received Signal Level (ARSL):
ARSL = Po - Lct Lt LRT +2AgdB FSL
ARSL = 26 - 0.8 2.28114 0.2 + 2(37.785816) 141.197424
ARSL = -42.90693201 dBm
Computing for the Actual Fade Margin (FM):
FM = ARSL Receiver Threshold
FM = -42.90693201 (- 80)
FM = 37.09306799 dB
Solving for the Undp:
Undp = (L)(a)(b)(10-5)(FGHz/4)(Dmi3)(50)(10-(2FM/10))
Undp = (4)(1/4)(1/4)(10-5)(7.08/4)(24.163)(50)(10-(2(37.09306799)/10))
Undp = 1.19004 x 10 -7
Solving for the reliability (R):
R = 100(1 Undp)
R = 100(1 1.19004 x 10 -7)
R = 99.9999881 %
Signal Diagram (Dagupan, Pangasinan to Mt. Sto. Tomas @ f = 7.08GHz
Tx
Rx
62.145246
58.64134404
26 dBm
24.35943
-41.266362
-79.052178
-42.906932
ARSL
-48.27416592
-82.55607996
-49.91473592
TRSL
- 80 dBm
Rx Threshold
****(Baguio Mt. Sto. Tomas, Baguio @ frequency = 8.293 GHz, Nondiversity)****
Parameters:
Po = 23 dBm
FGHz = 8.293 GHz.
D = 8.37 km. = 5.20 mi.
a = (for mountainous)
b = (for tropical countries)
Receiver threshold = -91.5 dBm
Flex Loss LRT= 0.05 dB.x 4 = 0.2 dB
Waveguide loss Lw = 5.65 dB per 100 m ( EWP77 Elliptical Waveguide)
Connector loss Lc = 0.2 dB per piece
Solving for the Fade Margin Objective (FMo):
FMo = -10log (1/(a)(b)(FGHz/4)( Dmi3))
FMo = -10 log (1/(1/4)(1/4)( 8.293 /4)( 5.20)3)
FMo = 12.60541722 dB
Computing for the Target Received Signal Level (TRSL):
TRSL = Receiver Threshold + FMo
TRSL = - 91.5 dBm + -12.60541722 dB
TRSL = -78.89458278 dBm
Solving for the total waveguide loss (Lt):
Lw1 = Lw(TH1 + D + Allowance)
Lw1 = (5.65 dB/100 m)(6.10 + 15 + 5)
Lw1 = 1.47465 dB
Lt = 2Lw1
Lt = 2(1.47465 dB )
Lt = 2.9493 dB
D the distance between the radio equipment and the base of the tower
Allowance for bending purposes
Solving for total connector loss (Lct):
Lct = N(Lc)
Lct = 4(0.2 dB)
Lct = 0.8 dB
N number of connectors
Computing for the Free-Space Path Loss (FSL):
FSL = 92.4 + 20 log(FGHz) + 20 log(Dkm)
FSL = 92.4 + 20 log(8.293) + 20 log(8.37)
FSL = 129.2287425 dB
Solving for the required Antenna Gain (AgdB):
TRSL = Po Lt - Lct - LRT FSL + 2AgdB
-78.89458278 = 23dBm 0.8 dB 2.9493 dB 0.2 dB 129.2287425 + 2Ag
Ag = (-78.89458278 dBm - 23 dBm + 2.9493 dB + 0.2 dB + 0.8 dB +
129.2287425)/2
Ag = 15.64172986 dB = 17.78172986 dBi
Solving for the required antenna diameter (B):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
B = log-1 ( (B 20 log(FGHz) 7.5)/20)
B = log-1 ( (17.78172986 20 log(8.293) 7.5)/20)
B = 0.393889884 ft. = 0.120057636 m.
Use B = 1.2 m. = 3.937007874 ft.
Solving the new antenna gain (AgdBi):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
AgdBi = 20 log (8.293) + 20 log (3.937007874) +7.5
AgdBi = 37.77755898 dBi = 35.63755898 dB
Computing for the Actual Received Signal Level (ARSL):
ARSL = Po - Lct Lt LRT +2AgdB FSL
ARSL = 23 - 0.8 2.9493 0.2 +2(35.63755898)- 129.2287425
ARSL = -38.90292452 dBm
Computing for the Actual Fade Margin (FM):
FM = ARSL Receiver Threshold
FM = -38.90292452 (-91.5)
FM = 52.59707548 dB
Solving for the Undp:
Undp = (a)(b)(10-5)(FGHz/4)(Dmi3)(10-(FM/10))
Undp = (1/4)(1/4)(10-5)(8.293/4)(5.203)(10-(52.59707548)/10))
Undp = 1.00192 x 10 -9
Solving for the reliability (R):
R = 100(1 Undp)
R = 100(1 1.00192 x 10 -9)
R = 99.9999999 %
Signal Diagram (Baguio, to Mt. Sto. Tomas @ f = 8.293 GHz
Tx
Rx
56.66290898
36.66707986
23 dBm
21.02535
-36.92827454
-72.56583352
-38.90292454
ARSL
-76.91993278
-92.56166264
-78.89458278
TRSL
- 91.5 dBm
Rx Threshold
****(Baguio Mt. Sto. Tomas, Baguio @ frequency = 8.412 GHz, Nondiversity)****
Parameters:
Po = 23 dBm
FGHz = 8.412 GHz.
D = 8.37 km. = 5.20 mi.
a = (for mountainous)
b = (for tropical countries)
Receiver threshold = -91.5 dBm
Flex Loss LRT= 0.05 dB.x 4 = 0.2 dB
Waveguide loss Lw = 5.58 dB per 100 m ( EWP77 Elliptical Waveguide)
Connector loss Lc = 0.2 dB per piece
Solving for the Fade Margin Objective (FMo):
FMo = -10log (1/(a)(b)(FGHz/4)( Dmi3))
FMo = -10 log (1/(1/4)(1/4)( 8.412 /4)( 5.20)3)
FMo = 12.66729321 dB
Computing for the Target Received Signal Level (TRSL):
TRSL = Receiver Threshold + FMo
TRSL = - 91.5 dBm + 12.66729321 dB
TRSL = -78.83270679 dBm
Solving for the total waveguide loss (Lt):
Lw1 = Lw(TH1 + D + Allowance)
Lw1 = (5.58 dB/100 m)(6.10 + 15 + 5)
Lw1 = 1.45638 dB
Lt = 2Lw1
Lt = 2(1.45638 dB )
Lt = 2.91276 dB
D the distance between the radio equipment and the base of the tower
Allowance for bending purposes
Solving for total connector loss (Lct):
Lct = N(Lc)
Lct = 4(0.2 dB)
Lct = 0.8 dB
N number of connectors
Computing for the Free-Space Path Loss (FSL):
FSL = 92.4 + 20 log(FGHz) + 20 log(Dkm)
FSL = 92.4 + 20 log(8.412) + 20 log(8.37)
FSL = 129.3524944 dB
Solving for the required Antenna Gain (AgdB):
TRSL = Po Lt - Lct - LRT FSL + 2AgdB
-78.83270679 = 23dBm 0.8 dB 2.91276 dB 0.2 dB 129.3524944 + 2Ag
Ag = (-78.83270679 dBm - 23 dBm + 2.91276 dB + 0.2 dB + 0.8 dB +
129.3524944)/2
Ag = 15.71627381 dB = 17.85627381 dBi
Solving for the required antenna diameter (B):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
B = log-1 ( (B 20 log(FGHz) 7.5)/20)
B = log-1 ( 17.85627381 20 log(8.412) 7.5)/20)
B = 0.391664695 ft. = 0.119379399 m.
Use B = 1.2 m. = 3.937007874 ft.
Solving the new antenna gain (AgdBi):
AgdBi = 20 log (FGHz) + 20 log (Bft) +7.5
AgdBi = 20 log (8.412) + 20 log (3.937007874) +7.5
AgdBi = 37.90131095 dBi = 35.76131095 dB
Computing for the Actual Received Signal Level (ARSL):
ARSL = Po - Lct Lt LRT +2AgdB FSL
ARSL = 23 - 0.8 2.91276 0.2 +2(35.76131095)- 129.3524944
ARSL = -38.74263254 dBm
Computing for the Actual Fade Margin (FM):
FM = ARSL Receiver Threshold
FM = -38.74263254 (-91.5)
FM = 52.75736746 dB
Solving for the Undp:
Undp = (a)(b)(10-5)(FGHz/4)(Dmi3)(10-(FM/10))
Undp = (1/4)(1/4)(10-5)(8.412/4)(5.203)(10-(52.75736746)/10))
Undp = 9.794732394 x 10 -10
Solving for the reliability (R):
R = 100(1 Undp)
R = 100(1 9.794732394 x 10 -10)
R = 99.9999999 %
Signal Diagram (Baguio, to Mt. Sto. Tomas @ f = 8.412 GHz
Tx
Rx
56.80493095
36.75989381
23 dBm
21.04362
-36.7862525
-72.54756345
-38.7426325
ARSL
-76.87632678
-92.59260059
-78.83270678
TRSL
- 91.5 dBm
Rx Threshold
VIII. Microwave Path Data Calculation Sheet
Customer: _______________________________________________________
Project No._______________________________ Frequency 6.46-6.8 GHz
System: Dagupan, Pangasinan to Mt. Sto. Tomas, Benguet
1
SITE
2
3
LATITUDE
LONGTITUDE
4
5
6
7
8
SITE ELEVATION
m.
TOWER HEIGHT
m.
TOWER TYPE
AZIMUTH FROM TRUE NORTH
PATH LENGTH
miles
km.
PATH ATTENUATION
dB
RIGID WAVEGUIDE
ft.
FLEXIBLE WAVEGUIDE
m
.
ft
WAVEGUIDE LOSS
dB
CONNECTOR LOSS
dB
CIRCULATOR OR HYBRID LOSS dB
RADOM LOSS, TYPE (TELGAR)
dB
TOTAL FIXED LOSS
dB
TOTAL LOSSES
dB
PARABOLA HEIGHT
ft.
PARABOLA DIAMETER
ft.
REFLECTOR HEIGHT
ft.
REFLECTOR SIZE, TYPE
ft.
PARABOLA REFL. SEP.
ft.
ANTENNA SYSTEM GAIN
dB
TOTAL GAINS
dB
NET PATH LOSS
dB
TRANSMITER POWER
dBm
MED. RECEIVED POWER
dBm
RECEIVER NOISE THRESHOLD dBm
THEORETICAL RF C/N RATIO
dB
PRACTICAL THRESHOLD
dBm
FADE MARGIN (TO PRAC THRES.) dB
RELIABILITY, %
*9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24*
25*
26
27
28
29
30
31*
32
Dagupan,
Pangasinan
16o225.31
120o2143.1
Mt. Sto. Tomas,
Benguet
16o2014.06
120o3330.9
5
12
Guyed
32o294.21
2252
12
Self-supported
212o294.21
24.165
38.89
140.4014092
140.8469371
26.1
26.1
85.63
85.63
2.39076
2.31246
0.8
0.8
143.59217
20
5.9
36.98980121
73.97960242
69.61256758
143.95939
20
5.9
37.4353291
74.8706582
69.0887318
26
- 43.61256
36.18743322
99.99998352
- 43.08873
- 80
36.71126109
99.99998637
Customer: _______________________________________________________
Project No._______________________________ Frequency 6.74-7.08 GHz
System: Dagupan, Pangasinan to Mt. Sto. Tomas, Benguet
1
SITE
2
3
LATITUDE
LONGTITUDE
4
5
6
7
8
SITE ELEVATION
m.
TOWER HEIGHT
m.
TOWER TYPE
AZIMUTH FROM TRUE NORTH
PATH LENGTH
miles
km.
PATH ATTENUATION
dB
RIGID WAVEGUIDE
ft.
FLEXIBLE WAVEGUIDE
m
.
ft
WAVEGUIDE LOSS
dB
CONNECTOR LOSS
dB
CIRCULATOR OR HYBRID LOSS dB
RADOM LOSS, TYPE (TELGAR)
dB
TOTAL FIXED LOSS
dB
TOTAL LOSSES
dB
PARABOLA HEIGHT
ft.
PARABOLA DIAMETER
ft.
REFLECTOR HEIGHT
ft.
REFLECTOR SIZE, TYPE
ft.
PARABOLA REFL. SEP.
ft.
ANTENNA SYSTEM GAIN
dB
*9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Dagupan,
Pangasinan
16o225.31
120o2143.1
Mt. Sto. Tomas,
Benguet
16o2014.06
120o3330.9
5
12
Guyed
32o294.21
2252
12
Self-supported
212o294.21
24.165
38.89
140.7699568
141.197424
26.1
26.1
85.63
85.63
2.31768
2.28114
0.8
0.8
143.88763
20
5.9
37.35834878
144.27856
20
5.9
37.785816
24*
25*
26
27
28
29
30
31*
32
TOTAL GAINS
dB
NET PATH LOSS
dB
TRANSMITER POWER
dBm
MED. RECEIVED POWER
dBm
RECEIVER NOISE THRESHOLD dBm
THEORETICAL RF C/N RATIO
dB
PRACTICAL THRESHOLD
dBm
FADE MARGIN (TO PRAC THRES.) dB
RELIABILITY, %
74.71669
69.17094
75.57163
68.70693
26
- 43.17094
36.62906077
99.99998597
- 42.70693
- 80
37.09306799
99.9999881
Customer: _______________________________________________________
Project No._______________________________ Frequency 8.293-8.412 GHz
System: Baguio, Benguet Mt. Sto. Tomas Benguet
1
2
3
4
5
6
7
8
*9
10
11
12
13
SITE
Baguio,
Mt. Sto. Tomas,
Benguet
Benguet
LATITUDE
16o248.44
16o2014.06
LONGTITUDE
120o3556.2
120o3330.9
SITE ELEVATION
m.
1417
2252
TOWER HEIGHT
m.
12
12
TOWER TYPE
Self-supported
Self-supported
AZIMUTH FROM TRUE NORTH
210o3241.7
30o3241.7
PATH LENGTH
miles
5.20
km.
8.37
PATH ATTENUATION
dB
129.2287425
129.3524944
RIGID WAVEGUIDE
ft.
FLEXIBLE WAVEGUIDE
m
26.1
26.1
.
ft
85.63
85.63
WAVEGUIDE LOSS
dB
2.9493
2.91276
CONNECTOR LOSS
dB
0.8
0.8
14
15
CIRCULATOR OR HYBRID LOSS
RADOM LOSS, TYPE (TELGAR)
dB
dB
16
17
18
19
20
21
22
23
24*
25*
26
27
28
29
30
31*
32
TOTAL FIXED LOSS
dB
TOTAL LOSSES
dB
PARABOLA HEIGHT
ft.
PARABOLA DIAMETER
ft.
REFLECTOR HEIGHT
ft.
REFLECTOR SIZE, TYPE
ft.
PARABOLA REFL. SEP.
ft.
ANTENNA SYSTEM GAIN
dB
TOTAL GAINS
dB
NET PATH LOSS
dB
TRANSMITER POWER
dBm
MED. RECEIVED POWER
dBm
RECEIVER NOISE THRESHOLD dBm
THEORETICAL RF C/N RATIO
dB
PRACTICAL THRESHOLD
dBm
FADE MARGIN (TO PRAC THRES.) dB
RELIABILITY, %
132.97804
20
3.937
35.63755898
71.27511
61.70293
133.06525
20
3.937
35.76131095
71.52262
61.54262
23
- 38.70293
52.59707548
99.9999999
- 38.54262
- 91.5
52.75736746
99.99999999
IX. Plans and Layouts
a. Network Diagram
Mt. Sto. Tomas
D = 8.37 km
= 5.20 miles
Latitude : 16o2014.06
Longitude : 120o3330.9
= 30o3241.7
Baguio
Latitude : 16o248.44
Longitude : 120o3556.2
Mt. Sto. Tomas
= 210o3241.7
= 212o294.21
Latitude : 16o2014.06
Longitude : 120o3330.9
Dagupan
Latitude : 16o225.31
Longitude : 120o2143.1
= 32o294. 21
b. Site Plan
Mt. Sto. Tomas (Baguio City)
D = 38.89 km
= 24.165 miles
Dagupan City
Baguio City
c. Floor Plan
d. Antenna Plan
For Dagupan-Mt. Sto. Tomas Transmission
Wind Loading
For Baguio-Mt. Sto. Tomas Transmission
Wind Loading
e. Waveguide Plan
For both Tx/Rx Station
From the figure, you can see all the details on how to install the
waveguide starting from the shelter or the radio equipment room up to the tower
including all the components required to install the waveguide properly. The
waveguide that will be used here is an elliptical waveguide.
f. Tower Plan
M36 Guyed Tower (for Dagupan, Pangasinan site)
This tower is used for light up to medium cellular applications as well as
for light microwave applications. It can also be used for land mobile radio and
light CATV or LPTV.
Guyed towers are very useful in areas where land is soft or where the
vicinity is near a body of water. In this case, we are going to use guyed tower in
our design for the tower located in Dagupan, Pangasinan because the area is
surrounded by ponds and other small sections of body of water.
For the tower located in Mt. Sto. Tomas, Baguio and in the city proper of
Baguio, we are going to use self-supported types of towers this is because at
great heights, wind is a major factor to be considered. The towers should
withstand the force of the wind and self-supported towers offers great stability
and durability. Also, self-supported tower require lesser area than its counterpart.
In areas like the peak of Mt. Sto. Tomas and the crowded city of Baguio, it is very
difficult to find a place to erect a tower that requires large area like guyed towers.
3ST Self-Supported Tower Plan and Dimensions
X. Recommendations
Our design should be modified into a better application depending upon
the frequency of operation and the model of the radio equipment suited on the
kind of communication system we want to adapt to. Since the site is situated in
an environment where there is line-of-sight and it is experiencing temperatures at
both extremes, it is very difficult to estimates the factors that can affect the
reliability of the design. We recommend that the designer should do deep
analysis and surveying of the site.
Our design is point-to-point link but it can also be utilized as part of a
multipoint link or as a cell site. According to the statistics presented at the first
part of this document, we can conclude that Dagupan and Baguio is not an
untamed province. They are developing in a very fast pace. It would be easier to
construct more microwave site in this province since main roads, utility, power
sources are all accessible. It only means that our design can be modified to suit
not only for point-to-point but also for multi-point communication link.