0% found this document useful (0 votes)
101 views4 pages

Piv Ann1

The document discusses tangent planes to surfaces. It provides equations to calculate the tangent plane at any point on a surface defined by parameters u and v. It then applies this to a specific surface defined by equations relating x, y, and z to u and v. Several partial derivatives are calculated to determine the direction cosines of the normal to the surface and how they vary with respect to u and v.

Uploaded by

pipul36
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
101 views4 pages

Piv Ann1

The document discusses tangent planes to surfaces. It provides equations to calculate the tangent plane at any point on a surface defined by parameters u and v. It then applies this to a specific surface defined by equations relating x, y, and z to u and v. Several partial derivatives are calculated to determine the direction cosines of the normal to the surface and how they vary with respect to u and v.

Uploaded by

pipul36
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

PIVOTTRANSFORMS

ANNEX1

TANGENTPLANESTOSURFACES

Ifasurfaceisdefinedbytwoparametersu,vi.e.

x=x(u,v)
y=y(u,v)
z=z(u,v)

and(x,y,z)isthetangentpointofaplanewhile(,,)arethecoordinatesofavariablepointinthatplane
thentheplaneisgivenbytheequation

y , z z , x x , y
x y z =0
u , v u , v u ,v

wheree.g.


y y
y , z u v

u , v z z
u v

(c.f.forexamplePartialDifferentiationbyR.P.Gillespie).

If(x,y,z)=(0,0,0)then

y , z z , x x , y
=0
u , v u , v u , v

which givesaplanethroughtheoriginparallel tothetangentplanewiththedeterminants asits plane


coordinates.

Itfollowsthatthedirectioncosinesofthenormaltothesurfaceat(x,y,z)areproportionalto

{ y , z z , x x , y
, ,
u , v u , v u , v }
Weselecttheparametersu,vasfollows

u=theverticalheightofGaboveO(seemaintext)
v=theheighthofthecontourplane.

Thenfrom(13)inthemaintextwehave
kv y 3 mx 3
y u , v =
1m2
x u , v =my u , v
z u , v =v

notingthata+b=e+c=1(c.f.Figure9).

Sinceb=handa=1b,andrecalling(11)and(12),wehave

k1 v
b=
k 1 vk 2 1v
k 2 1v
a=
k 1 vk 2 1v
a [ ex 2u x 1 x 2 ]
x 3=
e [ aeu ]
a [ ey 2 u y 1 y 2 ]
y 3=
e [ aeu ]

Thefollowingpartialderivativesarethenobtained:

y3 a [ ae y1 y 2 ey 2 ]
=
u e aeu 2
x3 a [ ae x 1 x 2 ex 2 ]
=
u e aeu 2
y3 k 2 b2 ue [ ey 2 u y 1 y 2 ]
=
v k 1 ev 2 aeu 2
x3 k 2 b 2 ue [ ex 2u x 1 x 2 ]
=
v k 1 ev 2 aeu 2

Sincez=vwehave
z
=0
u
z
=1
v

Wenowrequire m/uand m/vwhichrequiresustofindasuitableexpressionform. Referringto


Figure9lettheequationofthetangenttothecirclebey=mx+q. Thensinceitcontains(x 3,y3)wehave
y3=mx3+q.

Itintersectsthecirclex2+y22xx12yy1+(x12+y12R2)=0inthepointsgivenby

(mx+q)2+x22xx12y1(mx+q)+(x12+y12R2)=0
whichmayberearrangedasaquadraticequationinx:

x2(m2+1)+2x(mqy1mx1)+(q22y1q+x12+y12R2)=0

Settingthedescriminanttozerotogiveusequalroots(foratangent)wefind

m2(R2x12)+2mx1(y1q)+(R2+2qy1y12q2)=0

Substitutingq=y3mx3andsimplifyinggives

m2[R2(x1x3)2]+2m(x1x3)(y1y3)+R2(y1y3)2=0

which is a quadratic equation inm forthetwotangents tothe circle in Figure9,interms of known


quantities.Notingthatx1andy1areconstantweobtainfromthis

m
=
[
m x 1 x 3
y3
u
y 1 y 3
x3
u ] [
m 2 x 1 x 3
x3
u
R
R
u ]
y 1y 3
y3
u
R
R
u
u [ ]
m R2 x 1 x 3 2 x 1 x 3 y 1 y3

Similarlyweget

m
=
[
m x 1 x 3
y3
v
y 1 y 3
x3
v ] [
m2 x 1 x 3
x3
v ]
y1 y 3
y3
v
v [ ]
m R2 x 1 x 3 2 x 1 x 3 y 1 y3

Allthesubsidiarypartialderivativesaregivenaboveexcept R/u,whichneedstobederivedfroman
expressionforRwhichisindependentofm,anddeterminedbythevortex.

InthemaintextwesawthatRisgivenby

R=W
eu u
u e
soclearly
R
=0
v
anddifferentiatingwrtugives

R W u
=
u u2 e [ eu e ]

Nowwecanfindthepartialderivativesofx,yandzwrtuandv:
=
u u
y kv y3 mx 3
1m 2
=
{
kv y 3
1m2 u
m
x3
u
x 3
m 2m y 3 mx 3 m
u

1m2 u }
y
=
kv y 3
v 1m2 v
m
{
x3
v
x 3
v

1m2 v

1m 2 }
m 2m y 3 mx 3 m k y 3 mx 3

x my y m
= =m y
u u u u
x y m
=m y
v v v

Thisgivesuswhatweneedtocalculate

y , z z , x x ,y
, and
u , v u , v u , v

You might also like