0% found this document useful (0 votes)
98 views7 pages

Civil Engineering Exam Paper Analysis

1) A civil engineering paper with 5 sections was summarized. Section A had 5 questions related to structural analysis, fluid mechanics, and influence lines. Section B had 4 additional questions on topics like material properties, retaining walls, soil mechanics, and pumps. 2) The document contained typical civil engineering exam questions covering a wide range of topics tested on professional licensing exams. 3) Questions involved calculations related to structural analysis, fluid mechanics, soil mechanics, material properties, and pump operation.

Uploaded by

rfvz6s
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
98 views7 pages

Civil Engineering Exam Paper Analysis

1) A civil engineering paper with 5 sections was summarized. Section A had 5 questions related to structural analysis, fluid mechanics, and influence lines. Section B had 4 additional questions on topics like material properties, retaining walls, soil mechanics, and pumps. 2) The document contained typical civil engineering exam questions covering a wide range of topics tested on professional licensing exams. 3) Questions involved calculations related to structural analysis, fluid mechanics, soil mechanics, material properties, and pump operation.

Uploaded by

rfvz6s
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

II F&-1000 I ut 1

CIVIL ENGINEERING

PAPERI
SECTION A

om
I. Allempt any Jourof~1e rollowing:
(a) A st..,) tlat hving a c.r.,..s-scction 6
C'lll x 2. em wns made into a hollow cylinder such U1al
menn perimeter of the hollow circu lar section is equnllq Gem. the breadth of the strip. Find
the percentage change in moment of inertia. (I 0)
(b) A simply supported hollow rect>ngular beam of outido width 200 mm. outside dopth 160

.c
mm and materia l thic~11oss 20 mm is subjected to a u.d.L of HI kN/m for its entire spnn of 10
m Pind tl1e maximum sboar stress induced in ~e beam. ( I 0)

ce
(c) (i) Defme an influence line. (4)
(iii A ~i.m~>ly SU)IIIOrted beam of JongU1 8 mis lrvc:rsed by syst.:m <>ftltrcc point Jo:od~.
Tho load. are 2. 4 3Jid 6 kN $eprlllo:d by I a11d 2 m n:spectivcly. Find tllc Jllo.ximum
bending moment at 3 m from lhe lcfthand support by uing intluence line diagram.
ra (6)
(d ) D"line stre~m f\Joctiool. n,~ trc<lm funtion of a tlow ;, giv~n 'I' ~ 2~2 ~;. Find
whether the flow is rotntionalond calculnte thevelndty at the point (3, 5). (Ill)
m
(e) Two <:<~nxial cylinders 250 tttm lush ha'" a liquid in betwecu Uu:tn. Tiu: outer cylindotltas an
intemiil di~mctet 100 mm ond the innc:r cylinder h"" ;ln extern<~) di meter 97.5 mm. Find the
''is cosily ol' the liquid which prO'<Iuce< at 10rque of I Nm upon Ihe inner cylinder when th'-'
xa

out<T one r0L1te~ at 90 rpm.


(10)
2. (a) A ladder of \\C~hl r.O 1-t and leogllo 4 m restS Qn lmootlt vertical ws ll ot n inclinLion or
3(1 with the hori.zonW!l flCior. Find Ute horizon IllI foroe requ.ircd at the point;. of conlllc't of Uu;
.e

le~ with the tloor to keep the l~dder in equilibrium when pe~on of weight 600 N ia a! the
centre of both the legs and 313m nlon.s the loolder.
(I (I)
w

(II) A beom ABO hinged al A and sinoply supported al B has an overhang BO of 2m and span
AB uf 8 m. [I is . ubj<:<:lcd lu a concontrotcd load of 18 kN t C. the cc:uual point of AB and lo
w

a COJiccntroted lo3d of 12 kN atlhe frte end B. The Jlexur.~l rigiditv of the clltltr.l) half pfthe
spon .\B i 4 ,; 10' kN-tn 2 while thM of the re$l of ~~e beam i~ 10 kN-m' Find tho deflection
at C ond D. 115)
w

(c) A poriJJI frame ABCD fixed al A and D i subje.:.tcd lo n u.d.l of inten ity \V.t? along the
column Afl. The length of ooltunns and the benm is I. If the plastic moment opacity nf e:Jch
column is 2 !llp nnd thai of tho beam i" Mp. lind the collnJ1$c lund by mechanism metllfJd.
( 15)
(a) A rectangular gal" 2 m wide and ( no high is hinged at doe base antl111akes an angle of ()(I"
witlt tl1~ base of tho chntwd wlticb ;. horizontal To keep tlu: gate inn table position Jorce
of29.43 kN is npplied ol ri~ht ang:l"" lo the plate. Find the doplh of water al which tlw gall<
b"'!illll to full neglecting the weight oflba gole nnd friction at the hinges.
(Ill)
" uF 7
(\)) Desi&n n trapezoidal oh~nnel to cnrry o discharge of 100 m';~ec n1 slope ofl in 4000. The
sldc slopes mny be L11i:e n as 1:1 nnd the permissible velocity in U1e channel iJ; hmited 10 2.5
m.scc. The 1\!bnoings rou&)llte.>;.< cuc!licicnlls 0.0 1-t
tl5)
(c) A Pellun wheel ha a mean buckcl speed of 12m/sec and is sup11tiod with water allhc mte of
0. 7 m1toc. T11o ])uol..els dtOO~clth jot through un tt1!1c of 160. 1f the powu l)roduccd is 2()0
kW. find the hend under which the Pelion wheel operates. \\llut is lh<> efficien~y of the
turbine'? Assllmt> COefficienl of velocity K" ~ 1.0.
(15)

om
4. (a) A metol pipe carrying water under a pressure of25 Ml'a has ~~~ internal diamele1 of S{Jmm . lf
the mJo.mum peunissible Wnsilc lf(O;S is 135 MPn.. find th" tlickncss of tlu1 pipe to
witru.1a..nd the. p1'CS$UfQ of water,
(1.5)

.c
(~) In a roclangulnr chnunol dischorging 9.2ll mJ's~a p.:r mctru widtl1. tl1e Froudo's number of tl1c
now 1s 3.5. What i the velocity of now al this Frnnde 's number'/ Calculate the depths of
flo-. beline and oJ\er lhe fu11n:1tion of hydraulic jump. What is llle percentage loss in s pecili<:

ce
entrgy2
( 10)
(c) A single acting oeciprocntiltg(>Ump bliS o pluugo:r di~meler 200nun and~ stroke length of300
mm. II drws 11Mcr from ' ump 3.6 m below the pump centre line wfth a pipe U m Jon~
ra
nnd I SO mm rn <Hameler. and lll\s water to a location 211 m above the pump with a pipe 25 in
Ions and I00111m in diam.,kr. Th<> pump is :ISsumc.l lo be drrven ~< hh S.H .M. II' the
olmosphuric pt'CSsurc head is 10.3 mttre of water and separation oceurs at 2.6 m of water
m
absolute. find tl1e maximum operauonal spoed of U1e pump,
(15)
xa

SECTION B

5. Altemptany four of the fullowtng:


.e

(n ) A tcu.sion lll<lJII~"' consisting of two fSA liO x j JO x JOmrn Is councded lo U1e $OOle side of
o gus$el plate b) 20 nun dibmclcr rivel5, T11o angle$ "'" loc.krivcll>d olong !heir l~;~tgilt itlld
have permisiblc len~ile Mre r;.._ 150 n/MM'. Find the load crurying capacity of the
w

memt>er
(tO)
w

(~) Do~i!'!Jl o shon column , -'1uarc cross- ~ection ~objected 10 un axia i i03d ol' 1500 kN (working
Slrc<s). lise t<Jnerete C'rl' ltli.\ M 25 and Steel or ~raue Fe 4 15. The pcrmis.illlc <!OIIIJ)foSsivc
strus8e< in cone~'dc ond s tcd M1:l o~ 6Nitunl and o ,. 190 N/mn12 n:spoclivcly. Auum"
w

'29utocl.
( I (I)
(c) A mnsoury retnining wall. 4 m high with VC11ic.1l back r~tain ctrhesiunl<;" <oil haviug" nnit
weight 11 lv\Jirn ' ;md angle of internal frictinn 3(). The unit weight nf rnasonry is 24 kN1m3..
If the widLh of the ma.oory " ""is 1..2 m ul top. find tl1e bliSc width 10 avoid ten~ilc slresst:S.
Use Ronkind'$ ibcory for ct~e eorth pre~suro.
( (0)
J ur7
Id) A one litre capnoity c.ore-cutter of mils$ I kg wos pushed into an o:mbonk111e111 under
construction and the mass ot'lh<>~ore-culler with soil wns found to be 2.86S k!!. Lfthesoil had
a IVfilcr <UIItcot Qt' I lqo and sp<>lific grnvitv uf ~.>il solids is 2.67. tletennin~ th<> l)u l~ unit
\licigbl, d y unit wtight, void ratio und degree of ~aturatjlm uf the ~oil mple. n ,o unit
weight <1f water is ?.8 l 1\)'il m'
( I 0)
(c) The lop Ioyer of a soil depo~1t 'On sis!$ of n cby lllyer of 4 m tl1ickncss overlying a very thick
layer of sand. Even though the wa1er. table is at the mddle or lhe cia) layer, the clay soil
abtJ\'e ~to WOtcr tnblo is Sl!turotc<l n1c IYAI.cf ctmlcnl uf Cia)' s trata i. 30o While. IIIli I of sand

om
tratto is 16"' !I' U1e spcciGc grllvity of clay "'"I saml nrc 2. nand '2.64 respectively. takubtc.
the tl1till stress. pure water pressure :tnd et'tl!<:tive stress tl deptlt Sm fmm rile gTQ\IIId
surface.
( lO)
~. A lalel'a lly >UJnl()rt\!d beam <Oru!isting of ISMS 600 @ 1.2 kNim is s1mply supported O\ or a

.c
srun of 8. ~ 111. If ullow>blc shcat ~ueli$ ~.. ~ IO<J Nlnun' . bonding lre.IS <11 ~ a 1.. = 165
Nmm1 oUo"able deDc"<!tion = ~11Ull325 and E ~ 2 ~ 10' Nlmm~. tlnd lite s:olo "-d. I tltatthc
h~m cnn corry The properti~ ofl->eelion arc I,., : 91813 em". Z10, = 3060.4 em'. h = 6()()

ce
mni. b = 210 mni. lw= 1'2Jl mm. IF 20.8 mm .
US)
(h) A !>-Iteam has Oattge width of7~0 mm. fhnge thick11ess of 85 mnl. web U1iclcrless o 240 mnl
and effective ut:ptll of ~00 rum. Find Ute ure<~ >f ~ted if the ~pplied ullimJ.to moml:ltl U; t86
ra
kNm. Take f.., = 15 N1nun: ond f) ~ 2501'1mm1.
(IS)
m
(c) A column 100 mm x -100 nun C<~ni<s n .axial lood of KOO kN. II is provide-d with a unifom1
thick R.C.L' footing. F'lnd the depth of lhe fnotiog to res 1st shearing ction only. The bearing
cnpacity of soil is 100 kN/m!. Llso fk 15 Nlmm1 and T '' ttl ../1 1
xa

( 1(1)

7, (o) A l>ycr o f n<>rlllllU)' lod'li clay is 1 m thick and li"'' under a recently C<>uslrueted building.
f he weight <>f sand overlying the clay Ioyer "' 3tltl k:N1m! 1nd new construction increru;es the
overburden pressure by I00 k."' m" The cl~)' ltns a na mml water content of 4S"-o ~nd specific
.e

grnvlty of1. 7. anu i~ subm~rged willt tl1o wol"r table boiug al U1e top lcwl of the cloy strata.
Assuming comprc"-ion md= to be 0.5. compute the fln.1 l sctllcmbni.
( 1(1)
w

(h ) 1'u1 !ln.chored sheet pile u11ports :o sandy hucldlll of height 3 m, having angle uf shearing
resistllnce 11f JO" und 1111it weight uf 191.-Nm' l'he 5oil below the dredge line ls clay with a
notit weight of I \I kNtm'- cohesion lU kNim' and zero angle of intern~ I resistance. The AA'.!hor
w

r ods ore plaQJ 1 m aport and 1 ru b"l011 ll1e level surface of U1e baclrfLll Assuming frta eu~rth
support. cn lcubto the J'orco: in tl1e anchor and d1e doptl1 of the sheet pile. Usc Rnnkincs
theory fbr earth P''"''"'"'
w

( 151
(c) ;\ !; m long plio: is w;ed in a derosit of nnili>nn c.l:~y hving uoc11nlined CQrnpresive ~trength
of I00 l;}ll m 1 and adhesion faowr of 0.9. If Ihe: piJa ha.s IIJ carry an oxio ) load of o(l kN with
fo~lor of snfcty of 4. fmd thediornclel' ofl11e pilo. TakeN, 9.

< 1Sl
s. ( ) A I'<:CtAitguillr c"utrck beam l OO nwt wide and 300 uuu dc"'l' is jii'CSil'cssed by 15 wites nf S
mm <Jimcter loc:tted at 65 mm frnm 1he bqtt''"' nf 1he IJe:om nnd 3 wires nf' 5 mo~ <li:unetcr
l'"'"ted :tl 2Smtn from the top, A"ttmiog pre.;tre!<s in lh<a tecl S4() N/mm1 calculate lhe
..r 1
stro;ses t o,e extreme fibres of Ute midspn section when the be.1m is Attpporting its own
weight over~ simply supported spon of 6 m. lf~ u.d.l. of intensity Ci kN/Tti is superimposed,
cv nlwtlc maximum Wt)rl.i og stresses in concrete. Assume no lc.ss in prestre."ing ond self
weight to be 25 kN/m;.
(10)
n>) Design bracket connectio n to the flange of n 1-section l Slffi 250 having lbnge thiaknt!ls
9.7 mm ond flange width 250 mrn to ~rry load of 100 kN at on eccentricity of 300 Jtim,
I le l21) '.ri,'et~. n.e ll:rnge foce and bracket plnte surface touch each other. A<sume <,-r =
I00 N/mm 2 a~d '<pr = 300 Nlmm:.

om
( JS)
(c) A direct shear M x test on specimen uf sand gave the following ohservation;
Nc.ttnal stre.<M : 1.00 kN1m2
S.hearing stress : 46.6 kNiml

.c
Dotermine U1c angle of intemal fiiction, and tho hear strongUt of this soil at 5 m from U1c
round <urfoce. Assume specific gravity of Ute solids as 2.65 and void ralio <'IS 0, 7, 1'he round
water table ls al 3 depth of 2 m from tl1e ground surfa~e. Also find the chonge in shear

ce
stn,-ngUt wh~n Wlllcr toble ru.cs uplu U1e ground li'vel
(IS)

ra
m
xa
.e
w
w
w
I fFS-liJOO 3 l)[ 7

I CIVIL ENGINEERING
l
PAPER-II
SECTION A

I. Auwenny lour parts:

om
() Descrihe the components. properties and uses of
(i) Air entraining cernenL
(ii) \Voter t"llpeUenl ccrncnl.
( HI)
(b) Briclly dr;t;cribe a 8cropcr.

.c
( HI)
(c) Whol is a tach<!Umetcr1 What an: thd mellw<l3 or 111cht:<>metry'l

ce
(d) D~line tunnoge roting 01'11 locomotive :md ~late how it vuric:s with the tempentture.
! I 0)
(e) BrieJ:ly de.crihe fnctOT!< \\hich are COllJjidered in the pl.inning and decision"makiog p mCC!Iseo;
ra
ffJr n highway.
!10)
2. (A) T he ungenl.<i ton r~ilway curve m eet at nn angle <rf 120. Owing to th~ J){l~ition <>f building
m
~urve is 1o be chosen which will J)Uss near a point A, 20 m fron the point of intersection or
Ute t:IJl!!t:ttiS on the bisector of Ute angle 12(1. Find to the nearest holf degree. Uto degrc-<: of
.~uiLlble curve, ~nd then c~lculate the umgent distMces and show how neor Ibis curve pss~
to A.
xa

(15)
(h) Using the Prism9idol formuln. find tbc volume of tank which is <.~vated in level grottnd
to ~ depth of 3.m. The lop of which ts reCIJiogu lnr ln sh~pe. hn$ on area of 20 m x Sm. whil<>
the bottom is lOrn x 2m.
.e

(15)
(c) J)e~cribe
the t.riangle of amr method in solving a three-point probl<m. and while s tating the
Lehmann ~ nllc;s. stress upon their need.
w

( 10)
3. (a) List tl1e vatious uses of limber as a conslrod.ion m~teria l and discuss U>e advantages and
w

disadvantages of using tim be>' for eod1 of Ute above.


(12)
(b) Oi5cusF U1e co"'es and remedies of timber decay.
w

(Sl
(c ) With s l.:etches. hri..Oy describe ll1e verm iculated tmoh. polished tinish. <cabling, combed
linisb and moulded finish for stone masonry work.
( 10)
(d) Giving a neal sketch. describe a Jack Ar"h floqr.
(10)
6 ur 7
4. (a) In a reve..,e curve gfvcn the perpendiculnr dilltMce p between parJllel t~ngents, the chord
distanced l>elwet.'ll point ()[ cuMture and point of t.mgency: and 1m rndits R1 of n rversed
curve. derive .:m cXprcssit)n for tJ1e ~cc<md r3dius R2~
(12)
(b) 11iseu.s the variou~ litn.:tions perfonned by the Ballast
(8)
(c) Discus~ Ute bas~ on which lhe highways arc classlfJCd (for purvoses ol' geometric de<~ign
ratl1er than the stm<>tural de;ngn). and explain (with examples) bow a class is designated.
( 10)

om
(d) Describ<>the term Highmasl ltgJltlng and its advntages,
( 1(1)

SECTION B

.c
S. Anwer :<n) four p:.rl<:
(a ) Write note on trenm channel rc,>nting.

ce
( 10)
(b) Bri~lly dtiScn'bo thd Viirious metltods oftrnining ofriwn;.
(10)
(c) Derive n ~prl;,ion for Ute co'teetion in Oow wltil" using the HadyC'ro!S method of
analysis of now in a rcticulnted pipe outwork.
ra ( IOJ
(d) Write a small nOt<' on sanilltry landfill.
m
(1(11
(e) Write a note on consent gr~ntetl by poilu lion coorrol boards to the v>rfous industries.
( 1(1)
xa

0 t) Briefly describe lhe situotions when a water re~ource project will have ignificanf "ffocl3 on
the environm~>nt.
( I5)
.e

(b) Write a brief noleon the entry ofimpurities in irrigol.ionwal<>rS.


I HI)
tc) Di>tcu."~ the V!ll illtlS fnclor~ affccling irr:ig,(llit)n rct1uirtments.
w

(15)
7. (~) Dcsi~ lite ~ize- und numbct of unil\ of r:~pid sund filters tilr t(lwn with the fullmviug dow:
Avcr~gu qunntity of water required
w

per .:apita: 150 lpd


Populatifm s.:rvc::d ~ 50,000
w

Se.'I.~Onal vari~tion factor. 2.0


Hourly variation filelor: 2.9
R.alc oftiltration; 150.000 lim 1 'd
Ba~kwu~h time : 30 mirtld
(15)
(b) For and daily water supply of I l OG L del<Jmine tluo omouut of Juil y bleaching powder
(having available cWorioe of only 20''u), if the waU.'J''S cblminc duruand is LC) mg/1 which
len\'eS re.idual chlorine of().3 mgilnt\<~r 40 mm of contact tim<1.
(10)
7 of 7
(c) Desii!Jl a rectangu lar grit chamber for o ewage Oo\v r:1te of 40 mid containing Sfil pmticl~
of specific grovily 2.6.5 and s ize 0.2 mm to be remove<~. Determine the setting velocity ofthe
0.2 mm grit particles. critical hork.onL11 \'elc~ity of ll<lw (just bclo" the velocity nf scour)
and Ute size of Ute grit chumbor(a~~urning dctcnt.ion time of45 sec). Assume- Uu: kiJtcmntic.
viscocity as 1.0 x IOz cm '/~ec.
( IS)
8. A~S.uming lhc initio] inJiliJ":Ition rnle>(I:J) as 10 mm/h. lin>I inliluatiOnl'olc (~)as 5 rrun/1~ ;nul
k (a constant describing the rate of cle.:ny of the diffcrQnce bctw~"'" initia l ~nd tinill
infiltrat ion r>t"'') a 0.95 h'- calculat.e ilte tot I infiltration ~epth t1' ) tor :storm 11!-~tmg 6 h.

om
112)
(h) Calculate the diameter of n circ:ut.r sewer c:m:yins 0,624 m' 1s <'>f sewge when llllwing 1111 :ot
a .slope of l in 1000. Taken (in ~Ianning's 1\lnnula ) as 0.0 12. l'or this sewer. il'the Co" were
at 0.4 depth. wbaL would be tlre discharge nod vol~dty in Ote sewer atlho d"fllh 7 Giveu Otal
al d'D of0.4. ' l'Q is 0.32 and u!V iJ 0.88.

.c
(12)
(c) D<>l<>ribc one mc01od forth" , ,,fe diposal of 111dioactive wa~lo.
(8)

ce
(d) Discws the irnp>cl uf acid mine drninage on aquatic ~ys!em.

ra
m
xa
.e
w
w
w

You might also like