100% found this document useful (1 vote)
385 views3 pages

1-7 Practice - A

a

Uploaded by

Stanley
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
385 views3 pages

1-7 Practice - A

a

Uploaded by

Stanley
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

Name

Date

Lesson
Practice A
1.7 For use with the lesson Complete the Square

Solve the equation by finding square roots.


1. x 2 1 2x 1 1 5 9 2. x 2 1 6x 1 9 5 1 3. x 2 2 4x 1 4 5 16

4. x 2 2 10x 1 25 5 4 5. x 2 2 14x 1 49 5 7 6. x 2 1 20x 1 100 5 12

1
7. x 2 2 x 1 }
45 1 8. 2x 2 1 16x 1 32 5 14 9. 4x 2 1 12x 1 9 5 16

Find the value of c that makes the expression a perfect square trinomial.
Then write the expression as a square of a binomial.
10. x 2 1 4x 1 c 11. x 2 2 2x 1 c

12. x 2 1 18x 1 c 13. x 2 1 24x 1 c

14. x 2 2 14x 1 c 15. x 2 2 5x 1 c

16. x 2 1 x 1 c 17. x 2 1 7x 1 c

Solve the equation by completing the square.


18. x 2 2 2x 2 2 5 0 19. x 2 1 6x 1 3 5 0

20. x 2 1 8x 2 2 5 0 21. x 2 1 2x 1 5 5 0

22. x 2 1 10x 1 11 5 0 23. x 2 2 14x 1 10 5 0

24. x 2 2 x 1 1 5 0 25. x 2 2 x 2 3 5 0

Copyright Houghton Mifin Harcourt Publishing Company. All rights reserved.


Write the quadratic function in vertex form. Then identify the vertex.
26. y 5 x 2 1 8x 1 5 27. y 5 x 2 2 12x 1 1

28. y 5 x 2 1 4x 1 12 29. y 5 x 2 2 10x 1 3

Find the value of x.


30. Area of rectangle 5 40 31. Area of rectangle 5 78


x x

x17
x13
Lesson 1.7

32. Area of triangle 5 16 33. Area of triangle 5 40


x
x
x14

x22

Algebra 2
1-78 Chapter Resource Book
Lesson 1.6 Perform Operations 5. False. If the complex number is real, the
with Complex Numbers, number equals its conjugate. 6. False. Sample
answer: The sum of two imaginary numbers can
continued
be a real number or an imaginary number. For
Practice Level C example, the sum of 4 1 2i and 3 2 2i is 7, which

answers
}
} 14 } is a real number.
1. 6i 3 2. 4 6 } 2 i 3. 26 6 i 10
} }
7. True. (a 1 bi)(a 2 bi) 5 a2 2 abi 1 abi 2 bi 2
} 22 25 5 a2 2 b2(21) 5 a2 1 b2, which is a real
4. 6i 6 5. 4 6 }
2 i 6. 22 6 } 5
i
number. 8. True. The absolute value of a 1 bi is
7. 8 2 4i 8. 1 2 11i 9. 27 2 8i 10. 25 2 10i }
a2 1 b2 and the absolute value of its conjugate
11. 30 12. 24 2 16i 13. 30i 14. 17 2 19i a 2 bi is
}
a2 1 (2b)2 5
}
a2 1 b2.
21 7
15. 221 1 6i 16. 4 1 2i 17. }2 }
10i 9. Sum of complex numbers: a 1 bi 1 c 1 di 5
10
(a 1 c) 1 (b 1 d)i; Complex conjugate of sum:
16 2 11 3 47 21
52 }
18. } 5i 19. }
172 }
17i 20. 2} 50
2 }
50i (a 1 c) 2 (b 1 d)i; Sum of complex conjugates:
a 2 bi 1 c 2 di 5 (a 1 c) 2 (b 1 d)i
1 1 54 80 }
21. }2 }
i 22. 2}1 } i 23. 61 10. Product of complex numbers: (a 1 bi) p
3 3 17 17
}
39 83
}
(c 1 di) 5 ac 1 adi 1 bci 1 bdi 2 5 (ac 2 bd) 1
3
24. } 25. }
3
26. a > 0, b > 0 (ad 1 bc)i; Complex conjugate of product:
27. a < 0, b > 0 28. a < 0, b < 0 (ac 2 bd) 2 (ad 1 bc)i; Product of complex
conjugates: (a 2 bi)(c 2 di) 5 ac 2 adi 2 bci 1
29. a > 0, b < 0 30. a < 0, b 5 0
bdi2 5 (ac 2 bd) 2 (ad 1 bc)i 11. h h0
31. a 5 0, b > 0 32. real 33. pure imaginary
34. real 35. imaginary Lesson 1.7 Complete the
Square
Study Guide
} }
1. 6i 2. 62i 3 3. 63i 2 4. 27 2 3i Teaching Guide
Copyright Houghton Mifin Harcourt Publishing Company. All rights reserved.

5. 6 2 11i 6. 28 2 24i 7. 22 1 26i 8. 85 1. x 2 1 6x 2 35 5 0 2. No; Sample answer:


3 i 1 3i The expression x2 1 6x 2 35 cannot be factored
9. }2 }
2 10. }51 }5 11. 1 1 3i
2 because there are no two integers whose sum is 6
1215. imag. and whose product is 235. No; Sample answer: if
5i
1 1 3i
you write x 2 5 26x 1 35 and take square roots,
you end up with x in the square root expression.
i
3. The expression is equivalent to the expression
2
1 real x 1 6x 2 35. 4. 3.63 ft 5. Sample answer: A
22i 22i
quadratic equation in the form
a1x 1 }
22 1 k 5 0, or a1x 1 }
b 2 b 2
} } 22 5 2k, can be
12. 2 13. 5 14. 10 15. 5
solved using the square root method (provided
Math and History Application 2k 0, otherwise there is no solution.) If you can
1. (3i, 3i 1 7); (3i 1 7, 3i 1 14); write any quadratic equation in this form, you will
(3i 1 14, 3i 1 21) 2. (1 1 i, 2i); (2i, 24); be able to solve all quadratic equations.
(24, 16) 3. (2 2 i, 6 2 4i); (6 2 4i, 23 2 48i);
Practice Level A
(23 2 48i, 21772 2 2208i) 4. (i 1 4, 16i 1 29);
(16i 1 29, 1856i 1 1169) 1. 24, 2 2. 24, 22 3. 22, 6 4. 3, 7
} } 1 3
Challenge Practice 5. 7 6 7 6. 210 6 2 3 7. 2}, }
2 2
1. Sample answer: x 2 1 25 5 0 2. Sample } 7 1
answer: (x 1 3)2 1 8 5 0 3. 1 4. 21 8. 24 6 7 9. 2}2, }2 10. 4; (x 1 2)2

Algebra 2
Chapter Resource Book A11
}
3 7 }
Lesson 1.7 Complete the 11. 22 12. 2}6 }
2
2 i 13. 4 6 7
Square, continued 5 3 7
}
109
14. 26, 1 15. 2 6 i 16. 6
} } } }
11. 1; (x 2 1)2 12. 81; (x 1 9)2 2 2 6 6
} }
13. 144; (x 1 12)2 14. 49; (x 2 7)2 17 1
65
17. 1 6 }
2
i 18. }
26 }
10

5 2 1 2
25
1 2
4; x 2 }
15. }
1
2 16. } 1
4; x 1 } 2
2 19. y 5 (x 1 6)2 2 30; (26, 230)
7 2 20. y 5 (x 2 2)2 1 11; (2, 11)
4; 1x 1 }
49
22
} }
17. } 18. 1 6
3 19. 23 6
6 3 2
}
20. 24 6 3 2 21. 21 6 2i 22. 25 6
14
} 1 2
21. y 5 22 x 2 }
3 3 3
2 1 } 1 2
2; }2, }2
1 2
22. y 5 241x 1 } 4; 12} 42
1 11
42 2 }
1 3
}
1
13
} 11
23. 7 6
}
39 24. }
26 }
2 i 25. }
26 }
2
4, }

26. y 5 (x 1 4)2 2 11; (24, 211) 23. 4 24. 10 25. 11 26. 2160 ft/sec

27. y 5 (x 2 6)2 2 35; (6, 235) Study Guide


28. y 5 (x 1 2) 1 8; (22, 8) 2 1. 36; (x 1 6)2 2. 81; (x 2 9)2
} }
29. y 5 (x 2 5)2 2 22; (5, 222) 30. 5 31. 6 3. 400; (x 2 20)2 4. 5 6
19 5. 24 6 2 3
}
32. 4 33. 10 6. 1 6 i 5 7. y 5 (x 2 6)2 1 2; (6, 2)

Practice Level B 8. y 5 (x 2 7)2 1 1; (7, 1)

1. 27, 21 2. 22, 8 3. 21, 13 4. 21, 7 9. y 5 2(x 1 3)2 2 5; (23, 25) 10. The vertex
is (10, 9000), so the number of units that
5 7 } 2 4 3 }

2 2
6. 2 6
5. 2}, } 3 8. 2}46
7 7. 2}3, } 3 maximizes R is 10.
}
2 5 Problem Solving Workshop:
10. 16; (x 1 4)2
9. 2}6 }
3 3 Using Alternative Methods
11. 121; (x 2 11)2 12. 64; (x 1 8)2 1. 14 ft 2. 0.9 sec 3. 2011 4. 3.7 yd
2 2
9
1 3
4; x 1 }
13. } 2 81
2 14. } 1 9
4; x 2 } 2
2 Challenge Practice

Copyright Houghton Mifin Harcourt Publishing Company. All rights reserved.


} } 1. True. If the solutions of a quadratic equation
15. 4; (3x 2 2)2 16. 22 6
5 17. 5 6 15
} } are rational numbers p and q, then the quadratic
18. 1 6
10 19. 23 6 i 20. 24 6 23 equation can be written as (x 2 p)(x 2 q) 5 0.
} } 5 b 2
21. 26 6
22 22. 12 6 3 7 23. 2}2
}
2. False. The quadratic equation x 2 }
2 5 d 1 2
1 11 has two distinct irrational number solutions when
26 }
24. } 2
i 25. 21, 3
d is positive and not a perfect square. 3. True.
26. y 5 (x 1 7)2 2 38; (27, 238) You can use the completing the square method to
27. y 5 (x 2 4)2 2 6; (4, 26) solve any quadratic equation. However, it is easier
to solve the equation 2x2 2 8 5 0 by finding
28. y 5 2(x 1 1)2 2 7; (21, 27)
square roots.
3
29. y 5 3 x 2 }1 2
45 3 45
2 2 1 }
4; } 1
2, } 2
4 4. x 5 5 6
25 2 c
}
; c > 25
}


30. 7 31. 8 32. 55.4 ft 3 9 9
5. x 5 2}6 c 1 }
64
; c < 2}
8 64
Practice Level C
} 6. distance between Mountain View and Capital
2 3 13 3 11 3 7
1. 2}, 2 2. 2}, }
3. }
5,2} 4. 2}6 }
5 City: about 382.5 mi; distance between Rapid City
3 2 2 15 10
} }
and Capital City: about 221.5 mi
5. 20.7 6
3 6. 23, 8 7. 24 6
17
} }
} 3 37 7 11
8. 8 6 2 11 9. }
26 }
2
10. 2}26 }
2
i

Algebra 2
A12 Chapter Resource Book

You might also like