Assignment II
FUNCTIONAL ANALYSIS
May 30, 2016
Submitted to
Dr. Shiferaw Feyissa
Name
1.
2.
3.
4.
5.
Abener Tewodros .
Hana Endiris . . .
Habtamu Meressa
Miliyon Tilahun . .
Sisai Bekele . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
ID No
. GSR/1417/08
. GSR/1419/08
. GSR/1399/08
. GSR/1401/08
. GSR/1426/08
Functional Analysis Problems
1. Give an example of Self-Adjoint operator.
Solution. Let H = Cn and let {e1 , . . . , en } be the standard orthonormal base in H. Let A be an operator represented by matrix (aij ), where
aij = hAej , ei i. Then the adjoint operator A is represented by the matrix bkj = hA ej , ek i. Consequently
bkj = hej , Aek i = hAek , ej i = ajk .
Therefore, the operator A is self-adjoint if and only if aij = aji .
2. Give an example of Unitary operator.
Solution. Let H be the Hilbert space of all sequences
P of complex numbers x = (. . . , x1 , x0 , x1 , . . .) such that kxk = |xn |2 < . The
inner product is defined by
hx, yi =
xn yn .
The operator T defined by T (xn ) = (xn1 ) is a unitary operator. Indeed, T is invertible and
hT x, yi =
xn1 yn =
xn yn+1 = hx, T 1 yi,
which implies T = T 1 .
3. Give an example of Normal operator.
Solution. Let H be a Hilbert space and let T x = ix for all x H.
Since T x = ix = T x, T is not self-adjoint. On the other hand,
kT xk = kT xk for all x H, and thus T is normal.