0% found this document useful (0 votes)
29 views4 pages

Output 3

This document summarizes the results of a regression analysis examining factors that influence public perception. The regression model found that education level, occupation, air pollution, information, and environmental impacts all had a significant influence on public perception, with education level, occupation, and information having the strongest effects. The regression analysis explained 100% of the variance in public perception.

Uploaded by

Myrabukitbatas
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views4 pages

Output 3

This document summarizes the results of a regression analysis examining factors that influence public perception. The regression model found that education level, occupation, air pollution, information, and environmental impacts all had a significant influence on public perception, with education level, occupation, and information having the strongest effects. The regression analysis explained 100% of the variance in public perception.

Uploaded by

Myrabukitbatas
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 4

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N


/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Persepsi
/METHOD=ENTER Pendidikan Pekerjaan Polusi Informasi Dampak

/RESIDUALS DURBIN.

Regression

Notes

Output Created 24-Sep-2017 00:48:33

Comments

Input Active Dataset DataSet0

Filter <none>

Weight <none>

Split File <none>

N of Rows in Working Data File 96

Missing Value Handling Definition of Missing User-defined missing values are treated
as missing.

Cases Used Statistics are based on cases with no


missing values for any variable used.

Syntax REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR
SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Persepsi
/METHOD=ENTER Pendidikan
Pekerjaan Polusi Informasi Dampak
/RESIDUALS DURBIN.

Resources Processor Time 00:00:00.171

Elapsed Time 00:00:00.153

Memory Required 2676 bytes

Additional Memory Required


0 bytes
for Residual Plots
[DataSet0]

Descriptive Statistics

Mean Std. Deviation N

Faktor Persepsi Masyarakat 10.00 1.635 96

Tingkat Pendidikan 1.98 .435 96

Pekerjaan 1.17 .556 96

Polusi Udara 2.10 .307 96

Informasi 2.61 .489 96

Dampak Lingkungan 2.14 .344 96

Correlations

Faktor Persepsi Tingkat Dampak


Masyarakat Pendidikan Pekerjaan Polusi Udara Informasi Lingkungan

Pearson Correlation Faktor Persepsi Masyarakat 1.000 .785 .927 .880 .487 .786

Tingkat Pendidikan .785 1.000 .712 .647 .110 .582

Pekerjaan .927 .712 1.000 .884 .239 .762

Polusi Udara .880 .647 .884 1.000 .270 .662

Informasi .487 .110 .239 .270 1.000 .126

Dampak Lingkungan .786 .582 .762 .662 .126 1.000

Sig. (1-tailed) Faktor Persepsi Masyarakat . .000 .000 .000 .000 .000

Tingkat Pendidikan .000 . .000 .000 .142 .000

Pekerjaan .000 .000 . .000 .010 .000

Polusi Udara .000 .000 .000 . .004 .000

Informasi .000 .142 .010 .004 . .111

Dampak Lingkungan .000 .000 .000 .000 .111 .

N Faktor Persepsi Masyarakat 96 96 96 96 96 96

Tingkat Pendidikan 96 96 96 96 96 96

Pekerjaan 96 96 96 96 96 96

Polusi Udara 96 96 96 96 96 96

Informasi 96 96 96 96 96 96

Dampak Lingkungan 96 96 96 96 96 96
Variables Entered/Removedb

Variables
Model Variables Entered Removed Method

1 Dampak
Lingkungan,
Informasi, Tingkat . Enter
Pendidikan, Polusi
Udara, Pekerjaana

a. All requested variables entered.

b. Dependent Variable: Faktor Persepsi Masyarakat

Model Summaryb

Change Statistics
Adjusted R Std. Error of the
Model R R Square Square Estimate R Square Change F Change df1 df2 Sig. F Change Durbin-Watson

1 1.000a 1.000 1.000 .000 1.000 8.106E16 5 90 .000 1.397

a. Predictors: (Constant), Dampak Lingkungan, Informasi, Tingkat Pendidikan, Polusi Udara, Pekerjaan

b. Dependent Variable: Faktor Persepsi Masyarakat

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 254.000 5 50.800 . .000a

Residual .000 90 .000

Total 254.000 95

a. Predictors: (Constant), Dampak Lingkungan, Informasi, Tingkat Pendidikan, Polusi Udara, Pekerjaan

b. Dependent Variable: Faktor Persepsi Masyarakat

Coefficientsa

Standardized
Unstandardized Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) -1.466E-14 .000 .000 1.000

Tingkat Pendidikan 1.000 .000 .266 1.152E8 .000

Pekerjaan 1.000 .000 .340 8.105E7 .000


Polusi Udara 1.000 .000 .188 5.401E7 .000

Informasi 1.000 .000 .299 1.780E8 .000

Dampak Lingkungan 1.000 .000 .210 8.418E7 .000

a. Dependent Variable: Faktor Persepsi Masyarakat

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value 8.00 15.00 10.00 1.635 96

Residual .000 .000 .000 .000 96

Std. Predicted Value -1.223 3.058 .000 1.000 96

Std. Residual .000 .000 .000 .000 96

a. Dependent Variable: Faktor Persepsi Masyarakat

You might also like