0% found this document useful (0 votes)
64 views6 pages

Halaman 38: Historical Background of The Acid-Base Physiology Debate

- The document discusses the historical background of debates around acid-base physiology definitions and concepts. It describes key contributions from scientists like Arrhenius, Henderson, Bronsted, and Sorensen that advanced understandings of acids, bases, and pH. - In the late 1970s/early 1980s, Peter Stewart introduced a new approach using strong ion difference and total weak acid concentration instead of bicarbonate. Stewart's work was based on chemical principles like electroneutrality and conservation of mass. - The main principles of Stewart's approach are that partial pressure of carbon dioxide, strong ion difference, and total weak acid concentration independently control physiological solution acid-base status. The role of carbon dioxide

Uploaded by

Ricky Fuller
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
64 views6 pages

Halaman 38: Historical Background of The Acid-Base Physiology Debate

- The document discusses the historical background of debates around acid-base physiology definitions and concepts. It describes key contributions from scientists like Arrhenius, Henderson, Bronsted, and Sorensen that advanced understandings of acids, bases, and pH. - In the late 1970s/early 1980s, Peter Stewart introduced a new approach using strong ion difference and total weak acid concentration instead of bicarbonate. Stewart's work was based on chemical principles like electroneutrality and conservation of mass. - The main principles of Stewart's approach are that partial pressure of carbon dioxide, strong ion difference, and total weak acid concentration independently control physiological solution acid-base status. The role of carbon dioxide

Uploaded by

Ricky Fuller
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 6

HALAMAN 38

Copernicus`s theory it was still quite possible to understand the universe and it is very unlikely
that the life of the average person living in those times was altered in any way by this new
knowledge. The argument obviously evaporates when considered in these terms. The
understanding that bicarbonate (HCO-3) and hydrogen ions (H+) are not at the center of the acid-
base universe produces as violent a change in our concepts of physiology as did Copernicus
change our concepts of astronomy.

At this point, the authors of this chapter find it intellectually impossible to continue to teach
conventional acid-base physiology.

In this chapter we expland the fundamental aspects of the Stewart approach, review the
implications for clinical medicine, particulary in the ICU, and consider some of the more
practical aspects of acid-base management from this perspective.

HISTORICAL BACKGROUND OF THE


ACID-BASE PHYSIOLOGY DEBATE
In the late 1800s Arrhenius, a Swedish physicist, developed two chemical concepts
inmportant to acid-base physiology. The first wasa new approach to the dissociation of chemical
salts into electrolytes; for this work Arrhenius almost failed his doctorate but was later awarded a
Nobel prize. The second concept was a new definition of an acid : a substance that when added
to a solution increases the hydrogen ion concentration. The next important development was the
work of a Boston physician, Henderson, in the early 1900s. From in vitro work, Henderson,
rewrote the law of mass action equation to describe the role of weak acids in maintaining
neutrality regulation in the animal organism. The Henderson equation applies particulary to
bicarbonate and carbonic acid:

+
H =k

Where k is a konstant :
Over the next 20 years several developments came from denmark. A new definition of an
acid was developed by bronsted : an acid is a substance that donates hydrogen ions in solution.
Bronsted noted that an englishman, lowry, had developed a similar definition. This became the
bronsted-lowry definition, still the dominant definition of an acid. The operative and scientific
superiority in the biological field of this latter definition of acid over arrbeniuss concept is
neither obvios nor proven.

CURRENT CONTROVERSY
What is an acid ? the definition of an acid is just that: a definition. It cannot be proved to
be false or true. All that one can do is to see how, from an operative point of view, such a
definition is internally consistent and able to fit into all observations that are made empirically.
Which definition dominates at a particular time in history is not the product of the spirit of the
times, politics, influence, and other non-scientific factors. If we add the hydrochloric acid to
saline, does the pH fall because we add the hydrogen ions of the acid because it donates
hydrogen ions or because it increases the concentration of hydrogen ions in the solution?

Sorenson, a chemist, made two further major contributions. First he developed the
concept of taking the negative logarithm to the base ten of the hydrogen ion concentration, which
he called pH changes in solutionsbuffers after the springs on the end off railway carriages.
Hasselbalch, a physician-farmer, combined Sorensens work with Hendersons to produce the
Henderson-Hasselbalch equation :

RUMUS (BUAT DEWEK)


Whether concepts like buffers and the continued use of a logarithmic scale for changes in hydrogen
ion activity serve modern medicine well remains doubtful

CURRENT CONTROVERSY
What is a buffer? Why use Ph? The same issues related to the definition of an acid pertain to the
definition of a buffer. Sodium lactate is abuffer in conventional acid-base phsyiology. However, if
enough sodium lactate is given fast enough, hyperlactemia occurs and the base excess falls. Is this
because lactate is not transformed into CO2 (conventional explanation) by the liver or because the SID has
decreased due to the rapid infusion of a solution with a SID of 0 (Stewart explanation)? It is not possible
to tell. Equally, is the use of pH helpful to clinicians to appreciate changes in acid-base balance more than
the actual hydrogen ion activity in nmol/1? We doubt it. In our opinion, the use of pH in modern medicine
appears unnecessary and potentially misleading.

Copernicus`s teori itu masih sangat mungkin untuk "memahami" alam


semesta dan sangat tidak mungkin bahwa kehidupan rata-rata orang yang hidup
dalam masa itu diubah dengan cara apapun oleh pengetahuan baru ini. Argumen
jelas menguap ketika dipertimbangkan dalam hal ini. Pemahaman bahwa bikarbonat
(HCO-3) dan hidrogen ion (H +) tidak di pusat asam-basa semesta menghasilkan
sebagai kekerasan perubahan konsep kami fisiologi sebagai tidak Copernicus
mengubah konsep kita astronomi.
Pada titik ini, penulis bab ini merasa intelektual mungkin untuk terus mengajar
fisiologi asam-basa konvensional.
Dalam bab ini kita expland aspek fundamental dari pendekatan Stewart, meninjau
implikasi untuk pengobatan klinis, khususnya di ICU, dan mempertimbangkan
beberapa aspek yang lebih praktis dari manajemen asam-basa dari perspektif ini.
LATAR BELAKANG SEJARAH DARI
ASAM-DASAR FISIOLOGI DEBAT

Pada akhir 1800-an Arrhenius, seorang fisikawan Swedia, mengembangkan dua


konsep kimia inmportant untuk asam-basa fisiologi. The wasa pertama pendekatan
baru untuk disosiasi garam kimia menjadi elektrolit; untuk pekerjaan ini Arrhenius
hampir gagal doktor namun kemudian diberikan hadiah Nobel. Konsep kedua adalah
definisi baru dari asam: zat yang ketika ditambahkan ke solusi
meningkatkan konsentrasi ion hidrogen. Perkembangan penting berikutnya adalah karya seorang
dokter Boston, Henderson, di awal 1900-an. Dari dalam pekerjaan vitro, Henderson, menulis
ulang hukum persamaan aksi massa untuk menggambarkan peran asam lemah dalam
mempertahankan "regulasi netralitas dalam organisme hewan". The "Henderson" persamaan
berlaku khususnya untuk bikarbonat dan asam karbonat:

Apakah konsep seperti "buffer" dan terus menggunakan skala logaritmik untuk
perubahan aktivitas ion hidrogen melayani pengobatan modern juga masih
diragukan

KONTROVERSI LANCAR
Apa penyangga? Mengapa menggunakan Ph? Masalah yang sama terkait dengan
definisi asam berkaitan dengan definisi buffer. Natrium laktat adalah "penyangga"
di phsyiology asam-basa konvensional. Namun, jika cukup natrium laktat diberikan
cukup cepat, hyperlactemia terjadi dan base excess jatuh. Apakah ini karena laktat
tidak berubah menjadi CO2 (penjelasan konvensional) oleh hati atau karena SID
mengalami penurunan karena infus yang cepat dari solusi dengan SID 0 (Stewart
penjelasan)? Hal ini tidak mungkin untuk mengatakan. Sama, adalah penggunaan
pH membantu dokter untuk menghargai perubahan dalam keseimbangan asam-
basa lebih dari aktivitas ion hidrogen yang sebenarnya di nmol / 1? Kami
meragukannya. Menurut pendapat kami, penggunaan pH dalam kedokteran modern
muncul yang tidak perlu dan berpotensi menyesatkan.

Halaman 39
Over the next 50 years acid-base physiology centered on the Henderson-Hasselbalch equation.
The partial pressure of carbon dioxide was substituted for carbonic acid. The non-volatile, or metabolic,
component was interpreted as being due to the body controlling plasma bicarbonate concentration. One
difficulty in clinical application was that changes in bicarbonate had to be interpreted while allowing for
changes in the partial pressure of carbon dioxide. To deal with this problem, schwartz and relman, boston
physicians, produced rules of thumb. The rules of thumb were equations to determine whether the
simultancous changes in bicarbonate and carbon dioxide were a single process, such as metabolic acidosis
with compensation, or mixed processes.
In the 1960s siggard-anerson, a danish physician, introduced base excess as a measure of the
metabolic acid-base status. Using base excess did not require calculating the rules of thumb. Base excess
assume a partial pressure of carbon dioxide of 40 mmhg and includes the plasma bicarbonate
concentration in the calculation. The subsequent controversy between boston and copenhagen over the
merit: of the rules of thumb versus base excess was known as the great transatlantic debate. It continous
to this day.
In the late 1970s and early 1980s, in several papers and a book, peter stewart, a canadian-
american physiologist working at brown university, introduced a new approach to acid-base physiology
and disorders. While using the partial pressure of carbon dioxide, stewart used two other variables, the
strong ion difference and the total weak acid concentration, instead of bicarbonate. Stewart based his
work on several chemical principles, particularly electroneutrality, concervation of mass, and dissociation
of electrolytes. Unfortunately for the on going debate, stewart died in 1993.
The main principles of stewars approach are that there are three important independent factors
controlling the acid-base status of a physiological solution: the partial pressure of carbone dioxide, the
strong ion difference, and the total weak acid concentration. The role of carbon dioxide, controlled by the
lungs, is simillar to that in the henderson-hassellbalch approach. Strong ions are ions that are completely
dissociated in solution. The most important strong ions are sodium, potassium, and chloride. The
important factors is the difference between the strong ions rather than the absolute concentrations of the
ions. As the strong ion difference falls the hydrogen ions concentration increases. Lactate is treated as a
strong ion because with a pKa of 3.4 it is almost completely dissociated at a pH of 7.40. the most
important weak acids in plasma are albumin and to a lesser extend, phosphate. Stewart emphasized
simultancously. These independent factors will control dependent factors incuding bicarbonate, hydroxyl
ions, and hydrogen ions. The source of the hydrogen ions in the stewart approach is the dissociation of
water molecules. Important underlying factors are the temperature-dependent dissociation constant of
water.

CLINICAL CAVEAT

What is the source ofhydrogen ions? The source of the hydrogen ions is plasma water not acid
generation by cells. One liter of water contains approximately 55 x 6.022 x 10 23 hydrogen ions. The
quantity of hydrogen ions that is released from water depends on the independent variables described by
stewart. Normally, at 250C, one in 1014 molecules of water is dissociated. To put in another way, in a
solution of distilled water, not all of the water. Some of it is dissociated into hydroxyl ions and hydrogen
ions. The glass electrode measures free hydrogen ions and, of course, ignores free hydroxyl ions. The
more water is dissociated, the greater the amount of the free hydrogen ions and the lower the Ph.

For several reasons Stewarts work provoked, and continues to provke, strong adverse reaction
from those committed to Henderson-Hasselbalch approach. First, he rejected bicarbonate as a vital
controlling factor. Second, he emphasized the vital role of strong ions; he saw hydrochloric acid as
acidifying not because it has hydrogen ions but because it has strong anions, chloride, without strong
cations. Third, he rejected the notion of buffers, and instead talked of weak acids. Fourth , he rejected pH
in favor of a return to hydrogen ion concentrationa. Last, he returned to the acid definition of Arrhenius: a
substance that when added to a solution increases the hydrogen ion concentration. This definition
accomodates both carbon dioxide and stronganions)
Many groups have continued Stewarts work: in clinical work (particulary critical care) in
exercise physiology, and in veterinary work.

FUNDAMENTAL PRINCIPLES OF
HYDROGEN ION REGULATION
Before we examine this area it is first necessary to review the basic principles of H + regulation.
Large living orgsanisms seek to maintain plasma pH within strict tolerance limits. In fact, the free H +
concentration is maintaned within the nmol/1 range (36-43 nmol/1). By contrast, most other ions are
regulated in the nmol/1 range. One reason H+ concentration is so closely regulated is that

Selama berikutnya 50 tahun asam-basa fisiologi berpusat pada persamaan


Henderson-Hasselbalch. Tekanan parsial karbon dioksida digantikan untuk asam
karbonat. The non-volatile, atau metabolik, komponen ditafsirkan sebagai akibat
tubuh mengendalikan konsentrasi bikarbonat plasma. Salah satu kesulitan dalam
aplikasi klinis adalah bahwa perubahan bikarbonat harus ditafsirkan sementara
memungkinkan untuk perubahan tekanan parsial karbon dioksida. Untuk mengatasi
masalah ini, Schwartz dan Relman, boston dokter, diproduksi "aturan praktis".
Aturan praktis yang persamaan untuk menentukan apakah perubahan simultancous
di bikarbonat dan karbon dioksida adalah proses tunggal, seperti asidosis metabolik
dengan kompensasi, atau proses campuran.
Pada tahun 1960 siggard-anerson, seorang dokter Denmark, memperkenalkan
"base excess" sebagai ukuran status asam-basa metabolik. Menggunakan kelebihan
dasar tidak memerlukan menghitung aturan praktis. kelebihan basa menganggap
tekanan parsial karbon dioksida dari 40 mmHg dan termasuk konsentrasi bikarbonat
plasma dalam perhitungan. Kontroversi berikutnya antara boston dan copenhagen
lebih pahala: aturan praktis dibandingkan base excess dikenal sebagai "debat
transatlantik besar". Ini kontinyu sampai hari ini.
Pada 1970-an dan awal 1980-an, akhir dalam beberapa makalah dan buku, peter
stewart, seorang ahli fisiologi Kanada-Amerika yang bekerja di universitas coklat,
memperkenalkan pendekatan baru untuk asam-basa fisiologi dan gangguan.
Sementara menggunakan tekanan parsial karbon dioksida, stewart digunakan dua
variabel lainnya, perbedaan ion kuat dan konsentrasi asam lemah total, bukan
bikarbonat. Stewart berdasarkan karyanya pada beberapa prinsip kimia, terutama
electroneutrality, pelestarian massa, dan disosiasi elektrolit. Sayangnya untuk debat
berjalan, stewart meninggal pada tahun 1993. Prinsip-prinsip utama dari
pendekatan stewar adalah bahwa ada tiga faktor independen penting
mengendalikan status asam-basa larutan fisiologis: tekanan parsial carbone
dioksida, perbedaan ion kuat, dan konsentrasi asam lemah total. Peran karbon
dioksida, yang dikendalikan oleh paru-paru, adalah simillar dengan yang di
pendekatan henderson-hassellbalch. ion yang kuat adalah ion yang benar-benar
dipisahkan dalam larutan. Ion-ion yang kuat yang paling penting adalah natrium,
kalium, dan klorida. Faktor penting adalah perbedaan antara ion kuat daripada
konsentrasi mutlak ion. Sebagai perbedaan ion kuat jatuh ion hidrogen konsentrasi
meningkat. Laktat diperlakukan sebagai ion kuat karena dengan pKa 3,4 itu hampir
sepenuhnya dipisahkan pada pH 7,40. asam lemah yang paling penting dalam
plasma albumin dan untuk memperpanjang lebih rendah, fosfat. Stewart
menekankan secara simultan. Faktor-faktor independen akan mengontrol faktor
bergantung termasuk bekerja bikarbonat, ion hidroksil, dan ion hidrogen. Sumber
ion hidrogen dalam pendekatan stewart adalah disosiasi molekul air. Faktor-faktor
yang mendasari penting adalah suhu tergantung konstanta disosiasi air.

Peringatan KLINIK
Apa sumber ofhydrogen ion? Sumber ion hidrogen air plasma tidak "asam"
generasi oleh sel. Satu liter air mengandung sekitar 55 x 6,022 x 1023 ion hidrogen.
Jumlah ion hidrogen yang dilepaskan dari air tergantung pada variabel independen
yang dijelaskan oleh stewart. Biasanya, di 250C, satu di 1014 molekul air
dipisahkan. Untuk dimasukkan ke dalam cara lain, dalam larutan air suling, tidak
semua air. Beberapa dari itu dipisahkan menjadi ion hidroksil dan ion hidrogen.
Langkah-langkah kaca elektroda ion hidrogen bebas dan, tentu saja, mengabaikan
ion hidroksil bebas. Semakin banyak air dipisahkan, semakin besar jumlah ion
hidrogen bebas dan rendah Ph.

Untuk beberapa alasan pekerjaan Stewart memprovokasi, dan terus provke,


reaksi yang merugikan yang kuat dari orang-orang berkomitmen untuk pendekatan
Henderson-Hasselbalch. Pertama, ia menolak bikarbonat sebagai faktor pengendali
penting. Kedua, ia menekankan peran penting dari ion yang kuat; ia melihat asam
klorida sebagai mengasamkan tidak karena memiliki ion hidrogen tetapi karena
memiliki anion kuat, klorida, tanpa kation kuat. Ketiga, ia menolak gagasan buffer,
dan bukannya berbicara asam lemah. Keempat, ia menolak pH mendukung kembali
ke concentrationa ion hidrogen. Lalu, ia kembali ke definisi asam Arrhenius: zat
yang ketika ditambahkan ke solusi meningkatkan konsentrasi ion hidrogen. Definisi
ini mengakomodasi kedua karbon dioksida dan stronganions)

Banyak kelompok telah melanjutkan pekerjaan Stewart: dalam pekerjaan


klinis (perawatan kritis khususnya) dalam fisiologi olahraga, dan dalam pekerjaan
hewan.

PRINSIP DASAR
PERATURAN ION HIDROGEN

Sebelum kita meneliti daerah ini pertama-tama perlu untuk meninjau prinsip-prinsip dasar H +
regulasi. orgsanisms tamu besar berusaha untuk mempertahankan pH plasma dalam batas toleransi yang
ketat. Bahkan, konsentrasi H + bebas maintaned dalam nmol / 1 Kisaran (36-43 nmol / 1). Sebaliknya,
sebagian besar ion lain yang diatur dalam nmol / 1 jangkauan. Salah satu alasan konsentrasi H + begitu
erat diatur adalah bahwa

You might also like