0% found this document useful (0 votes)
78 views5 pages

Rulmenti PDF

The document discusses bearings and bearing load ratings. It includes diagrams of bearings and the forces acting on them. Formulas are provided to calculate equivalent bearing loads based on the actual loads, as well as formulas for calculating bearing life in rotations and hours based on the equivalent load. Tables are included that provide example bearing types and load ratings, and show how to determine equivalent loads and life calculations for different bearing arrangements.

Uploaded by

Simona Blîndu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
78 views5 pages

Rulmenti PDF

The document discusses bearings and bearing load ratings. It includes diagrams of bearings and the forces acting on them. Formulas are provided to calculate equivalent bearing loads based on the actual loads, as well as formulas for calculating bearing life in rotations and hours based on the equivalent load. Tables are included that provide example bearing types and load ratings, and show how to determine equivalent loads and life calculations for different bearing arrangements.

Uploaded by

Simona Blîndu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

1

2
3
4

Figura 4.1

Momentul de frecare [Nm]

RULMENTI

2,3
1,7

R
18000 N

1,15
LHD

0,8
0

2260 N

4
6
8
Turatia n [rot/min]

Figura 4.2
Simbol de baza

Simbol
auxiliar

Simbolul
seriei

Prefixe
Figura 4.4

10103

Simbol
auxiliar

Simbolul
alezajulu

Sufixe

Fr

2
F2

F2

j
Figura 4.3

0
F1

Fa

F a

F1

F0

Fr

Figura 4.5

= C F n

(4.1)

0 = C F02 3 ;

1 = C F12 3 ;

23
n = C Fn

(4.2)

1 F1
=
0 F0

Fr

23

2 F2
=
0 F0

23

(4.3)

F1 cos = F0 (cos )5 2 ; F2 cos 2 = F0 (cos 2 )5 2 K Fn cos n = F0 (cos n )5 2


Fr = F0 + 2 F1 cos + 2 F2 cos 2 + .... + 2 Fn cos n

Fr = F0 1 + 2
(cosi )5 2

i =1
Fr
K F
F0 =
= b r
n
z
1+ 2
(cosi)5 2

Figura 4.6
(4.4)
(4.5)

(4.6)

(4.7)

i =1

5 Fr
z
5,2 Fr
F0 =
z
Fa Fa
Q=
z sin
F0 =

C
L =
P

(4.8)
(4.9)
(4.10)

(4.11)

2
I uh = 3,5 10
R int

10

A K
M

R R
R (R + 2 R 1 )
= 1 2 ; R ext = 1 2
R1 + R 2
R1 + R 2

1 =

(4.12)

R2

R2

2 3

R3

R1 1

R3

R1 1

(4.13)

R 2 (R 2 + 2 R 1 )
n
2 ; 2 =
rad / sec
2 R 1 (R1 + R 2 )
30

(4.14)

h = K d m ( 0 n )0, 73 C0 0, 09

(4.15)

h optim

0 = C 00,123
K d
m

(4.16)

1, 37

H max = 0,418

Fr E r
l

(4.17)

1
1

R 1 R 2, 3

M t = MF + M L
M F = f 1 Fr d m

(4.18)

(b)
P = XFr+YFa

(4.21)
F

(4.22)
(4.23)

R r = R uz R abr

(4.24)

Kn
n lim =
[rot / min ]
D 10
3K n
n lim =
[rot / min ]
D + 30
n lim = n lim f n1 f n 2 f n 3 f n 4

(4.25)
(4.26)

(a)
P = Fr

Figura 4.9

(4.28)

(4.29)

a)

b)

c)
Figura 4.10

Curba (c) - locul


geometric al
fortelor combinate
care confera
rulmentului

(4.27)

10 6 L
60 n

C
L =

(4.20)

v uz = K r m a2 3 R 1a 5 2a,5

Lh =

Fa

(4.19)

M L = 10 3 f 0 ( n) 2 3 d3m [Nm] pentru n > 210-3 ;


M L = 24,1 f 0 d m [Nm] pentru n 210-4 .
10 6 C
C
L 10 = ; L h =

60 n P
P
h uz = vuz t h

Figura 4.7

3
tg1 = e

(4.30)

P = Fr
P = V X Fr + Y Fa
A

(4.31)
(4.32)

b)

a)
A

c)
B

d)

Figura 4.11
e)

Fa

A
a

B
a

f)

A
a

S
H

FrA

FrA

FrB

a)

b)

Figura 4.12

Fa

Ft

Fr
RA

RB
Figura 4. 13

B
a

Fa

Ft

Fr
RA

RB
A
Fax

Figura 4.14

B
Fax

FrB

Fa

4
Tabelul 4.1
Simbolul rulmentului

6007

6207

6307

6407)

35

35

35

35

62

72

80

100

14

17

21

25

8,65

14,0

18,3

31,9

Capacitatea dinamica de
baza C [kN]

12,5

20,0

26,0

43,6

Factorul X
Factorul Y

0,6
0,5

Diametrul alezajului d (mm)


Diametrul exterior al
rulmentului D (mm)
Latimea rulmentului B (mm)
Capacitatea de ncarcare
statica C0 [kN]

Factorul V
(se determina prin
interpolare din
catalogul de rulmenti,
n functie de raportul
Fa / C0 )

Simbolul rulmentului
Rulmentul liber
ncarcarea echivalenta, PA
Rulmentul conducator
ncarcarea echivalenta, PB

ncarcarea echivalenta
maxima
Pmax
Durabilitatea n milioane
de rotatii, L
Durabilitatea n ore de
functionare, Lh

0,6
0,6
0,5
0,5
V = 1, daca se roteste inelul interior
V = 1,2, daca se roteste inelul e xterior
(se determina prin
(se determina prin
interpolare din
interpolare din
catalogul de rulmenti,
catalogul de rulmenti,
n functie de raportul
n functie de raportul
Fa / C0 )
Fa / C0 )

0,6
0,5

6007

6207

6307)

(se determina prin


interpolare din
catalogul de rulmenti,
n functie de raportul
Fa / C0 )
Tabelul 4.2
6407

PA = RA

PA = RA

PA = RA

PA = RA

PB = RB,
daca Fa/RB = e
sau
PB = VXRB + YFa,
daca Fa/RB > e
Se nscrie valoarea cea
mai mare dintre
PA si PB,
adica P max

PB = RB,
daca Fa/RB = e
sau
PB = VXRB + YFa,
daca Fa/RB > e
Se nscrie valoarea cea
mai mare dintre
PA si PB,
adica P max

PB = RB,
daca Fa/RB = e
sau
PB = VXRB + YFa,
daca Fa/RB > e
Se nscrie valoarea cea
mai mare dintre
PA si PB,
adica P max

PB = RB,
daca Fa/RB = e
sau
PB = VXRB + YFa,
daca Fa/RB > e
Se nscrie valoarea cea
mai mare dintre
PA si PB,
adica P max

C
L =
Pmax

Lh =

C
L =
Pmax

L 10 6
60 n

Lh =

C
L =
Pmax

L 10 6
60 n

Lh =

C
L =
Pmax

L 10 6
60 n

L h L h admisibil

Fr

Ft
Fa

RA
A
Fax
A, B = 0,5
Fax

R A, B
YA ,B

RB
Figura 4.15

L 10
60 n

Lh =
(4.33)

B
Fax
(4.34)

5
Tabelul 4.3
Simbolul rulmentului
Diametrul alezajului, d (mm)
Diametrul exterior al rulmentului, D (mm)
Latimea rulmentului, B (mm)
Capacitatea dinamicade baza, C [N]
Factorul X
Factorul Y

32009 X
45
75
20
44
0,67
1,5

33109
33209
45
45
80
85
26
32
71
91,5
0,67
0,67
1,6
1,5
V = 1 daca se roteste inelul interior
V = 1,2 daca se roteste inelul e xterior
0,37
0,4

Factorul V
e

0,4

L h L h admisibil

30309 A
45
100
25
0,67
1,7

0,35

(4.35)
Tabelul 4.4

Conditii de ncarcare

Forta axiala totala de calcul


Rulmentul B

Rulmentul A

RA RB

YA
YB
RA R B

YA YB
R
R
Fa 0,5 A B
YA YB

total
Fax
A = Fa + 0 ,5

RA RB

YA YB

Rulmentul din A
ncarcarea
echivalenta PA
Rulmentul din B
ncarcarea
echivalenta PB
ncarcarea
echivalenta
maxima, Pmax
Durabilitatea n
milioane de
rotatii, L
Durabilitatea n
ore de
functionare, Lh

32009 X
(exemplu)
PA = RA,
daca Ftotalax A / RA > e
sau
PA = VXRA +YFtotal axA
daca Ftotalax A / RA > e
PB = RB,
daca Ftotalax B / RB = e
sau
PA = VXRB+YFtotalax B,
daca Ftotalax B / RB > e
Se nscrie valoarea cea
mai mare dintre PA si PB,
adica P max

C
L =
Pmax

Lh =

Fa + 0,5

RB
YB

total
Fax
B = Fa 0 ,5

R
R
Fa 0,5 A B
YA YB

Simbolul
rulmentului

total
ax A =

RB
YB

L 106
60 n

33109
(exemplu)
PA = RA,
daca Ftotalax A / RA > e
sau
PA = VXRA +YFtotal ax A
daca Ftotalax A / RA > e
PB = RB,
daca Ftotalax B / RB = e
sau
PB = VXRB+YFtotal ax B,
daca Ftotalax B / RB > e
Se nscrie valoarea cea
mai mare dintre PA si PB,
adica P max

C
L =
Pmax

Lh =

L 106
60 n

33209
(exemplu)
PA = RA,
daca Ftotalax A / RA > e
sau
PA = VXRA +YFtotal ax A
daca Ftotalax A / RA > e
PB = RB,
daca Ftotalax B / RB = e
sau
PB = VXRB+YFtotal ax B,
daca Ftotalax B / RB > e
Se nscrie valoarea cea
mai mare dintre PA si PB,
adica P max

C
L =
Pmax

Lh =

L 106
60 n

RB
YB

Tabelul 4.5
30309 A
(exemplu)
PA = RA,
daca Ftotalax A / RA > e
sau
PA = VXRA +YFtotal ax A
daca Ftotalax A / RA > e
PB = RB,
daca Ftotalax B / RB = e
sau
PB = VXRB+YFtotal ax B,
daca Ftotalax B / RB > e
Se nscrie valoarea cea
mai mare dintre PA si PB,
adica P max

C
L =
Pmax

Lh =

L 106
60 n

You might also like