0% found this document useful (0 votes)
82 views9 pages

Dynamics: - Newton-Euler Formulation - Articulated Multi-Body Dynamics - Rigid Body Dynamics

This document discusses rigid body dynamics and formulations for articulated multi-body dynamics. It covers Newton-Euler formulations using recursive algorithms, Lagrange formulations using explicit forms, and formulations in both joint space and task space. Key concepts include: 1) Newton-Euler formulations using recursive algorithms to eliminate internal forces. 2) Lagrange formulations using the kinetic and potential energies of each link to derive equations of motion. 3) Formulations expressed in both joint space using joint coordinates and task space using end effector positions.

Uploaded by

Nicky Dragutescu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
82 views9 pages

Dynamics: - Newton-Euler Formulation - Articulated Multi-Body Dynamics - Rigid Body Dynamics

This document discusses rigid body dynamics and formulations for articulated multi-body dynamics. It covers Newton-Euler formulations using recursive algorithms, Lagrange formulations using explicit forms, and formulations in both joint space and task space. Key concepts include: 1) Newton-Euler formulations using recursive algorithms to eliminate internal forces. 2) Lagrange formulations using the kinetic and potential energies of each link to derive equations of motion. 3) Formulations expressed in both joint space using joint coordinates and task space using end effector positions.

Uploaded by

Nicky Dragutescu
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

Rigid Body Dynamics

Newton-Euler Formulation
Articulated Multi-Body Dynamics
Recursive Algorithm
Dynamics Lagrange Formulation
Explicit Form

MA23

Formulations
Joint Space Dynamics
Newton-Euler Lagrange
Fi -ni+1
A(q )q + b(q, q ) + g ( x) = Ni
I Ci
q: Joint Coordinates -fi+1
-ni mi
Link i Kinetic Energy: Ki
A( q) : Kinetic Energy Matrix -fi Potential Energy i
b(q, q ) : Centrifugal and Coriolis forces Newton: m v C = F Generalized Coordinates
Euler: N i = I C  i + i I C i 1 T
g (q ) : Gravity forces i i
K = q M q
Eliminate Internal Forces 2
: Generalized forces
i =
RS n . Zi
T
i revolute M q + b + g =
Tf .Z
i
T
i prismatic

1
f n f
n -fi+1
-ni+1

-n Link i
-f link 3
n3 Pi+1
3 f3
-f3 -n3 ni fi
n2
2 -f2 link 2
f1 f2
1 -n1 -n2
-f1 n1 link 1

Newton-Euler Algorithm
Newtons Law
F a particle
m
l erat
dI
ions an nertialfo
rce
F = ma
cce s
a
,a
ies
lo cit
Ve inertial
es
forc
Frame

a particle Angular Momentum


Newtons Law F F
m mv = F m
F = ma a take the moment /0 p
0 0
inertial v p m v = p F inertial mv
Frame Frame
N
=0

d
( p mv ) = p mv + v mv = p m v
d dt
( mv ) = F rate of change of the d
dt linear momentum is equal (p m v ) = N
to the applied force dt
Linear Momentum applied moment
angular momentum

2
Rigid Body vi = pi
Rotational Motion

mi = p ( p ) dv
V
pi p ( p ) = p ( p )

Angular Momentum = p i mi v i
i
z
= [ pp
  dv ]
V
Inertia Tensor
= mi p i ( p i )
i = I
mi dv ( : density )
= p ( p ) dv
V

Inertia Tensor
Linear Momentum Angular Momentum
z
  dv
I = pp   ) = ( p T p ) I 3 pp T
( pp
= mv = I
LM OP
x
V
z
I = [( p T p) I3 pp T ]dv
V
Newton Equation Euler Equation
MM PP ;p p = x + y + z
p= y T 2 2 2
F1 0 0 I
NQ (p p) I = ( x + y + z )G 0 JJ
d d
( mv ) = F ( I ) = N GH 0
T 2 2 2
z 1 0
1K
3
dt dt
LM x OP LM x xy xzOP 2 0
pp = y a x y z f = M xy y yz P
 = F  = N
T
MM z PP MN xz yz z PQ
2

NQ 2

I + I = N L y + z xy xz OP
2 2

) = MM xy z + x
MN xz yz x + y PPQ
( pp yz 2 2

2 2

Inertia Tensor
LM I xx I xy I xz OP Parallel Axis theorem
I = M I I yy I yz PP
MN I
xy

I yz I zz Q {A}
p
m

zzz
xz

I xx = ( y 2 + z 2 )dxdydz
pc R| x c U|
S| y V|
Moments of I yy = zzz ( z 2 + x 2 )dxdydz Tz
c

c W
zzz
Inertia
Izz = ( x 2 + y 2 )dxdydz I A = I C + m [(p C T p C ) I 3 p C p C T ]
I xy = zzz xydxdydz
I A zz = I C zz + m ( x C2 + y C2 )
Products of I xz = zzz xzdxdydz
I A xy = I C xy + m x C y C
zzz
Inertia
I yz = yzdxdydz

3
a
Example 2 Newton-Euler Algorithm
I C zz = a ( x + y 2 ) dxdydz
2
{C}

and Inertial
tions
2
f or
I Czz =
1
a5; m = a 3 l era ces
cce
,a
6 ies
cit
a
ma 2 Ve
lo
I Cxx = I Cyy = I Czz =
es
6 forc
a
A
x c = yc = zc =
A A
{A} 2
ma2 2 2
I Axx = I Ayy = I Azz = ICzz + = ma
4 32
ma
I A xy = I A xz = I A yz =
4

Newton-Euler Equations Angular Acceleration


+1
Translational Motion m . v C = F
m {i}
m v C = F IC

i +1 = i + i +1
Rotational Motion
i +1 =  i +1 Z i +1
I C  + I C = N
b g
 i +1 =  i +  i +1 i Z i +1 +  i +1 Z i +1

Linear Acceleration Velocity and Acceleration


Z+1
Z at center of mass
p+1
x+1 +1 vCi+1
a
x vi+1 = vi +i pi+1 +Vi+1 {i+1}
vi+1 Ci+1
p Ci+1
Vi +1 = di +1 Z i +1
Pi +1 = ai x i + d i +1 Z i +1 v Ci +1 = v i +1 + i +1 p Ci +1
v i +1 = v i +  i p i +1 + i p i +1 + Vi +1 v Ci+1 = v i +1 +  i +1 p Ci +1 + i +1 ( i +1 p Ci +1 )
v i +1 = v i +  i p i +1 + i ( i p i +1 )
+ 2 d Z + d Z
i +1 i i +1 i +1 i +1

4
Dynamic forces on Link i fi +1
fi +1 ni +1
ICi i + i ICii ni +1
p i +1
mi vCi fi Fi
ni Link i
Ni
mi v Ci = forces fi pCi
I C i i + i I C i i = moments / ci Fi = fi fi +1
ni
Inertial forces/moments N i = ni ni +1 + ( p Ci ) fi + ( p i +1 p Ci ) ( fi +1 )
Fi = m i v Ci
N i = I C i i + i I C i i

Newton-Euler Algorithm Recursive Equations


fi = Fi + fi +1
and Inertial
ni = N i + ni +1 + p Ci Fi + p i +1 fi +1
tions
,a
cce
l era
f or
ces
i =
RS
ni . Zi revolute

lo cit
ies T
fi . Zi prismatic
Ve Fi = mi v Ci
es with
N i = I C i i + i IC ii
forc
where i +1 = i + i +1 = i +  i +1 Zi +1
 i +1 =  i + i Zi +1 i +1 +  i +1 Zi +1
v i +1 = v i +  i pi +1 + i ( i pi +1 ) + 2di +1 i Zi +1 + di +1 Zi +1
v Ci+1 = v i +1 +  i +1 pCi+1 + i +1 ( i +1 pCi+1 )

Outward iterations: i : 0 5 Lagrange Equations


i +1
i +1 = i +i1Ri i +  i +1 i +1 Zi +1
 i +1 = i +i1Ri  i + i +i1Ri i i +1Zi +1 i +1 +  i +1 i +1 Zi +1 d L L
=
i +1
( )
i +1
v i +1 = i +i1R( i  i i pi +1 + i i ( i i i pi +1 )+ i v i ) dt q q
i +1 Lgrangian Kinetic Energy
v Ci+1 = i +1  i +1 i +1 pCi+1 + i +1 i +1 ( i +1 i +1 i +1 pCi+1 )+ i +1 v i +1
i +1
L = K U
Fi +1 = mi +1 i +1 v Ci+1 Potential Energy
i +1
Ni +1 = Ci+1 Ii +1 i +1 i +1 + i +1 i +1 Ci+1 Ii +1 i +1 i +1 Since U = U (q)
Inward iterations: i : 6 1 d K K U
i
fi = i +1iR i +1fi +1 + iFi ( ) + =
i
ni = iN i + i +1iR i +1ni +1 + i p Ci iFi + i p i +1 i +1iR i +1fi +1
dt q q q
Gravity: set v 0 = 1G
0 Gravity vector
i = i niT i Zi Inertial forces

5
Lagrange Equations Inertial forces
d K K 1
d K K U ( ) = G K = qT M (q) q
( ) = G; G = dt q q 2
dt q q q K 1 T
= [ q M ( q ) q ] = M (q) q
Inertial forces q q 2
d K d
( )= ( M q ) = M q + M q
dt q  dt
M (q)q + V (q, q ) = G(q) T
q
M
q
q1
d K K 1
( ) = 
M q + Mq #  + V ( q , q )
= M q
dt q q 2
M
q T q
qn

K 1 Equations of Motion
= M q K = mx 2 ; ( mx 2 ) = mx
1

q 2 x 2 T M
q q
q1
1 T d K K
K= q M (q)q 1
2 ( ) = 
M q + Mq #  + V ( q , q )
= M q
1 dt q q 2
M
v = M 1/ 2 q K = v T v q T q
2 qn
K K v
= = M 1/ 2 v = Mq
q v q M (q)q + V (q, q ) + G(q) =
1
1 T
( v v) = v M 1/ 2 M (q): K = qT M q M (q) V (q, q)
v 2 2

Equations of Motion Kinetic Energy


i vci
Work done by external forces to
Link i bring the system from rest to its
Pci current state.

Total Kinetic Energy: K v F 1


K = mv 2
2
1
K = K Link i qT M q 1
2 K = T IC
IC 2

6
Equations of Motion Explicit Form Equations of Motion Explicit Form
i vci i vci

Link i Link i

Pci Pci
Generalized Coordinates q
1 Generalized Velocities q
K i = ( mi vCT i vCi + iT I C i i )
2 Kinetic Energy 1
n Quadratic Form of K = qT M q
Total Kinetic Energy K = Ki Generalized Velocities 2
1 T 1 n
q M q ( mi vCTi vCi + iT I C i i )
i=1

2 2 i =1

Equations of Motion Explicit Form Equations of Motion Explicit Form


i vci i vci

Link i Link i

Pci Pci
vCi = J vi q
C = J q
1 n
i i
1 T
1 T 1 n
q M q = q T ( mi J vT J v + J T I C i J ) q
q M q = ( mi vCTi vCi + iT C I i i ) 2 2 i =1 i i i i

2 2 i n=1
1 n
= (mi q T J vTi J vi q + q T JTi I C i Ji q )
2 i =1
M = ( mi J vTi J vi + J Ti I C i J i )
i =1

Equations of Motion Explicit Form


i vci

m11 m12 " m1n Link i

m m22 " m2 n
Pci
vCi = J vi q
M ( q ) = 21 C = J q
( nn )
# # # # i i

pC pC pC
mn1 mn 2 " mnn Jv = [ " 0 0 " 0]
i i i
i
q1 q2 qi
J = [1 z1 2 z2 " i zi 0 0 " 0]
i

7
m11
Vector V ( q, q ) Centrifugal & Coriolis Forces Vector V ( q, q ) M
q2
q1
LMq FG m m121 IJ q OP
LM OP FG
111

IJ MM FH mm KP
T

1 q Mq1 q m 11 m 12
T
1 m221
V = M q = q
Q H K IJ q P
121
T
N
2 q Mq2 q m 12 m 22
MNq GH m
m122
K PQ
2 T 112

122 m222
m 12 = m111 q1 + m112 q 2
m22
m11 m12 q1 v1 g1 1 LM q1
OP L O
 + + =
1 1
( m111 + m111 m111 ) ( m122 + m122 m221 ) q 2
12
m m22 q2 v2 g2 2 MM
V (q, q ) = 2
1
( m211 + m221 m112 )
2
1
1

( m222 + m222 m222 ) q2


2 PP MN PQ
N2
LM
2
m112 + m121 m121 OP Q
+ q q
N
m212 + m221 m122 1 2 Q

mij
Christoffel Symbols qk Potential Energy
1
bijk = ( mijk + mikj m jki )
Ci
Link i mi
2
V=
LMb 111 b122 q OP LM OP LM
2
1
+
2 b112 OP
q q
pCi
hi
g

Nb 211 b222 q QN Q N
2
2 Q
2 b212 1 2
U i = mi g0 hi + U 0
C (q ) B(q )
LM b 1,11 b1,22 " b1,nn q12 OP LM OP U i = mi ( g T p Ci ); U = Ui
C (q )[q ] = M
MM #
b 2 2 ,11 b2,22 " b2,nn q 22
PP MM PP Gravity Vector
U n p C i
# # # #
PQ MN PQ Gj = = ( mi g T ) i

F I
( n n ) ( n 1 )

Nb bn,22 " bn,nn q n2 q j i =1 q j m1g


G J
n,11

LM2b OPLM q q OP
iGG m# gJJ
2 b1,13 " 2 b1,( n 1) n

 ] = M
2b
1,12

2 b2,13 " 2 b2 ,( n 1) n
1 2

PPMM q #q PP G = JvT1 d JvT2 " JvTn


2

GH m gJK
2 ,12 1 3
B(q) [qq
( n
( n1 ) n
MM #
( n 1 ) n
1 )
# # #
PQMNq q PQ
N2 b
) (
2 2

n ,12 2 bn,13 " 2 bn ,( n 1) n ( n 1) n


n

Gravity Vector Gravity Vector

c3
c2
cn
m3g
c1
m2g mng

m1g

G = ( J vT1 ( m1 g ) + J vT2 ( m2 g ) +"+ J vTn ( m n g ))


G = ( J vT1 ( m1 g ) + J vT2 ( m2 g ) +"+ J vTn ( m n g ))

8
Matrix M
M = m1 J vT1 J v1 + JT1 I C1 J1 + m2 J vT2 J v2 + JT2 I C2 J2
g
m2 Jv1 and Jv : direct differentiation of the vectors:
LM OP
LM OP
C 2
I2 l1c1 d 2 c1
l1 0
MM 0 PP
MM 0 PP
p C1 = l1s1 ; and 0 p C2 = d2 s1
y0 m1 N Q
N Q
d2 In frame {0}, these matrices are:
C
I1 Ll c 0 O L d s c O
J = M l c 0 P; and J = M d c s P
1 1 1 2 1 1

x0 MM 0 0PP
0
v1 MM 0 0 PP
1 1
0
v2 2 1 1

This yields
N Q N Q
m ( J J )=M
0 T 0 L m l 0O
P
2
; and m ( J J ) = M
11 Lm d 0 T 0 2
2
2 0 OP
1 v1
N v1
0 0 Q N 0 2 v2 v2
m2 Q

Centrifugal and Coriolis Vector V


The matrices J 1 and J 2 are given by
J 1 = 1 z1 0 = and J 2 = 1 z1 2 z 2 bi , jk =
1
2
c
mijk + mikj m jki h
Joint 1 is revolute and joint 2 is prismatic: m ij
where m ijk = ; withbiii = 0 and biji = 0 for i > j
qk
0 0
For this manipulator, only m11 is configuration dependent
1
J 1 = 1 J 2 = 0 0 - function of d2. This implies that only m112 is non-zero,
m112 = 2 m2 d2 .
And 1 0
I 0 I 0 Matrix B LM OP LM OP
B=
2 b112
=
2 m2 d 2
( 1JT11I C1 1J1 ) = zz1 ; and ( 1JT2 1IC2 1J2 ) = zz 2 N Q N Q 0 0
.

0 0 0 0 Matrix C L
C=M
0 b O L 0 0 OP
Nb 0 PQ = MNm d
122

LMm l OP Q
.
Finally, 0
2
+ I zz1 + m2 d + I zz 2 2
0 211 2 2

M=
N
11

0
2

m2 Q Matrix V L2m d OP  d + LM 0
V=M
2 2 OP LM OP
0  12
N 0 Q N m d 1 2
2 2 0 d 2QN Q
.
2

Vector V
LM2m d OP  d + LM 0 0OP LM OP. 2
Equations of Motion
V=
LMm l OP LM OP
2 2 1

N 0 Q N m d 0Q Nd Q
1 2
2 2
2 2
11 + I zz1 + m2 d22 + I zz 2 0 1

N m Q Nd Q
2

The Gravity Vector G 0 2 2

G = J vT1 m1g + J vT2 m2 g .


+
LM2m d OP  d
2 2 L 0 0OP LM OP
+M
2
1

In frame {0}, g
0
= 0 a g 0 f T
and the gravity vector is
N 0 Q 1 2
N m d 0Q Nd Q
2 2
2
2

LMbm l + m d ggc OP = L O.
LMl s OP LM m0 gOP LMd s 0
OP LM OP
N m gs Q MN PQ
1
l1c1 0 d2 c1 0 + 11 2 2 1

0Q M
MN 0 PPQ N c Q MMN PP
G= m2 g
0 1 1 2 1

N0 0 1
1 s1 0
0 Q
2 1 2

and

0
G=
LMbm l + m d ggc OP
11 2 2 1

N m gs Q 2 1

You might also like