Math 114: Homework 6
1 2 1
2 4 2
1. Determine if the set , , is linearly independent. Justify your answer.
2 5 1
3 1 9
2. Write DEP if the set of vectors is linearly dependent, otherwise, write IND.
4
1 2
1
1 2
(a) 0 , 1 , 3 Ans: (c) 2 , 1 , 2 Ans:
0 0 3 3 1 2
(" # " # " #)
0 1 1 8 1 1
(d) , , Ans:
0 2 1 2 6 1
(b) , ,
0 3 1 Ans:
0 4 1
3 6 1
3. Let v1 = 1 , v2 = 2 , v3 = 2 .
2 4 5
(a) Find b R3 that is not a linear combination of v1 , v2 , v3 .
(b) Express 0 as a nontrivial linear combination of v1 , v2 , v3 .
(" # " # " # " #)
1 0 1 0 0 1 0 1
4. Is B = , , , a basis for M22 ?
0 1 0 1 1 0 1 0
5. Determine if B = {5 3t + 4t2 + 2t3 , 9 + t + 8t2 6t3 , 6 2t + 5t2 , |{z}
t3 } is a basis for P3 [t].
| {z } | {z } | {z }
v1 (t) v2 (t) v3 (t) v4 (t)