Fraction Integration
Fraction Integration
Lecture 10
                  Section 8.5 Rational Functions; Partial Fractions
Jiwen He
                                         jiwenhe@math.uh.edu
                                http://math.uh.edu/jiwenhe/Math1432
                                      Z                         Z
                                             A                           Bx + C
                                                   dx,                              dx
                                          (x  )k                  (x 2 + x + )k
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   1 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Rational Function Partial Fraction Decomposition
 Rational Function
                                                                P(x)
               Rational function: R(x) =                        Q(x)   where P(x) and Q(x) are
               polynomials.
                                      2x        3x 4  20x 2 + 17
                       Yes:                  ,
                                  x2  x  2      x 3 + 2x 2  7
                                   1     x2 + 1
                       No:         ,
                                    x     ln x
               If degree(P)  degree(Q), then, by division,
                                        P(x)               r (x)
                                              = p(x) +
                                        Q(x)              Q(x)
                                                  r (x)
               where p(x) is a polynomial and Q(x)      is a proper rational
               function (i.e., degree(r ) < degree(Q)).
                    x2                  2x + 3
                 2
                             =1+ 2
               x  2x  3           x  2x  3
                    x3                      3x  2
                 2
                             =x +2+ 2
               x  2x + 1                 x  2x + 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   2 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Rational Function Partial Fraction Decomposition
 Rational Function
                                                                P(x)
               Rational function: R(x) =                        Q(x)   where P(x) and Q(x) are
               polynomials.
                                      2x        3x 4  20x 2 + 17
                       Yes:                  ,
                                  x2  x  2      x 3 + 2x 2  7
                                   1     x2 + 1
                       No:         ,
                                    x     ln x
               If degree(P)  degree(Q), then, by division,
                                        P(x)               r (x)
                                              = p(x) +
                                        Q(x)              Q(x)
                                                  r (x)
               where p(x) is a polynomial and Q(x)      is a proper rational
               function (i.e., degree(r ) < degree(Q)).
                    x2                  2x + 3
                 2
                             =1+ 2
               x  2x  3           x  2x  3
                    x3                      3x  2
                 2
                             =x +2+ 2
               x  2x + 1                 x  2x + 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   2 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Rational Function Partial Fraction Decomposition
 Rational Function
                                                                P(x)
               Rational function: R(x) =                        Q(x)   where P(x) and Q(x) are
               polynomials.
                                      2x        3x 4  20x 2 + 17
                       Yes:                  ,
                                  x2  x  2      x 3 + 2x 2  7
                                   1     x2 + 1
                       No:         ,
                                    x     ln x
               If degree(P)  degree(Q), then, by division,
                                        P(x)               r (x)
                                              = p(x) +
                                        Q(x)              Q(x)
                                                  r (x)
               where p(x) is a polynomial and Q(x)      is a proper rational
               function (i.e., degree(r ) < degree(Q)).
                    x2                  2x + 3
                 2
                             =1+ 2
               x  2x  3           x  2x  3
                    x3                      3x  2
                 2
                             =x +2+ 2
               x  2x + 1                 x  2x + 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   2 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Rational Function Partial Fraction Decomposition
 Rational Function
                                                                P(x)
               Rational function: R(x) =                        Q(x)   where P(x) and Q(x) are
               polynomials.
                                      2x        3x 4  20x 2 + 17
                       Yes:                  ,
                                  x2  x  2      x 3 + 2x 2  7
                                   1     x2 + 1
                       No:         ,
                                    x     ln x
               If degree(P)  degree(Q), then, by division,
                                        P(x)               r (x)
                                              = p(x) +
                                        Q(x)              Q(x)
                                                  r (x)
               where p(x) is a polynomial and Q(x)      is a proper rational
               function (i.e., degree(r ) < degree(Q)).
                    x2                  2x + 3
                 2
                             =1+ 2
               x  2x  3           x  2x  3
                    x3                      3x  2
                 2
                             =x +2+ 2
               x  2x + 1                 x  2x + 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   2 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Rational Function Partial Fraction Decomposition
 Rational Function
                                                                P(x)
               Rational function: R(x) =                        Q(x)   where P(x) and Q(x) are
               polynomials.
                                      2x        3x 4  20x 2 + 17
                       Yes:                  ,
                                  x2  x  2      x 3 + 2x 2  7
                                   1     x2 + 1
                       No:         ,
                                    x     ln x
               If degree(P)  degree(Q), then, by division,
                                        P(x)               r (x)
                                              = p(x) +
                                        Q(x)              Q(x)
                                                  r (x)
               where p(x) is a polynomial and Q(x)      is a proper rational
               function (i.e., degree(r ) < degree(Q)).
                    x2                  2x + 3
                 2
                             =1+ 2
               x  2x  3           x  2x  3
                    x3                      3x  2
                 2
                             =x +2+ 2
               x  2x + 1                 x  2x + 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   2 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Rational Function Partial Fraction Decomposition
 Rational Function
                                                                P(x)
               Rational function: R(x) =                        Q(x)   where P(x) and Q(x) are
               polynomials.
                                      2x        3x 4  20x 2 + 17
                       Yes:                  ,
                                  x2  x  2      x 3 + 2x 2  7
                                   1     x2 + 1
                       No:         ,
                                    x     ln x
               If degree(P)  degree(Q), then, by division,
                                        P(x)               r (x)
                                              = p(x) +
                                        Q(x)              Q(x)
                                                  r (x)
               where p(x) is a polynomial and Q(x)      is a proper rational
               function (i.e., degree(r ) < degree(Q)).
                    x2                  2x + 3
                 2
                             =1+ 2
               x  2x  3           x  2x  3
                    x3                      3x  2
                 2
                             =x +2+ 2
               x  2x + 1                 x  2x + 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   2 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Rational Function Partial Fraction Decomposition
 Rational Function
                                                                P(x)
               Rational function: R(x) =                        Q(x)   where P(x) and Q(x) are
               polynomials.
                                      2x        3x 4  20x 2 + 17
                       Yes:                  ,
                                  x2  x  2      x 3 + 2x 2  7
                                   1     x2 + 1
                       No:         ,
                                    x     ln x
               If degree(P)  degree(Q), then, by division,
                                        P(x)               r (x)
                                              = p(x) +
                                        Q(x)              Q(x)
                                                  r (x)
               where p(x) is a polynomial and Q(x)      is a proper rational
               function (i.e., degree(r ) < degree(Q)).
                    x2                  2x + 3
                 2
                             =1+ 2
               x  2x  3           x  2x  3
                    x3                      3x  2
                 2
                             =x +2+ 2
               x  2x + 1                 x  2x + 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   2 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
              1 = (C + D)x 4 + (B + E )x 3 + (A + C )x 2 + Bx + A
              A = 1, B = 0, A + C = 0, B + E = 0, C + D = 0
              A = 1, B = 0, C = 1, E = 0, D = 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
              1 = (C + D)x 4 + (B + E )x 3 + (A + C )x 2 + Bx + A
              A = 1, B = 0, A + C = 0, B + E = 0, C + D = 0
              A = 1, B = 0, C = 1, E = 0, D = 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
              1 = (C + D)x 4 + (B + E )x 3 + (A + C )x 2 + Bx + A
              A = 1, B = 0, A + C = 0, B + E = 0, C + D = 0
              A = 1, B = 0, C = 1, E = 0, D = 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
              1 = (C + D)x 4 + (B + E )x 3 + (A + C )x 2 + Bx + A
              A = 1, B = 0, A + C = 0, B + E = 0, C + D = 0
              A = 1, B = 0, C = 1, E = 0, D = 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
              1 = (C + D)x 4 + (B + E )x 3 + (A + C )x 2 + Bx + A
              A = 1, B = 0, A + C = 0, B + E = 0, C + D = 0
              A = 1, B = 0, C = 1, E = 0, D = 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
              1 = (C + D)x 4 + (B + E )x 3 + (A + C )x 2 + Bx + A
              A = 1, B = 0, A + C = 0, B + E = 0, C + D = 0
              A = 1, B = 0, C = 1, E = 0, D = 1
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Rational Function Partial Fraction Decomposition
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10         February 14, 2008   4 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        A
      Partial Fractions:              (x)k
                           Z
                               A
                                   dx = A ln |x  | + C
                             x 
                           Z
                                A               A        1
                                    k
                                      dx =                    +C
                             (x  )          k  1 (x  )k1
Examples
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        A
      Partial Fractions:              (x)k
                           Z
                               A
                                   dx = A ln |x  | + C
                             x 
                           Z
                                A               A        1
                                    k
                                      dx =                    +C
                             (x  )          k  1 (x  )k1
Examples
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        A
      Partial Fractions:              (x)k
                           Z
                               A
                                   dx = A ln |x  | + C
                             x 
                           Z
                                A               A        1
                                    k
                                      dx =                    +C
                             (x  )          k  1 (x  )k1
Examples
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        A
      Partial Fractions:              (x)k
                           Z
                               A
                                   dx = A ln |x  | + C
                             x 
                           Z
                                A               A        1
                                    k
                                      dx =                    +C
                             (x  )          k  1 (x  )k1
Examples
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
              Z                                 Z
                                6                          6
                            3     2
                                         dx =                        dx
                           x  5x + 6x             x(x  2)(x  3)
                                    Z                        
                                        1       3        2
                                =                  +            dx
                                        x    x 2 x 3
                                = ln |x|  3 ln |x  2| + 2 ln |x  3| + C
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
              Z                                 Z
                                6                          6
                            3     2
                                         dx =                        dx
                           x  5x + 6x             x(x  2)(x  3)
                                    Z                        
                                        1       3        2
                                =                  +            dx
                                        x    x 2 x 3
                                = ln |x|  3 ln |x  2| + 2 ln |x  3| + C
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
              Z                                 Z
                                6                          6
                            3     2
                                         dx =                        dx
                           x  5x + 6x             x(x  2)(x  3)
                                    Z                        
                                        1       3        2
                                =                  +            dx
                                        x    x 2 x 3
                                = ln |x|  3 ln |x  2| + 2 ln |x  3| + C
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
              Z                                 Z
                                6                          6
                            3     2
                                         dx =                        dx
                           x  5x + 6x             x(x  2)(x  3)
                                    Z                        
                                        1       3        2
                                =                  +            dx
                                        x    x 2 x 3
                                = ln |x|  3 ln |x  2| + 2 ln |x  3| + C
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
                         Z                     Z
                                    1                  1
                                  3     2
                                          dx =     2
                                                              dx
                                 x  2x           x (x  2)
                                          Z                          
                                              1/2 1/4           1/4
                                      =             +          +        dx
                                               x2        x       x 2
                                                                   
                                          1 2
                                      =         ln |x| + ln |x  2| + C
                                          4 x
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
                         Z                     Z
                                    1                  1
                                  3     2
                                          dx =     2
                                                              dx
                                 x  2x           x (x  2)
                                          Z                          
                                              1/2 1/4           1/4
                                      =             +          +        dx
                                               x2        x       x 2
                                                                   
                                          1 2
                                      =         ln |x| + ln |x  2| + C
                                          4 x
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
                         Z                     Z
                                    1                  1
                                  3     2
                                          dx =     2
                                                              dx
                                 x  2x           x (x  2)
                                          Z                          
                                              1/2 1/4           1/4
                                      =             +          +        dx
                                               x2        x       x 2
                                                                   
                                          1 2
                                      =         ln |x| + ln |x  2| + C
                                          4 x
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
                         Z                     Z
                                    1                  1
                                  3     2
                                          dx =     2
                                                              dx
                                 x  2x           x (x  2)
                                          Z                          
                                              1/2 1/4           1/4
                                      =             +          +        dx
                                               x2        x       x 2
                                                                   
                                          1 2
                                      =         ln |x| + ln |x  2| + C
                                          4 x
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
              x2                     x2
       Z                   Z
                     dx =                       dx
         (x 2  9)2           (x  3)2 (x + 3)2
                                                               
                                                         1/12
                    Z
                            1/4      1/12        1/4
                 =                +         +         +            dx
                         (x  3)2 x  3 (x + 3)2          x +3
                                                                 
                     1        3                    3
                 =               + ln |x  3|        ln |x + 3| + C
                    12      x 3                 x +3
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
              x2                     x2
       Z                   Z
                     dx =                       dx
         (x 2  9)2           (x  3)2 (x + 3)2
                                                               
                                                         1/12
                    Z
                            1/4      1/12        1/4
                 =                +         +         +            dx
                         (x  3)2 x  3 (x + 3)2          x +3
                                                                 
                     1        3                    3
                 =               + ln |x  3|        ln |x + 3| + C
                    12      x 3                 x +3
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
              x2                     x2
       Z                   Z
                     dx =                       dx
         (x 2  9)2           (x  3)2 (x + 3)2
                                                               
                                                         1/12
                    Z
                            1/4      1/12        1/4
                 =                +         +         +            dx
                         (x  3)2 x  3 (x + 3)2          x +3
                                                                 
                     1        3                    3
                 =               + ln |x  3|        ln |x + 3| + C
                    12      x 3                 x +3
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
      Examples
              x2                     x2
       Z                   Z
                     dx =                       dx
         (x 2  9)2           (x  3)2 (x + 3)2
                                                               
                                                         1/12
                    Z
                            1/4      1/12        1/4
                 =                +         +         +            dx
                         (x  3)2 x  3 (x + 3)2          x +3
                                                                 
                     1        3                    3
                 =               + ln |x  3|        ln |x + 3| + C
                    12      x 3                 x +3
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10   February 14, 2008   5 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
      Partial Fractions:              x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
      Z                                      Z
                2x +                             1
                                                    du = ln |u| + C = ln x 2 + x +   + C
                                                                                      
              2
                        dx =
             x + x +                            u
       Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   6 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
      Partial Fractions:              x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
      Z                                      Z
                2x +                             1
                                                    du = ln |u| + C = ln x 2 + x +   + C
                                                                                      
              2
                        dx =
             x + x +                            u
       Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   6 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
      Partial Fractions:              x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
      Z                                      Z
                2x +                             1
                                                    du = ln |u| + C = ln x 2 + x +   + C
                                                                                      
              2
                        dx =
             x + x +                            u
       Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   6 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
      Partial Fractions:              x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
      Z                                      Z
                2x +                             1
                                                    du = ln |u| + C = ln x 2 + x +   + C
                                                                                      
              2
                        dx =
             x + x +                            u
       Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   6 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
      Partial Fractions:              x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
      Z                                      Z
                2x +                             1
                                                    du = ln |u| + C = ln x 2 + x +   + C
                                                                                      
              2
                        dx =
             x + x +                            u
       Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   6 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
      Partial Fractions:              x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
      Z                                      Z
                2x +                             1
                                                    du = ln |u| + C = ln x 2 + x +   + C
                                                                                      
              2
                        dx =
             x + x +                            u
       Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   6 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
      Partial Fractions:              x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
      Z                                      Z
                2x +                             1
                                                    du = ln |u| + C = ln x 2 + x +   + C
                                                                                      
              2
                        dx =
             x + x +                            u
       Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   6 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
      Partial Fractions:              x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
      Z                                      Z
                2x +                             1
                                                    du = ln |u| + C = ln x 2 + x +   + C
                                                                                      
              2
                        dx =
             x + x +                            u
       Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   6 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
       Z                      Z               Z
                  1                 1                1
                         dx =            dt =              a sec2 u du
            x 2 + x +         t 2 + a2         a2 sec2 u
                                                                  x + 2
               Z
            1          1        1         t       1
          =       du = u + C = tan1 = q                 tan1 q
            a          a        a        a             2                 2
                                                  4               4
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
       Z                      Z               Z
                  1                 1                1
                         dx =            dt =              a sec2 u du
            x 2 + x +         t 2 + a2         a2 sec2 u
                                                                  x + 2
               Z
            1          1        1         t       1
          =       du = u + C = tan1 = q                 tan1 q
            a          a        a        a             2                 2
                                                  4               4
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
       Z                      Z               Z
                  1                 1                1
                         dx =            dt =              a sec2 u du
            x 2 + x +         t 2 + a2         a2 sec2 u
                                                                  x + 2
               Z
            1          1        1         t       1
          =       du = u + C = tan1 = q                 tan1 q
            a          a        a        a             2                 2
                                                  4               4
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
       Z                      Z               Z
                  1                 1                1
                         dx =            dt =              a sec2 u du
            x 2 + x +         t 2 + a2         a2 sec2 u
                                                                  x + 2
               Z
            1          1        1         t       1
          =       du = u + C = tan1 = q                 tan1 q
            a          a        a        a             2                 2
                                                  4               4
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
       Z                      Z               Z
                  1                 1                1
                         dx =            dt =              a sec2 u du
            x 2 + x +         t 2 + a2         a2 sec2 u
                                                                  x + 2
               Z
            1          1        1         t       1
          =       du = u + C = tan1 = q                 tan1 q
            a          a        a        a             2                 2
                                                  4               4
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
       Z                      Z               Z
                  1                 1                1
                         dx =            dt =              a sec2 u du
            x 2 + x +         t 2 + a2         a2 sec2 u
                                                                  x + 2
               Z
            1          1        1         t       1
          =       du = u + C = tan1 = q                 tan1 q
            a          a        a        a             2                 2
                                                  4               4
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
       Z                      Z               Z
                  1                 1                1
                         dx =            dt =              a sec2 u du
            x 2 + x +         t 2 + a2         a2 sec2 u
                                                                  x + 2
               Z
            1          1        1         t       1
          =       du = u + C = tan1 = q                 tan1 q
            a          a        a        a             2                 2
                                                  4               4
                                                               
                                           C  B2      1 x + 2
  Z
         Bx + C         B  2          
                   dx =   ln x + x +   +q         tan
      x 2 + x + 
                                                          q
                        2                          2              2
                                               4           4
      Proof.
       Z                      Z               Z
                  1                 1                1
                         dx =            dt =              a sec2 u du
            x 2 + x +         t 2 + a2         a2 sec2 u
                                                                  x + 2
               Z
            1          1        1         t       1
          =       du = u + C = tan1 = q                 tan1 q
            a          a        a        a             2                 2
                                                  4               4
                                         Bx+C             B 2x+                  C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +    x 2 +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                             x2
                                                 Z                  
                                                              4x  4
             Z
                                               1        1
                                        dx =                +          dx
                       (x + 1)(x 2 + 4)        5      x + 1 x2 + 4
                             Z                              
                           1         1         4x         4
                         =                +                   dx
                           5       x + 1 x2 + 4 x2 + 4
                           1                                      x
                               ln |x + 1| + 2 ln x 2 + 4  2 tan1
                                                        
                         =                                             +C
                           5                                       2
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10     February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                         Bx+C             B 2x+                  C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +    x 2 +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                             x2
                                                 Z                  
                                                              4x  4
             Z
                                               1        1
                                        dx =                +          dx
                       (x + 1)(x 2 + 4)        5      x + 1 x2 + 4
                             Z                              
                           1         1         4x         4
                         =                +                   dx
                           5       x + 1 x2 + 4 x2 + 4
                           1                                      x
                               ln |x + 1| + 2 ln x 2 + 4  2 tan1
                                                        
                         =                                             +C
                           5                                       2
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10     February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                         Bx+C             B 2x+                  C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +    x 2 +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                             x2
                                                 Z                  
                                                              4x  4
             Z
                                               1        1
                                        dx =                +          dx
                       (x + 1)(x 2 + 4)        5      x + 1 x2 + 4
                             Z                              
                           1         1         4x         4
                         =                +                   dx
                           5       x + 1 x2 + 4 x2 + 4
                           1                                      x
                               ln |x + 1| + 2 ln x 2 + 4  2 tan1
                                                        
                         =                                             +C
                           5                                       2
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10     February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                         Bx+C             B 2x+                  C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +    x 2 +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                             x2
                                                 Z                  
                                                              4x  4
             Z
                                               1        1
                                        dx =                +          dx
                       (x + 1)(x 2 + 4)        5      x + 1 x2 + 4
                             Z                              
                           1         1         4x         4
                         =                +                   dx
                           5       x + 1 x2 + 4 x2 + 4
                           1                                      x
                               ln |x + 1| + 2 ln x 2 + 4  2 tan1
                                                        
                         =                                             +C
                           5                                       2
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10     February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                         Bx+C             B 2x+                  C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +    x 2 +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                             x2
                                                 Z                  
                                                              4x  4
             Z
                                               1        1
                                        dx =                +          dx
                       (x + 1)(x 2 + 4)        5      x + 1 x2 + 4
                             Z                              
                           1         1         4x         4
                         =                +                   dx
                           5       x + 1 x2 + 4 x2 + 4
                           1                                      x
                               ln |x + 1| + 2 ln x 2 + 4  2 tan1
                                                        
                         =                                             +C
                           5                                       2
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10     February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                            x 2 + 5x + 2
                                                Z                   
                                                       1
               Z
                                                              2x + 3
                                           dx =            +           dx
                          (x + 1)(x 2 + 1)           x + 1 x2 + 1
                                Z                             
                                        1       2x        3
                            =              +         +          dx
                                      x + 1 x2 + 1 x2 + 1
                            =  ln |x + 1| + ln x 2 + 1 + 3 tan1 x + C
                                                       
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                            x 2 + 5x + 2
                                                Z                   
                                                       1
               Z
                                                              2x + 3
                                           dx =            +           dx
                          (x + 1)(x 2 + 1)           x + 1 x2 + 1
                                Z                             
                                        1       2x        3
                            =              +         +          dx
                                      x + 1 x2 + 1 x2 + 1
                            =  ln |x + 1| + ln x 2 + 1 + 3 tan1 x + C
                                                       
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                            x 2 + 5x + 2
                                                Z                   
                                                       1
               Z
                                                              2x + 3
                                           dx =            +           dx
                          (x + 1)(x 2 + 1)           x + 1 x2 + 1
                                Z                             
                                        1       2x        3
                            =              +         +          dx
                                      x + 1 x2 + 1 x2 + 1
                            =  ln |x + 1| + ln x 2 + 1 + 3 tan1 x + C
                                                       
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                            x 2 + 5x + 2
                                                Z                   
                                                       1
               Z
                                                              2x + 3
                                           dx =            +           dx
                          (x + 1)(x 2 + 1)           x + 1 x2 + 1
                                Z                             
                                        1       2x        3
                            =              +         +          dx
                                      x + 1 x2 + 1 x2 + 1
                            =  ln |x + 1| + ln x 2 + 1 + 3 tan1 x + C
                                                       
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                                  Z                 
                                             x  1
        Z
                   1                  1
                           dx =         + 2             dx
            x(x 2 + x + 1)            x    x +x +1
                 Z                                    
                      1 1        2x        1     1
              =                                         dx
                      x    2 x2 + x + 1 2 x2 + x + 1
                                                                  
                         1      2
                                             1     1    2       1
              = ln |x|  ln x + x + 1   tan                 x+      +C
                         2                     3           3      2
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                                  Z                 
                                             x  1
        Z
                   1                  1
                           dx =         + 2             dx
            x(x 2 + x + 1)            x    x +x +1
                 Z                                    
                      1 1        2x        1     1
              =                                         dx
                      x    2 x2 + x + 1 2 x2 + x + 1
                                                                  
                         1      2
                                             1     1    2       1
              = ln |x|  ln x + x + 1   tan                 x+      +C
                         2                     3           3      2
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                                  Z                 
                                             x  1
        Z
                   1                  1
                           dx =         + 2             dx
            x(x 2 + x + 1)            x    x +x +1
                 Z                                    
                      1 1        2x        1     1
              =                                         dx
                      x    2 x2 + x + 1 2 x2 + x + 1
                                                                  
                         1      2
                                             1     1    2       1
              = ln |x|  ln x + x + 1   tan                 x+      +C
                         2                     3           3      2
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
                                        Bx+C              B 2x+                 C  B2 
        Partial Fractions:            x 2 +x+
                                                     =    2 x 2 +x+      +     2
                                                                                x +x+
                                          C  B2              
                                                         1 x + 2
    Z
           Bx + C        B  2
                     dx=   ln x + x +   +q         tan
        x 2 + x + 
                                                           q
                         2                          2              2
                                                4           4
        Example
                                  Z                 
                                             x  1
        Z
                   1                  1
                           dx =         + 2             dx
            x(x 2 + x + 1)            x    x +x +1
                 Z                                    
                      1 1        2x        1     1
              =                                         dx
                      x    2 x2 + x + 1 2 x2 + x + 1
                                                                  
                         1      2
                                             1     1    2       1
              = ln |x|  ln x + x + 1   tan                 x+      +C
                         2                     3           3      2
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10    February 14, 2008   7 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                                           Bx+C                 B      2x+                    C  B2 
      Partial Fractions:              (x 2 +x+)k
                                                         =      2 (x 2 +x+)k         +   (x 2 +x+)k
  Z                                                                                                Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                 cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
                 Z                       Z
                        2x +               1          1     1
                                   dx =       du =              +C
                   (x 2 + x + )k         uk        k  1 u k1
                        1           1
                  =                         +C
                     k  1 (x 2 + x + )k1
                 Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                                           Bx+C                 B      2x+                    C  B2 
      Partial Fractions:              (x 2 +x+)k
                                                         =      2 (x 2 +x+)k         +   (x 2 +x+)k
  Z                                                                                                Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                 cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
                 Z                       Z
                        2x +               1          1     1
                                   dx =       du =              +C
                   (x 2 + x + )k         uk        k  1 u k1
                        1           1
                  =                         +C
                     k  1 (x 2 + x + )k1
                 Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                                           Bx+C                 B      2x+                    C  B2 
      Partial Fractions:              (x 2 +x+)k
                                                         =      2 (x 2 +x+)k         +   (x 2 +x+)k
  Z                                                                                                Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                 cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
                 Z                       Z
                        2x +               1          1     1
                                   dx =       du =              +C
                   (x 2 + x + )k         uk        k  1 u k1
                        1           1
                  =                         +C
                     k  1 (x 2 + x + )k1
                 Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                                           Bx+C                 B      2x+                    C  B2 
      Partial Fractions:              (x 2 +x+)k
                                                         =      2 (x 2 +x+)k         +   (x 2 +x+)k
  Z                                                                                                Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                 cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
                 Z                       Z
                        2x +               1          1     1
                                   dx =       du =              +C
                   (x 2 + x + )k         uk        k  1 u k1
                        1           1
                  =                         +C
                     k  1 (x 2 + x + )k1
                 Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                                           Bx+C                 B      2x+                    C  B2 
      Partial Fractions:              (x 2 +x+)k
                                                         =      2 (x 2 +x+)k         +   (x 2 +x+)k
  Z                                                                                                Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                 cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
                 Z                       Z
                        2x +               1          1     1
                                   dx =       du =              +C
                   (x 2 + x + )k         uk        k  1 u k1
                        1           1
                  =                         +C
                     k  1 (x 2 + x + )k1
                 Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                                           Bx+C                 B      2x+                    C  B2 
      Partial Fractions:              (x 2 +x+)k
                                                         =      2 (x 2 +x+)k         +   (x 2 +x+)k
  Z                                                                                                Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                 cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
                 Z                       Z
                        2x +               1          1     1
                                   dx =       du =              +C
                   (x 2 + x + )k         uk        k  1 u k1
                        1           1
                  =                         +C
                     k  1 (x 2 + x + )k1
                 Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                                           Bx+C                 B      2x+                    C  B2 
      Partial Fractions:              (x 2 +x+)k
                                                         =      2 (x 2 +x+)k         +   (x 2 +x+)k
  Z                                                                                                Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                 cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
                 Z                       Z
                        2x +               1          1     1
                                   dx =       du =              +C
                   (x 2 + x + )k         uk        k  1 u k1
                        1           1
                  =                         +C
                     k  1 (x 2 + x + )k1
                 Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                                           Bx+C                 B      2x+                    C  B2 
      Partial Fractions:              (x 2 +x+)k
                                                         =      2 (x 2 +x+)k         +   (x 2 +x+)k
  Z                                                                                                Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                 cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
                 Z                       Z
                        2x +               1          1     1
                                   dx =       du =              +C
                   (x 2 + x + )k         uk        k  1 u k1
                        1           1
                  =                         +C
                     k  1 (x 2 + x + )k1
                 Set u = x 2 + x + , du = 2x +  dx.
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
  Z                                                                                               Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
      Z                        Z                  Z
                1                     1                  1
           2           k
                         dx =       2   2  k
                                             dt =               a sec2 u du
         (x + x + )             (t + a )          (a sec2 u)k
                                                      2
               Z                          Z
           1           1              1
        = 2k1                du = 2k1 cos2(k1) u du =   
         a        sec2(k1) u       a
      Note x 2 + x +  = (x + /2)2 +    2 /4.
      Set t = x + /2, a2 =    2 /4.
      set a tan u = t, a sec2 u du = dt, t 2 + a2 = a2 sec2 u.
                                                      n1
                  Z                                         Z
                        n         1    n1
      Reduction: cos x dx = cos             x sin x +          cosn2 x dx
                                  n                     n
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
  Z                                                                                               Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
      Z                        Z                  Z
                1                     1                  1
           2           k
                         dx =       2   2  k
                                             dt =               a sec2 u du
         (x + x + )             (t + a )          (a sec2 u)k
                                                      2
               Z                          Z
           1           1              1
        = 2k1                du = 2k1 cos2(k1) u du =   
         a        sec2(k1) u       a
      Note x 2 + x +  = (x + /2)2 +    2 /4.
      Set t = x + /2, a2 =    2 /4.
      set a tan u = t, a sec2 u du = dt, t 2 + a2 = a2 sec2 u.
                                                      n1
                  Z                                         Z
                        n         1    n1
      Reduction: cos x dx = cos             x sin x +          cosn2 x dx
                                  n                     n
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
  Z                                                                                               Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
      Z                        Z                  Z
                1                     1                  1
           2           k
                         dx =       2   2  k
                                             dt =               a sec2 u du
         (x + x + )             (t + a )          (a sec2 u)k
                                                      2
               Z                          Z
           1           1              1
        = 2k1                du = 2k1 cos2(k1) u du =   
         a        sec2(k1) u       a
      Note x 2 + x +  = (x + /2)2 +    2 /4.
      Set t = x + /2, a2 =    2 /4.
      set a tan u = t, a sec2 u du = dt, t 2 + a2 = a2 sec2 u.
                                                      n1
                  Z                                         Z
                        n         1    n1
      Reduction: cos x dx = cos             x sin x +          cosn2 x dx
                                  n                     n
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
  Z                                                                                               Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
      Z                        Z                  Z
                1                     1                  1
           2           k
                         dx =       2   2  k
                                             dt =               a sec2 u du
         (x + x + )             (t + a )          (a sec2 u)k
                                                      2
               Z                          Z
           1           1              1
        = 2k1                du = 2k1 cos2(k1) u du =   
         a        sec2(k1) u       a
      Note x 2 + x +  = (x + /2)2 +    2 /4.
      Set t = x + /2, a2 =    2 /4.
      set a tan u = t, a sec2 u du = dt, t 2 + a2 = a2 sec2 u.
                                                      n1
                  Z                                         Z
                        n         1    n1
      Reduction: cos x dx = cos             x sin x +          cosn2 x dx
                                  n                     n
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
  Z                                                                                               Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
      Z                        Z                  Z
                1                     1                  1
           2           k
                         dx =       2   2  k
                                             dt =               a sec2 u du
         (x + x + )             (t + a )          (a sec2 u)k
                                                      2
               Z                          Z
           1           1              1
        = 2k1                du = 2k1 cos2(k1) u du =   
         a        sec2(k1) u       a
      Note x 2 + x +  = (x + /2)2 +    2 /4.
      Set t = x + /2, a2 =    2 /4.
      set a tan u = t, a sec2 u du = dt, t 2 + a2 = a2 sec2 u.
                                                      n1
                  Z                                         Z
                        n         1    n1
      Reduction: cos x dx = cos             x sin x +          cosn2 x dx
                                  n                     n
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
  Z                                                                                               Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
      Z                        Z                  Z
                1                     1                  1
           2           k
                         dx =       2   2  k
                                             dt =               a sec2 u du
         (x + x + )             (t + a )          (a sec2 u)k
                                                      2
               Z                          Z
           1           1              1
        = 2k1                du = 2k1 cos2(k1) u du =   
         a        sec2(k1) u       a
      Note x 2 + x +  = (x + /2)2 +    2 /4.
      Set t = x + /2, a2 =    2 /4.
      set a tan u = t, a sec2 u du = dt, t 2 + a2 = a2 sec2 u.
                                                      n1
                  Z                                         Z
                        n         1    n1
      Reduction: cos x dx = cos             x sin x +          cosn2 x dx
                                  n                     n
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
  Z                                                                                               Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
      Z                        Z                  Z
                1                     1                  1
           2           k
                         dx =       2   2  k
                                             dt =               a sec2 u du
         (x + x + )             (t + a )          (a sec2 u)k
                                                      2
               Z                          Z
           1           1              1
        = 2k1                du = 2k1 cos2(k1) u du =   
         a        sec2(k1) u       a
      Note x 2 + x +  = (x + /2)2 +    2 /4.
      Set t = x + /2, a2 =    2 /4.
      set a tan u = t, a sec2 u du = dt, t 2 + a2 = a2 sec2 u.
                                                      n1
                  Z                                         Z
                        n         1    n1
      Reduction: cos x dx = cos             x sin x +          cosn2 x dx
                                  n                     n
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
  Z                                                                                               Z
          Bx + C              B            1
        2         k
                    dx =                           +c                                                cos2(k1) u du
      (x + x + )         2(k  1) (x + x + )k1
                                      2
      Proof.
      Z                        Z                  Z
                1                     1                  1
           2           k
                         dx =       2   2  k
                                             dt =               a sec2 u du
         (x + x + )             (t + a )          (a sec2 u)k
                                                      2
               Z                          Z
           1           1              1
        = 2k1                du = 2k1 cos2(k1) u du =   
         a        sec2(k1) u       a
      Note x 2 + x +  = (x + /2)2 +    2 /4.
      Set t = x + /2, a2 =    2 /4.
      set a tan u = t, a sec2 u du = dt, t 2 + a2 = a2 sec2 u.
                                                      n1
                  Z                                         Z
                        n         1    n1
      Reduction: cos x dx = cos             x sin x +          cosn2 x dx
                                  n                     n
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10          February 14, 2008   8 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                          C  B2 
      where c =                    , t = x + /2, a2 =    2 /4, a tan u = t.
                           a2k1
      Example
      Z 4
        3x + x 3 + 20x 2 + 3x + 31
                                        Z                          
                                             2         x       1
                                   dx =           +                  dx
             (x + 1)(x 2 + 4)2             x + 1 x 2 + 4 (x 2 + 4)2
                                           Z
                           1     2
                                       1
          = 2 ln |x + 1| + ln x + 4         cos2 u du
                           2             8
                           1             1
          = 2 ln |x + 1| + ln x 2 + 4  (u + sin u cos u) + C
                                      
                           2             16                 
                           1     2
                                        1       1 x    2x
          = 2 ln |x + 1| + ln x + 4          tan     +        +C
                           2             16         2 x2 + 4
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   9 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                          C  B2 
      where c =                    , t = x + /2, a2 =    2 /4, a tan u = t.
                           a2k1
      Example
      Z 4
        3x + x 3 + 20x 2 + 3x + 31
                                        Z                          
                                             2         x       1
                                   dx =           +                  dx
             (x + 1)(x 2 + 4)2             x + 1 x 2 + 4 (x 2 + 4)2
                                           Z
                           1     2
                                       1
          = 2 ln |x + 1| + ln x + 4         cos2 u du
                           2             8
                           1             1
          = 2 ln |x + 1| + ln x 2 + 4  (u + sin u cos u) + C
                                      
                           2             16                 
                           1     2
                                        1       1 x    2x
          = 2 ln |x + 1| + ln x + 4          tan     +        +C
                           2             16         2 x2 + 4
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   9 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                          C  B2 
      where c =                    , t = x + /2, a2 =    2 /4, a tan u = t.
                           a2k1
      Example
      Z 4
        3x + x 3 + 20x 2 + 3x + 31
                                        Z                          
                                             2         x       1
                                   dx =           +                  dx
             (x + 1)(x 2 + 4)2             x + 1 x 2 + 4 (x 2 + 4)2
                                           Z
                           1     2
                                       1
          = 2 ln |x + 1| + ln x + 4         cos2 u du
                           2             8
                           1             1
          = 2 ln |x + 1| + ln x 2 + 4  (u + sin u cos u) + C
                                      
                           2             16                 
                           1     2
                                        1       1 x    2x
          = 2 ln |x + 1| + ln x + 4          tan     +        +C
                           2             16         2 x2 + 4
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   9 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                          C  B2 
      where c =                    , t = x + /2, a2 =    2 /4, a tan u = t.
                           a2k1
      Example
      Z 4
        3x + x 3 + 20x 2 + 3x + 31
                                        Z                          
                                             2         x       1
                                   dx =           +                  dx
             (x + 1)(x 2 + 4)2             x + 1 x 2 + 4 (x 2 + 4)2
                                           Z
                           1     2
                                       1
          = 2 ln |x + 1| + ln x + 4         cos2 u du
                           2             8
                           1             1
          = 2 ln |x + 1| + ln x 2 + 4  (u + sin u cos u) + C
                                      
                           2             16                 
                           1     2
                                        1       1 x    2x
          = 2 ln |x + 1| + ln x + 4          tan     +        +C
                           2             16         2 x2 + 4
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   9 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                          C  B2 
      where c =                    , t = x + /2, a2 =    2 /4, a tan u = t.
                           a2k1
      Example
      Z 4
        3x + x 3 + 20x 2 + 3x + 31
                                        Z                          
                                             2         x       1
                                   dx =           +                  dx
             (x + 1)(x 2 + 4)2             x + 1 x 2 + 4 (x 2 + 4)2
                                           Z
                           1     2
                                       1
          = 2 ln |x + 1| + ln x + 4         cos2 u du
                           2             8
                           1             1
          = 2 ln |x + 1| + ln x 2 + 4  (u + sin u cos u) + C
                                      
                           2             16                 
                           1     2
                                        1       1 x    2x
          = 2 ln |x + 1| + ln x + 4          tan     +        +C
                           2             16         2 x2 + 4
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   9 / 10
Partial Fraction Decomposition Integrals of Partial Fractions      Partial Fractions
                          C  B2 
      where c =                    , t = x + /2, a2 =    2 /4, a tan u = t.
                           a2k1
      Example
      Z 4
        3x + x 3 + 20x 2 + 3x + 31
                                        Z                          
                                             2         x       1
                                   dx =           +                  dx
             (x + 1)(x 2 + 4)2             x + 1 x 2 + 4 (x 2 + 4)2
                                           Z
                           1     2
                                       1
          = 2 ln |x + 1| + ln x + 4         cos2 u du
                           2             8
                           1             1
          = 2 ln |x + 1| + ln x 2 + 4  (u + sin u cos u) + C
                                      
                           2             16                 
                           1     2
                                        1       1 x    2x
          = 2 ln |x + 1| + ln x + 4          tan     +        +C
                           2             16         2 x2 + 4
    Jiwen He, University of Houston                Math 1432  Section 26626, Lecture 10           February 14, 2008   9 / 10
Partial Fraction Decomposition Integrals of Partial Fractions     Partial Fractions
Outline
Jiwen He, University of Houston Math 1432 Section 26626, Lecture 10 February 14, 2008 10 / 10