CE 463/461L
CE-4G
LABORATORY EXERCISE NO. 3
DEFLECTION CONTROL
PROBLEM: A continuous beam as shown which is a part of a roof system supporting elements
likely to be damaged by large is to carry a dead load of 5kN/m on all span and a live load of 5
kN/m on all span BC and DE. Material properties used in the design are
'
f c =30 MPa , fy=414 MPa ,n=8. Reinforcement at critical sections are shown.
REQUIRED:
1. Determine the immediate deflection
iLL due to lie load and total deflection
iTOT = iLL + at the following locations.
a.) Midspan of Beam BC
b.) Free End of Cantilever Beam DE.
2. Are deflection controlled at the above locations? (Note: Use time dependent factor
corresponding to 4 years. Use weighted average for
I eff .)
CHECKED:
GROUP 2 Engr. Edwin L. Dela Vega
FERNANDEZ, Ma. Jan Nickole B. SCORE:
HERNANDEZ, Judy Ann B. `
PACOMA, Ma. Khristina Cassandra
CANLAS, Neil Justine
Use:
As=max bd
1
A s ' = max bd
2
Use:
As=0.667 max bd
A s ' =0.334 max bd
SOLUTION:
iLL
1. Determine the immediate deflection due to lie load and total deflection
iTOT = iLL +
a.) Midspan of Beam BC
a.1) Consider DL
W DL L2 5 ( 5 2 )
Mo= = =15.625 kN .m
8 8
13.94+6.57
Mave= =10.255
2
Mm=MoMave=15.62510.255=5.370 kN . m
Mo
K=1.20.2 ( Mm )=1.20.20 ( 15.625
5.370 )
K=0. 618
Ec=4700 fc '=4700 30
Ec=25742. 960 kN . m
fcr Ig
Mcr=
yt
where:
fcr=0.7 f c ' =0.7 30=3.834 Mpa
400
3
250
b h3
Ig= =
12
400
yt = =200 mm
2
3.834 ( 1333.333 x 106 )
= 200
Mcr=25 .560 kN . m
Compute Ie at Midspan (Iem)
As=0.667 max bd
'
A s =0.334 max bd
max =0.75 b + '
0.75 { [
1 600
m 600+fy
+
bd]}
As '
0.05(3028)
1=0.85 =0 . 836
7
414
m= =16 . 235
0.85(30)
max =0.75 { 0.836
[ 600
16.235 600+ 414
+ ]}
0.334 max ( 250 ) (350)
( 250 ) (350)
max 0.334 max =0.0229
max =0 . 034
As=0 . 667 ( 0 . 034 ) ( 250 ) (350 )=1984 . 325 mm2 A s ' =0 . 334 ( 0 . 034 ) ( 250 )( 350 )=993 . 650 mm2
Summation of areas about N.A
250 x ( x2 )+( 2 n1 ) A s ( x50 )=nAs(350x)
'
125 x2 + [ 2 ( 8 )1 ] ( 1022.875 ) ( x 50 )=8 ( 2042.688 ) (350x)
x=133 . 945 mm
x
d
0
x5
b x3
Icr= + nAs
3
133.945
350
50
133.945
3
250 ( 133.945 )
+ 8(1984.325)
3
6 4
Icr=9 43.705 x 10 m m
Mcr 25.560
= =4.760
Ma 5.370
Ma ]
( Mcr 3
1 Icr } Ig
Mcr 3
Ig+
Ma
I em={
1( 4.70 3 ] 1071.199 x 10 6 m m4 } Ig
4.760 3 (1333.333 x 106 )+
{
29342. 073 x 106 m m4 > Ig(Use Ig=1333 . 333 x 106 mm4 )
Compute Ie at supports (I e B , I e C )
As=max bd
1
A s ' = max bd
2
max =0.75 b + '
0.75 { [
1 600
m 600+fy
+
As '
bd ]}
1=0 . 836
m=16 . 235
1
( 250 ) (350)
max =0.75 {
0.836 600
[
16.235 600+ 414
+
2 max
]}
( 250 ) (350)
1
max max =0.0229 max =0 . 046
2
2
As=0 . 046 ( 250 ) ( 350 )=4025 mm
1
A s ' = ( 0 . 046 )( 250 )( 350 ) =2012. 5 mm2
2
Summation of areas about N.A
250 x ( x2 )+( 2 n1 ) A s ( x50 )=nAs( 350x)
'
4025
2
125 x + [ 2 ( 8 )1 ] ( 2012.500 ) ( x 50 )=8 ( ) (350x )
x=156 . 049 mm
x 156.049
d 350
0 50
x5 156.049
3
b x3 250 ( 156.049 )
Icr= + nAs + 8( 4025)
3 3
6 4
Icr=1867 . 434 x 10 m m
Mcr 25.560
= =1.834
MaB 13.94
] Icr } Ig
Mcr
1 ( MaB 3
Mcr 3
Ig +
MaB
I e B ={
1( 1.834 3 ] (1867.434 x 106 m m4) } Ig
1.834 3 (1333.333 x 106 )+
{
6 4 6 4
I e B =1427 . 308 x 10 m m > Ig(Use I e B=Ig=1333 .333 x 10 mm )
Mcr 25.560
= =3.890
MaB 6.57
1
Mcr
( Mac ]3
Icr } Ig
Mcr 3
Ig+
Mac
I e c ={
1( 3.890 3 ] (1867.434 x 106 mm 4 ) } Ig
3.890 3 (1333.333 x 10 6)+
{
6 4 6 4
I e c =2957 . 817 x 10 mm > Ig (Use I e c =Ig=1333 .333 x 10 mm )
Use weighted average
Ie=0.7 I e M + 0.15 ( I e B + I eC )
0.7 ( 1333.333 x 106 ) + 0.15 ( 1333.333 x 10 6+ 1333.333 x 106 )
Ie=1333 .333 x 10 6 m m4
2
5000
( 5.370 x 106 )
[ ][ ]
2
i DL =K
5 ML
48 EcIe
=0.618
5
48
[ ]
i DL =0 . 252 mm
a.2) Consider DL+LL
(W DL +W ) L2 (5+5) ( 5 2 )
Mo= = =31.250 kN . m
8 8
21.64+6.90
Mave= =14.270 kN . m
2
Mm=MoMave=31.25014.270=16.980 kN . m
Mo
K=1.20.2 ( Mm )=1.20.20 ( 31.250
16.980 )
K=0. 832
Mcr 25.560
= =1 . 505
Ma 16.980
Ma ]
( Mcr 3
1 Icr } Ig
Mcr 3
Ig+
Ma
I e M ={
1( 1.505 3 ] (1071.199 x 106 m m 4)} Ig
1.505 3 (1333.333 x 106 )+
{
6 4 6 4
I e M =1964 . 778 x 10 mm > Ig (Use I e M =Ig=1333. 333 x 10 m m )
I eB , I eC
Compute Ie at supports (
Mcr 25.560
= =1 . 181
M a B 21.640
1 ( MMcra ] Icr } Ig
B
3
Mcr 3
Ig+
M aB
I e B ={
1( 1.181 3 ] (1867.434 x 10 6 m m 4 )} Ig
1.181 3 (1333.333 x 106 )+
{
I e B =987 . 656 x 106 mm4 < Ig
Mcr 25.560
= =3 .704
M aC 6.900
1 ( MMcra ] Icr } Ig
C
3
Mcr 3
Ig+
M aC
I e C ={
1( 3.704 3 ] (1867.434 x 106 m m4) } Ig
3.704 3 (1333.333 x 106 )+
{
I e C =25274 . 221 x 106 mm4 > Ig (Use I e C =Ig=1333 .333 x 106 mm4 )
Use weighted average
Ie=0.7 I e M + 0.15 ( I e B + I eC ) =0.7 ( 1333.333 x 106 ) + 0.15 ( 987.656 x 106 +1333.333 x 106 )
Ie=1281. 481 x 10 6 m m4
5000 2
( 16.980 x 106 )
i DL+ =K [ ][ ]
5 M L2
48 EcIe
=0.832
5
48 [ ]
i DL+ =1 .115 mm
i = i DL+ i DL =1.1150.252
i =0 .863 mm
Compute Long Term Effect
= sus
51 21.4
=
Assume 100% of DL is sustained 41 x1.4
Therefore, x=1.85
sus = i DL =0 . 252 mm
=
( 1+501 )=1.85( 1+50 1( 0.011 ) )
' w h ere ; =1. 85
' As ' 993.650
=1. 194 = = =0.011
bd 250(350)
=1.194 (0.252)
=0 . 301
TOT = + iLL =0.301+0.863
TOT =1 . 164 mm
b.) Free End of Cantilever Beam DE
b.1. Consider the DL
K= ( 125 )
K=2 . 4
Ec=25742. 960 MPa
Mcr=25 .560 kN . m
Icr=1867 . 434 x 106 m m4
Compute Ie at Support D
Mcr 25.560
= =1 . 136
Ma 22.50
1 ( MMcra ] Icr } Ig
B
3
Mcr 3
Ig+
M aB
I e={
1( 1.136 3 ] (1867.434 x 106 mm4 ) } Ig
1.136 3 (1333.333 x 10 6)+
{
I e=1084 . 440 x 106 mm4 < Ig
i DL =K
5
[ ][ ]
48
M L2
EcIe
3000 2
( 22.50 x 106 )
2.4 [ ]
5
48
i DL =1 . 813mm
b.2. Consider DL+LL
K= ( 125 )
K=2 . 4
Mcr 25.560
= 0 .568
Ma 45.0
1 ( MMcra ] Icr } Ig
B
3
Mcr 3
Ig+
M aB
I e={
1( 0.568 3 ] ( 1867.434 x 106 mm 4 ) } Ig
0.568 3(1333.333 x 106)+
{
use Ie=Ig= 6 4
1333 .333 x 10 m m
I e=1769 . 560 x 106 mm 4 > Ig
2
3000
( 45 x 106 )
[ ][ ] [ ]
2
5 ML 5
i DL+ =K =2.4
48 EcIe 48
i DL+ =2 . 959mm
i = i DL+ i DL =2.9501.813
i =1. 137 mm
Compute Long Term Effect
= sus
51 21.4
=
Assume 100% of DL is sustained 41 x1.4
Therefore, x=1.85
sus = i DL =1 . 813mm
1 1
=
( 1+50 )
'
=1.85
(
1+50 ( 0.023 ) ) w h ere ; =1. 85
As ' 2012.5
=0 . 860 ' = = =0.023
bd 250(350)
=0.860 (1.813)
=1 . 559
TOT = + iLL =1.559+1.137
TOT =2 . 696 mm
2. Are the deflections controlled at the above locations?
For Midspan of Beam BC
L
max= ( Table 9.5 b)
480
5000
max= =10 . 417 mm
480
( i =0 .863 mm )< ( max=10 . 417 mm) ; DEFLECTION IS CONTROLLED
( TOT =1.164 mm)<
; DEFLECTION IS CONTROLLED
For Cantilever Beam DE
L
max= ( Table 9.5 b)
480
3000
max= =6 . 250 mm
480
( i =1. 137 mm ) < ( max=6 . 250 mm) ; DEFLECTION IS CONTROLLED
( TOT =2 .696 mm)<
; DEFLECTION IS CONTROLLED