0% found this document useful (0 votes)
56 views8 pages

Grafik Kimfis

The document contains experimental data on the relaxation time (λt) of a material at different temperatures (T) over time (t). It shows how λt changes with t and its relationships with other variables. For each temperature, it fits linear and non-linear regression models of varying orders (0-3) to explore the relationships between λt, t and other parameters.

Uploaded by

intan kartika
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
56 views8 pages

Grafik Kimfis

The document contains experimental data on the relaxation time (λt) of a material at different temperatures (T) over time (t). It shows how λt changes with t and its relationships with other variables. For each temperature, it fits linear and non-linear regression models of varying orders (0-3) to explore the relationships between λt, t and other parameters.

Uploaded by

intan kartika
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 8

A.

T = 30C
= 1.447 ms

t t t - (t - ln t - 1/t - 1/(t - )^2


(ms) (meni (ms) )^2
t)
2.04 0 0.593 0.351649 -0.52256087 1.686340641 2.843744757
1.95 1 0.503 0.253009 -0.68716510 1.988071571 3.95242857
1.86 2 0.413 0.170569 -0.88430768 2.421307506 5.862730039
1.80 3 0.353 0.124609 -1.04128722 2.83286119 8.025102521
1.81 4 0.371 0.137641 -0.99155321 2.69541779 7.265277061
8
1.81 5 0.368 0.135424 -0.99967234 2.717391304 7.384215501
5

1. Orde 0 3. Orde 2

t vs 1/(t - ) t vs t -
3 0.3
2.5 f(x) = 0.22x + 1.84 0.25
R = 0.8
2 0.2 f(x) = - 0.03x + 0.23
1.5 0.15 R = 0.85
1/(t - ) t -
1 0.1
0.5 0.05
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t (menit) t (menit)
2. Orde 1 4. Orde 3

t vs ln t - t vs 1/(t - )^2
0 10
-0.2 0 1 2 3 4 5 6 8
f(x) = 0.99x + 3.4
-0.4 6 = 0.8
R
ln t - -0.6 1/(t - )^2 4
f(x) = - 0.1x - 0.61
-0.8 2
R = 0.8
-1 0
-1.2 0 1 2 3 4 5 6
t menit t (menit)

B. T = 40C
= 1.068 ms

t t t - (t - )^2 ln t - 1/t - 1/(t -


(ms) (menit (ms) )^2
)
1.32 0 0.253 0.064009 - 3.9525691 15.6228030
1 1.37436579 7 4
1.26 1 0.193 0.037249 - 5.1813471 26.8463582
1 1.64506509 5 9
1.20 2 0.134 0.017956 - 7.4626865 55.6916908
2 2.00991547 67
9
1.18 3 0.119 0.014161 - 8.4033613 70.6164818
7 2.12863178 45 9
6
1.17 4 0.11 0.0121 - 9.0909090 82.6446281
8 2.20724913 91
1.16 5 0.099 0.009801 - 10.101010 102.030405
7 2.31263542 1 1
9

1. Orde 0 3. Orde 2

t vs 1/(t - )
15

10
f(x) = 1.24x + 4.26
1/(t - ) R = 0.96
5

0
0 1 2 3 4 5 6
t (menit)

t vs t -
0.3

0.2f(x) = - 0.03x + 0.23


R = 0.85
t - 0.1

0
0 1 2 3 4 5 6
t (menit)
2. Orde 1 4. Orde 3

t vs 1/(t - )^2
150

100
f(x) = 17.55x + 15.03
1/(t - )^2 R = 0.99 50

0
5
0 10
t (menit)

t vs ln t -
0
0 1 2 3 4 5 6
-0.5

-1
ln t -
-1.5
f(x) = - 0.19x - 1.48
-2 R = 0.92

-2.5
t (menit)
C. T = 50C
= 1.171 ms

t t t - (t - )^2 ln t - 1/t - 1/(t -


(ms) (menit (ms) )^2
)
1.07 0 -0.098 0.009604 - - 104.123282
3 10.20408163
1.07 1 -0.1 0.01 - -10 100
1
1.09 2 -0.081 0.006561 - - 152.415790
0 12.34567901 3
1.08 3 -0.085 0.007225 - - 138.408304
6 11.76470588 5
1.03 4 -0.137 0.018769 - - 53.2793436
4 7.299270073
1.09 5 -0.076 0.005776 - - 173.130193
5 13.15789474 9

1. Orde 0 3. Orde 2

t vs 1/(t - ) t vs t -
0 0
-2 0 1 2 3 4 5 6 0 1 2 3 4 5 6
-4 -0.05
-6
1/(t - ) t -
-8
-10 -0.1
f(x) = - 0x - 0.1
-12 f(x) = - 0.17x - 10.36 R = 0
-14 R = 0.02 -0.15
t (menit) t (menit)
2. Orde 1 4. Orde 3

t vs 1/(t - )^2
200
150
f(x) = 5.45x 100
+ 106.59
1/(t - )^2 R = 0.06
50
0
0246
t (menit)

D. T = 60C
= 0.871 ms

t t t - (t - )^2 ln t - 1/t - 1/(t -


(ms) (menit (ms) )^2
)
0.74 0 -0.125 64 - -8 0.015625
6
0.76 1 -0.109 84.1679993 - - 0.011881
2 3 9.17431192
7
0.76 2 -0.11 82.6446281 - - 0.0121
1 9.09090909
1
0.75 3 -0.118 71.8184429 - - 0.013924
3 8 8.47457627
1
0.75 4 -0.12 69.4444444 - - 0.0144
1 4 8.33333333
3
0.73 5 -0.132 57.3921028 - - 0.017424
9 5 7.57575757
6
1. Orde 0 3. Orde 2

t vs 1/(t - ) t vs t -
0 0
-2 0123456 0 1 2 3 4 5 6
-0.05
-4
1/(t - ) -6
t -
-0.1
-8
f(x) = 0.15x - 8.82 f(x) = - 0x - 0.11
-10 -0.15 R = 0.21
R = 0.21
t (menit) t (menit)

2. Orde 1 4. Orde 3
t vs 1/(t - )^2
0.02
0.02
f(x) = 0x + 0.01
0.01
R = 0.22
1/(t - )^2 0.01
0
5
0 10
t (menit)

You might also like