Ans 6: For output analysis of the agent based simulation model, following two techniques will be
used.
        Half-Width ( or e value)
        Welch and Autocorrelation
Consider a sample dataset (for example, mean number of people waiting in queue to get a
parking spot for bixi). Let us assume that the information provided in column 3 in the table 1
(replication 1) is our dataset. Let the confidence interval  = 0.05, e= 2, s=5.6687 (based on
replication 1, column 3 in table below), n=20, then from the z-table, we can find z / 2 = z.025 =
1.96
       z / 2 * s 2 1.96 * 5.6687 2
n =[             ] =[            ] = 30.8616  31 observations are required.
            e             2
Assuming it to be a non-terminating system, the warm period can be determined using the Welch
moving average approach. Let us consider the hypothetical data for mean number of people
waiting in queue to get a parking spot for bixi. 5 replications are conducted.
                             Observed mean queue              Welch
                             (replications)                   Moving
              Period(i) Time 1    2     3   4 5 Total Average Average
                                                                5.4
                  1      50  3    5     9   8  2 27     5.4
                                                                 8.8
                  2     100  2 20 11 12 9        54    10.8
                                                                 9.2
                  3     150 15 5 10 17 4         51    10.2
                                                                  -
                  4     200 14 17 19 16 5        71    14.2
                                                                  -
                  5     250 17 2        5   1  2 27     5.4
                                                                9.69
                  6     300  3 18 13 10 9        53    10.6
                                                                9.8
                  7     350 20 16 3 17 10        66    13.2
                                                               10.38
                  8     400  6    1 16 8      6  37     7.4
                                                               10.24
                  9     450 14 6 10 18 3         51    10.2
                                                                  -
                 10     500  2 19 10 1        7  39     7.8
                                                                  -
                 11     550  6 18 2 18 13        57    11.4
                                                                  -
                 12     600  4 20 11 15 14       64    12.8
                                                                  -
                 13     650  6 11 1         4 18 40      8
                                                                                               11
                                                                                            10.75
                      14         700      8       16   14   10   17    65        13
                      15         750     13       1    10   4    17    45         9
                      16         800     12       2    19   8    10    51       10.2
                      17         850     17       7    13   15   10    62       12.4
                      18         900     10       4    20   20   18    72       14.4
                      19         950      4       19   9    19   2     53       10.6
                      20        1000     11       7    19   6    20    63       12.6
m(total number of periods) =20, w(window of moving average) =6,
              y1 5.4
 y1 (6) =       =    = 5 .4
              1   1
              y1 + y 2 + y 3
 y 2 ( 6) =                  = 8 .8
                   3
              y1 + y 2 + y 3 + y 4 + y 5
 y 3 ( 6) =                              = 9 .2
                         5
..
              y1 + y 2 + y 3 + y 4 + y 5 + y 6 + y 7 + y8 + y 9 + y10 + y11
 y 6 ( 6) =                                                                 = 9.69
                                           11
              y1 + y 2 + y 3 + y 4 + y 5 + y 6 + y 7 + y8 + y 9 + y10 + y11 + y12 + y13
 y 7 ( 6) =                                                                             = 9 .8
                                                  13
              y 2 + y 3 + y 4 + y 5 + y 6 + y 7 + y8 + y 9 + y10 + y11 + y12 + y13 + y14
 y 8 ( 6) =                                                                              = 10.384
                                                   13
              y 3 + y 4 + y5 + y 6 + y 7 + y8 + y 9 + y10 + y11 + y12 + y13 + y14 + y15
 y 9 ( 6) =                                                                             = 10.246
                                                  13
..
              y8 + y 9 + y10 + y11 + y12 + y13 + y14 + y15 + y16 + y17 + y18 + y19 + y 20
 y14 (6) =                                                                                = 10.753
                                                  13
It can be seen from above that the moving average value stabilizes after period 8 or 400
observations. This is the warm-period or this is the number of observations that need to be
removed before applying traditional output analysis techniques on this system.
                                                                                                     12