Rudin
Rudin
WALTER RUDIN
                                                                                         R
  2. For i = 1, 2, 3, . . . , let ϕi ∈ C(R1 ) have support in (2−i , 21−i ), such that       ϕi = 1. Put
                                          ∞
                                          X
                             f (x, y) =         [ϕi (x) − ϕi+1 (x)] ϕi (y).
                                          i=1
  3. (a) If F is as in Theorem 10.7, put A = F0 (0), F1 (x) = A−1 F(x). Then F01 (0) = I.
         Show that
                            F1 (x) = Gn◦Gn−1◦. . .◦G1 (x)
           in some neighbourhood of 0, for certain primitive mappings G1 , . . . , Gn . This
           gives another version of Theorem 10.7:
                              F(x) = F0 (0)Gn◦Gn−1◦. . .◦G1 (x).
      (b) Prove that the mapping (x, y) 7→ (y, x) of R2 onto R2 is not the composition of
          any two primitive mappings, in any neighbourhood of the origin. (This shows
          that the flips Bi cannot be omitted from the statement of Theorem 10.7.)
                                                     1
           Principles of Mathematical Analysis — Walter Rudin
 Prove that F = G2◦G1 , where
                        G1 (x, y) = (ex cos y − 1, y)
                        G2 (u, v) = (u, (1 + u) tan v)
  are primitive in some neighbourhood of (0, 0).
 Define
                           H2 (x, y) = (x, ex sin y)
  and find
                            H1 (u, v) = (h(u, v), v)
                                             2
                          Solutions by Erin P. J. Pearse
                                         3
              Principles of Mathematical Analysis — Walter Rudin
6. Strengthen the conclusion of Theorem 10.8 by showing that the functions ψi can be
   made differentiable, even smooth (infinitely differentiable). (Use Exercise 1 of Chap.
   8 in the construction of the auxiliary functions ϕi .)
7. (a) Show that the simplex Qk is the smallest convex subset of Rk that contains the
       points 0 = e0 , e1 , . . . , ek .
       so x ∈ Qk .
       Now if K is a convex set containing
                                        Pkthe points 0, e1 , . . . , ek , convexity implies it
                                                                                     k
       must also contain all points x = i=0 ci ei , i.e., it must contain all of Q .
       which shows that any point between u and v gets mapped to a point between
       S(u) and S(v), i.e., convexity is preserved.
                                                        4
                             Solutions by Erin P. J. Pearse
8. Let H be the parallelogram in R2 whose vertices are (1, 1), (3, 2), (4, 5), (2, 4).
      Find the affine map T which sends (0, 0) to (1, 1), (1, 0) to (3, 2), and (0, 1) to
       (2, 4).
Show that JT = 5.
                                                    5
               Principles of Mathematical Analysis — Walter Rudin
                                              6
                                  Solutions by Erin P. J. Pearse
12. Let I k be the unit cube and Qk be the standard simplex in Rk ; i.e.,
                        I k = {u = (u1 , . . . , uk ) ... 0 ≤ ui ≤ 1, ∀i}, and
                                                                 P
                        Qk = {x = (x1 , . . . , xk ) ... xi ≥ 0, xi ≤ 1.}
   Define x = T (u) by
                                  x1 = u 1
                                  x2 = (1 − u1 )u2
                                    ..
                                     .
                                  xk = (1 − u1 ) . . . (1 − uk−1 )uk .
       Show that
                                     k
                                     X                     k
                                                           Y
                                           xi = 1 −              (1 − ui ).
                                     i=1                   i=1
                                                       7
                Principles of Mathematical Analysis — Walter Rudin
     Show that T maps I k onto Qk , that T is 1-1 in the interior of I k , and that its
      inverse S is defined in the interior of Qk by u1 = x1 and
                                            xi
                               ui =
                                    1 − x1 − · · · − xi−1
      for i = 1, 2, . . . , k.
      Note that T is a continuous map (actually, smooth) because each of its compo-
      nent functions is a polynomial.
      First, we show that T (∂I k ) = ∂Qk , so that the boundary of I k is mapped onto
      the boundary of Qk . Injectivity and surjectivity for the interior will be given by
      the existence of the inverse function.
             where the last step uses the continuity guaranteed by the Inverse Function
             Theorem. Now check that for
                                                                                       
                     x2      x3                      xj+1                      xk
           u = x1 , 1−x  ,
                        1 1−x1 −x2
                                   , . . . , 0, 1−x1 −···−xj−1
                                                               , . . . , 1−x1 −···−xk−1
                                                                                          ,
               we do in fact have T (u) = x:
                                                                                     
             x2                                  x                 xk
     T x1 , 1−x  , x3 , . . . , 0, 1−x1 −···−x
                1 1−x1 −x2
                                          j+1
                                               j−1
                                                   , . . . , 1−x1 −···−x k−1
        
                         x2                      x2
      = x1 , (1 − x1 ) 1−x  1
                              , (1 − x1 )(1 − 1−x     ) x3 ,
                                                    1 1−x1 −x2
                                          x2                    xj−2             xj−1
                . . . , (1 − x1 )(1 −    1−x1
                                              ) . . . (1 − 1−x1 −···−x      )
                                                                        j−3 1−x1 −···−xj−2
                                                                                           ,
                                            x2                     xj−1              xj
                        (1 − x1 )(1     − 1−x  1
                                                 ) . . . (1 − 1−x1 −···−x     )
                                                                          j−2 1−x1 −···−xj−1
                                                                                             ,
                                            x2                      xj            xj+1
                        (1 − x1 )(1     − 1−x1 ) . . . (1 − 1−x1 −···−xj−1 ) 1−x1 −···−xj ,
                                                                                                  
                                           x2                        xk−1            xk
                 . . . , (1 − x1 )(1 −    1−x1
                                               ) . . . (1   −                )
                                                              1−x1 −···−xk−2 1−x1 −···−xk−1
                                                                                  xj+1
        = (x1 , x2 , x3 , . . . xj−1 , 0, (1 − x1 −        x2 − · · · − xj−1 ) 1−x1 −···−x j
                                                                                             , . . . , xk )
        = (x1 , x2 , x3 , . . . xj−1 , 0, xj+1 , . . . , xk )
                                                       8
                                   Solutions by Erin P. J. Pearse
                     P
            case (ii) ki=1 xi = 1.
                                                 Q                         Q
                 Then by the previous part, 1 − ki=1 (1 − ui ) = 1, so ki=1 (1 − ui ) = 0.
                 This can only happen if one of the factors is 0, i.e., if one of the ui is 1.
                 This puts u ∈ ∂I k .
            For the interior, we have an inverse.
 S◦T (u) = S(u1 , (1 − u1 )u2 , . . . , (1 − u1 )(1 − u2 ) . . . uk )
                                                                                                     
                  (1 − u1 )u2                      (1 − u1 )(1 − u2 ) . . . (1 − uk−1 )uk
         = u1 ,                    ,...,
                      1 − u1             1 − u1 − (1 − u1 )u2 − · · · − (1 − u1 )(1 − u2 ) . . . uk−1
         = (u1 , u2 , . . . , uk )
         = u.
            where the third equality follows by successive distributions against the last factor:
     [(1 − u1 )(1 − u2 ) . . . (1 − uk−2 )] (1 − uk−1 )
                  = (1 − u1 )(1 − u2 ) . . . (1 − uk−2 ) − (1 − u1 )(1 − u2 ) . . . (1 − uk−2 )uk−1 .
            Injectivity may also be shown directly as follows: let u and v be distinct points
            of (I k )◦ , with T (u) = x and T (v) = y. We want to show x 6= y. From the
            previous part, we have T −1 (∂Qk ) ⊆ ∂I k , so x, y ∈ (Qk )◦ . Let the j th coordinate
            be the first one in which u differs from v, so that ui = vi for i < j, but uj 6= vj .
            Then
                                 xj = (1 − u1 ) . . . (1 − uj−1 )uj
                                    = (1 − v1 ) . . . (1 − vj−1 )uj
                                    6= (1 − v1 ) . . . (1 − vj−1 )vj = yj .
            So x 6= y.
           Show that
                          JT (u) = (1 − u1 )k−1 (1 − u2 )k−2 . . . (1 − uk−1 ),
            and
                  JS (x) = [(1 − x1 )(1 − x1 − x2 ) . . . (1 − x1 − · · · − xk−1 )]−1 .
                                                                                                            
                  1                   0                    0            ...                0                
                                                                                                            
                 −u2               1 − u1                  0            ...                0                
                                                                                                            
JT (u) =  −(1 − u2 )u3        −(1 − u1 )u3 (1 − u1 )(1 − u2 ) . . .                       0                
                  ..                  ..                   ..                               ..              
                                                                                                             
                   .                   .                    .                                .              
           −(1 − u ) . . . u         ...                  ...           . . . (1 − u1 ) . . . (1 − uk−1 )   
                     2        k
       = 1 · (1 − u1 ) · (1 − u1 )(1 − u2 ) · · · · · (1 − u1 )(1 − u2 ) . . . (1 − uk−1 )
       = (1 − u1 )k−1 (1 − u2 )k−2 . . . (1 − uk−1 ).
                                                     9
                 Principles of Mathematical Analysis — Walter Rudin
                                                                                                           
         
                     1                         0                      0             ...         0          
                                                                                                            
                     x2                         1
                 (1−x1 )−2                  1−x1
                                                                       0             ...         0          
                    x3                        x3                      1
                                                                                                            
         
JS (u) =       (1−x1 −x2 )−2             (1−x1 −x2 )−2             1−x1 −x2
                                                                                     ...         0          
                                                                                                            
                     ..                        ..                      ..                       ..         
         
                      .                         .                       .                        .         
                                                                                                            
                      xk                        xk                     xk                        1
         
              (1−x1 −···−xk−1 )−2      (1−x1 −···−xk−1 )−2     (1−x1 −···−xk−1 )−2
                                                                                     ...   1−x1 −···−xk−1
                                                                                                            
                 1
      =1     · 1−x 1
                     · 1−x11 −x2 ·                 1
                                     · · · · 1−x1 −···−x k−1
                                                      10
                                               Solutions by Erin P. J. Pearse
                                                                       11
                    Principles of Mathematical Analysis — Walter Rudin
   Now making use of xΓ(x) = Γ(x + 1) from Theorem 8.19(a), to simplify the final
   factor, we have
                    Γ(rk +2)       Γ((rk +1)+1)        (rk +1)Γ(rk +1)
                     rk +1
                               =       rk +1
                                                  =         rk +1
                                                                         = Γ(rk + 1) = rk !,
   and
                              X                                                X
                      λ=           bj1 ,...,jk (x) dxj1 ∧ . . . ∧ dxjm =                  aJ dxJ .
                                                                                      J
   Then we have
          X                                                                    X
   ω∧λ=       aI (x) bJ (x) dxI ∧ dxJ                    and      λ∧ω =               aI (x) bJ (x) dxJ ∧ dxI ,
              I,J                                                               I,J
                                                             12
                                   Solutions by Erin P. J. Pearse
      Denote σi = [p0 , . . . , pi−1 , pi+1 , . . . , pk ] and for i < j, let σij be the (k − 2)-simplex
    obtained by deleting pi and pj from σ.
      Now we use Eq. (85) to compute
                                                    k
                                                    X
                                             ∂σ =         (−1)j σj .
                                                    j=0
                                                     13
                    Principles of Mathematical Analysis — Walter Rudin
                                                     j
                                            k-1
                                               ...
                                               2
                                               1                  ...
                                               0
                                                         0 1 2    ... k-1        i
         In order to see how this works with the actual faces, define Fki : Qk−1 7→ Qk for
     i = 0, . . . , k − 1 to be the affine map Fki = (e0 , . . . , êi , . . . ek ), where êi means omit
     ei , i.e.,                                (
                                                ej ,   j<i
                                   Fki (ej ) =
                                                ej+1 , j ≥ i.
     Then define the ith face of σ to be σi = σ◦Fki . Then
                                          e2                                               p2
                        F21                                                                               σ0
                                                                                         σ1
e0               e1                                                          σ
                                F20                                                                            p1
                                          e0                                                        σ2
                                F22                                     e1                p0
Q1 Q2 σ(Q2)
                       ∂ 2 σ = ∂(∂σ) = ∂(σ0 − σ1 + σ2 )
                                          = ∂(σ0 ) − ∂(σ1 ) + ∂(σ2 )
                                          = (p2 − p1 ) − (p2 − p0 ) + (p1 − p0 )
                                          =0
                                                             14
                                           Solutions by Erin P. J. Pearse
e2 p2 = e1 + e2 e2 p1 = e2 p2 = e1 + e2
τ1 −τ2
e0 e1 p0 p1 = e1 e0 e1 p0
e2 p1 = e2 p2 = e1 + e2
τ2 τ1 + τ1
e0 e1 p0
Figure 5. τ2 and τ1 + τ2 .
         So
∂(τ1 + τ2 ) = ∂[0, e1 , e1 + e2 ] − ∂[0, e2 , e2 + e1 ]
              = [e1 , e1 + e2 ] − [0, e1 + e2 ] + [0, e1 ] − [e2 , e2 + e1 ] + [0, e2 + e1 ] − [0, e2 ]
              = [0, e1 ] + [e1 , e1 + e2 ] + [e2 + e1 , e2 ] + [e2 , 0].
         So the image of τ1 + τ2 is the unit square, and it is oriented counterclockwise,
         i.e., positively.
       What is ∂(τ1 − τ2 )?
∂(τ1 − τ2 ) = ∂[0, e1 , e1 + e2 ] + ∂[0, e2 , e2 + e1 ]
              = [e1 , e1 + e2 ] − [0, e1 + e2 ] + [0, e1 ] + [e2 , e2 + e1 ] − [0, e2 + e1 ] + [0, e2 ]
              = [0, e1 ] + [e1 , e1 + e2 ] − [e2 + e1 , e2 ] − [0, e2 ] − 2[0, e2 + e1 ].
                                                              15
               Principles of Mathematical Analysis — Walter Rudin
                                                    16
                                 Solutions by Erin P. J. Pearse
         u
         1
                                                        Φ
                                                                           γ
                                                                   Γ
                                              2π   t
                           
                    x                  x
     =d                         ∧ dy +        ∧ d(dy)
                 x + y2
                  2                      x2
                                       + y2
                                                
                                            y                     y
                                −d       2     2
                                                     ∧ dx − 2             ∧ d(dx)
                                       x +y                    x + y2
        2                                                                 
         (x + y 2 ) · 1 − x(2x)              (x2 + y 2 ) · 0 − x(2y)
     =                               dx +                                dy ∧ dy
                  (x2 + y 2 )2                      (x2 + y 2 )2
                       2                                                            
                        (x + y 2 ) · 0 − y(2x)             (x2 + y 2 ) · 1 − y(2y)
                   −                               dx +                            dy ∧ dx
                               (x2 + y 2 )2                     (x2 + y 2 )2
                   
           1
     = (x2 +y 2 )2   (y 2 − x2 )dx ∧ dy − 2xy dy ∧ dy
                                                                             
                                 + 2xy dx ∧ dx − (x2 − y 2 )dy ∧ dx
                                                                   
           1            2     2                  2      2
     = (x2 +y 2 )2   (y   − x   )dx ∧ dy   +  (x   −  y   )dx ∧  dy
     =       1
         (x2 +y 2 )2
                     (y 2   − x2 + x2 − y 2 )dx ∧ dy
= 0 dx ∧ dy = 0.
(b) With γ as in (a), let Γ be a C 00 curve in R2 \{0}, with Γ(0) = Γ(2π), such
                                                                             R that the
    intervals [γ(t), Γ(t)] do not contain 0 for any t ∈ [0, 2π]. Prove that Γ η = 2π.
∂R = R1 + R2 + R3 + R4 ,
                                                       17
           Principles of Mathematical Analysis — Walter Rudin
(c) Take Γ(t) = (a cos t, b sin t) where a, b > 0 are fixed. Use (b) to show
                      Z 2π
                                      ab
                                                  dt = 2π.
                        0     a cos t + b2 sin2 t
                               2    2
   We have
             x(t) = Γ1 (t) = a cos t and y(t) = Γ2 (t) = b sin t
   and
                  ∂x                                          ∂y
           dx =   ∂t
                     dt   = −a sin t dt and dy =              ∂t
                                                                 dt   = b cos t dt,
   so
          x dy − y dx   ab sin2 t + ab cos2 t         ab
                      =                   2   = 2                  ,
             2
            x +y  2      2    2      2
                        a cos t + b sin t      a cos t + b2 sin2 t
                                                    2
                                            18
                      Solutions by Erin P. J. Pearse
                                        19
           Principles of Mathematical Analysis — Walter Rudin
                      <
   contradicting (b). .
Taking η = dθ,
                        Z               Z            2π
                                η=              dθ = θ    = 2π − 0 = 2π.
                            Γ               Γ                        0
                                Z                                              Z       b
                         1                           1                                     Γ0 (t)
                                      η = Ind(Γ) :=                                               dt.
                        2π          Γ               2πi                            a       Γ(t)
   First, fix |Γ| = c, so Γ is one or more circles around the origin in whatever
   direction, but of constant radius. Then
                Z               Z                   Z       b
                        η=              dθ =     d(θ(Γ(t)))
                    Γ               Γ                   a
                                                 Z b
                                            = −i     d(log Γ(t) − log |Γ(t)|)
                                                  a
                                                 Z b
                                            = −i     d(log Γ(t))
                                                  a
                                                 Z b 0
                                                     Γ (t)
                                            = −i           dt.
                                                  a Γ(t)
                                                                 20
                                Solutions by Erin P. J. Pearse
            P
24. Let ω =    ai (x) dxi be a 1-form of class C 00 in a convex open set E ⊆ Rn . Assume
    dω = 0 and prove that ω is exact in E.
       Fix p ∈ E. Define
                                                  Z
                                       f (x) =                 ω,                x ∈ E.
                                                      [p,x]
        By Stokes’ Thm,
           Z              Z
       0=            dω =            ω                                                        Stokes’ Thm
             [p,x,y]        ∂[p,x,y]
                          Z
                        =                      ω                                              def of ∂
                            [x,y]−[p,y]+[p,x]
                          Z            Z          Z
                        =         ω−           ω+         ω                                   Rem 10.26, p.267
                            [x,y]        [p,y]      [p,x]
                          Z
                        =         ω − f (y) + f (x)                                           def of f
                            [x,y]
                          Z
        f (y) − f (x) =           ω.
                             [x,y]
       Deduce that
                                           n
                                           X                         Z       1
                   f (y) − f (x) =               (yi − xi )                      ai ((1 − t)x + ty) dt
                                           i=1                           0
        Note that γ = [x, y] is the straight-line path from x to y, i.e., γ(t) = (1−t)x+ty.
        Then the right-hand integral from the last line of the previous derivation becomes
                          Z
          f (y) − f (x) =        ω
                                   [x,y]
                               Z           n
                                           X
                           =                     ai (u) dui
                                [x,y] i=1
                               Z 1X  n                                              
                                                                 ∂
                           =                  ai ((1 − t)x + ty) ∂t   (1 − t)xi + tyi dt
                                   0    i=1
                               n
                               X                       Z       1
                           =            (yi − xi )                 ai ((1 − t)x + ty) dt.
                               i=1                         0
        Putting y = x + sei , we plug this into the formula for the ith partial derivative.
        Note that all terms other than j = i are constant with respect to xi , and hence
                                                               21
                Principles of Mathematical Analysis — Walter Rudin
                          = ai (x).
         We can pass the limit through the integral using uniform convergence.
27. Let E be an open 3-cell in R3 , with edges parallel to the coordinate axes. Suppose
    (a, b, c) ∈ E, fi ∈ C 0 (E) for i = 1, 2, 3
                        ω = f1 dy ∧ dz + f2 dz ∧ dx + f3 dx ∧ dy,
    and assume that dω = 0 in E. Define
                                          λ = g1 dx + g2 dy
    where
                                     Z    z                      Z       y
                    g1 (x, y, z) =          f2 (x, y, s) ds −                f3 (x, t, c) dt
                                         c                           b
                                                             Z       z
                                           g2 (x, y, z) = −              f1 (x, y, s) ds,
                                                                 c
    for x, y, z) ∈ E.
        Prove that dλ = ω in E.
                                                  22
                                                   Solutions by Erin P. J. Pearse
               Z       z                                        Z   z              
          ∂                                                  ∂
      =   ∂y
                    f2 (x, y, s) ds dy ∧ dx +                 f2 (x, y, s) ds dz ∧ dx
                                                             ∂z
                    c                                      c
                          Z y                                     Z y                   
                       ∂                                        ∂
                    − ∂y         f3 (x, t, c) dt dy ∧ dx − ∂z              f3 (x, t, c) dt dz ∧ dx
                              b                                        b
                          Z z                                     Z z                     
                        ∂                                         ∂
                    − ∂x         f1 (x, y, s) ds dx ∧ dy − ∂z               f1 (x, y, s) ds dz ∧ dy
                              c                                          c
               Z z                                   Z z                       Z y                  
          ∂                                         ∂
      =   ∂z
                    f1 (x, y, s) ds dy ∧ dz + ∂z              f2 (x, y, s) ds −         f3 (x, t, c) dt dz ∧ dx
                 c                                         c                        b
                      Z y                      Z z                 
                    ∂
                   ∂y
                             f3 (x, t, c) dt −      f2 (x, y, s) ds dx ∧ dy
                          b                      c
                          Z z                   
                        ∂
                    − ∂x         f1 (x, y, s) ds dx ∧ dy
                                      c
Note that the third integral above is constant with respect to z, and hence vanishes.
      = f1 (x, y, z)dy ∧ dz + f2 (x, y, z)dz ∧ dx + f3 (x, y, c)dx ∧ dy
                    Z z                                  
                           ∂                ∂
                  −          f (x, y, s) + ∂x f1 (x, y, s) ds dx ∧ dy
                           ∂y 2
                                c
      = f1 (x, y, z)dy ∧ dz + f2 (x, y, z)dz ∧ dx
                                  Z z                                                         
                                          ∂                                ∂
                  + f3 (x, y, c) −          f (x, y, s) +
                                         ∂y 2
                                                                             f (x, y, s)
                                                                           ∂x 1
                                                                                               ds dx ∧ dy.   (10.1)
                                                     c
                Since ω is closed,
           0 = dω = d(f1 dy ∧ dz) + d(f2 dz ∧ dx) + d(f3 dx ∧ dy)
                            = df1 ∧ dy ∧ dz + f1 ∧ d(dy ∧ dz) + df2 ∧ dz ∧ dx + f2 ∧ d(dz ∧ dx)
                                           + df3 ∧ dx ∧ dy + f3 ∧ d(dx ∧ dy)
                                ∂                           ∂                        ∂
                            =     f dx
                                ∂x 1
                                           ∧ dy ∧ dz +        f dy
                                                            ∂y 2
                                                                       ∧ dz ∧ dx +     f dz
                                                                                     ∂z 3
                                                                                                ∧ dx ∧ dy
                                                           
                                  ∂ ∂          ∂
                            =  + ∂z   f    +     f
                                    f3 dx ∧ dy ∧ dz
                                    ∂x 1       ∂y 2
                                
          ∂          ∂      ∂
       =⇒ ∂z f3 = − ∂x f1 + ∂y f2 ,
                so the last line of the previous derivation, (10.1), becomes
                                         Z z         
                                               ∂
                                                    
                           f3 (x, y, c) +        f ds dx ∧ dy
                                               ∂z 3
                                           c
                             h                                       i
                          = f3 (x, y, c) + f3 (x, y, z) − f3 (x, y, c) dx ∧ dy
                                = f3 (x, y, z) dx ∧ dy
                and we finally obtain
                    dλ = f1 (x, y, z)dy ∧ dz + f2 (x, y, z)dz ∧ dx + f3 (x, y, z)dx ∧ dy
                       = ω.
                                                                  23
                     Principles of Mathematical Analysis — Walter Rudin
             Evaluate these integrals when ω = ζ and thus find the form λ = −(z/r)η, where
                                                                    x dy−y dx
                                                            η=        x2 +y 2
                                                                              .
              Thus λ = g1 dx + g2 dy is
                                                                                                               
                    y     z
             λ = x2 +y2 r −    √
                                    2
                                      c
                                        2   2
                                                 dx − x2 +c2 √ 2 y 2 2 −
                                                         c                                        √    b
                                                                                                   x2 +b2 +c2
                                                                                                                      dx
                                  x +y +c                     x +y +c
                                                        
                               x        z
                          − x2 +y  2    r
                                          − √ 2 c 2 2 dy
                                                 x +y +c
                                             
               = − zr − xy2 +ydx         x dy
                                 2 + x2 +y 2
                                                                                                                      
                                 c             b         √  y                                            √yc
                          + x2 +c2        √
                                             2   2  2 −
                                                   x +b +c
                                                                    −                                                        dx
                                                                          x2 +y 2 +c2       (x2 +y 2 )     x2 +y 2 +c2
                           +                √xc                dy
                               (x2 +y 2 )        x2 +y 2 +c2
                     
               = − zr η,
              due to some magic cancellations at the end.
                                                                    24
                                   Solutions by Erin P. J. Pearse
                                                                    25
              Principles of Mathematical Analysis — Walter Rudin
     First define
                                                                      [
                  En := {f > n1 }                 and          A :=       En = {f 6= 0}.
  We need to show that µA = 0, so suppose not. Then
                                  X
                     µA > 0 =⇒       En > 0
                                             =⇒ µEn > 0 for some n.
  But then we’d have
                  Z                      Z
                                f dµ ≥            f dµ >   1
                                                               · µ(En ) > 0.     <
                                                           n                     .
                            E                En
     R
2. If A f dµ = 0 for every measurable subset A of a measurable set E, then f (x) =ae 0
   on E.
3. If {fn } is a sequence of measurable functions, prove that the set of points x at which
   {fn (x)} converges is measurable.
    Define f (x) = lim fn (x), so f is measurable by (11.17) and |fn (x) − f (x)| is mea-
  surable by (11.16),(11.18). Then we can write the given set as
          {x ... ∀ε > 0, ∃N s.t. n ≥ N =⇒ |fn (x) − f (x)| < ε}
                  = {x ... ∀k ∈ N, ∃N s.t. n ≥ N =⇒ |fn (x) − f (x)| < 1/k}
                    \∞
                  =      {x ... ∃N s.t. n ≥ N =⇒ |fn (x) − f (x)| < 1/k}
                      k=1
                      \∞ [∞
                  =              {x ... |fn (x) − f (x)| < 1/k}
                      k=1 n=1
26