13/07/54
CHS316StatisticsforChemicalEngineering,Semester1,AY2011                  CHS316StatisticsforChemicalEngineering,Semester1,AY2011
  Dr.Wanwipa Siriwatwechakul                                                      Dr.Wanwipa Siriwatwechakul
   Example332:CalculationsforWireFlaws1                                      Example332:CalculationsforWireFlaws2
Forthecaseofthethincopperwire,supposethatthe                          Determinetheprobabilityof10flawsin5mmofwire.
  numberofflawsfollowsaPoissondistributionof2.3                           NowletXdenotethenumberofflawsin5mmof
  flawspermm.LetX denotethenumberofflawsin1                            wire.
  mmofwire.Findtheprobabilityofexactly2flawsin1                     Answer: E ( X ) =  = 5 mm  2.3 flaws/mm =11.5 flaws
  mmofwire.
                                                                                                                       11.510
                           e 2.3 2.32                                                      P ( X = 10 ) = e 11.5            = 0.113
Answer:       P ( X = 2) =             = 0.265                                                                          10!
                                2!
                                                                                                                  InExcel
                                                                                                     0.1129 =POISSON(10,11.5,FALSE)
  Sec 23-9 Poisson Distribution                                             76     Sec 23-9 Poisson Distribution                                               77
  CHS316StatisticsforChemicalEngineering,Semester1,AY2011                  CHS316StatisticsforChemicalEngineering,Semester1,AY2011
  Dr.Wanwipa Siriwatwechakul                                                      Dr.Wanwipa Siriwatwechakul
   Example332:CalculationsforWireFlaws3                                                   PoissonMean&Variance
Determinetheprobabilityofatleast1flawin2mmof                         IfXisaPoissonrandomvariablewithparameter,then:
  wire.NowletXdenotethenumberofflawsin2mm
  ofwire.NotethatP(X1)requiresinfiniteterms./                                    =E(X)=           and2=V(X)=                (317)
Answer: E ( X ) =  = 2 mm  2.3 flaws/mm =4.6 flaws
                                                                                 ThemeanandvarianceofthePoissonmodelarethesame.
                                                            4.60
             P ( X  1) = 1  P ( X = 0 ) = 1  e    4.6
                                                                 = 0.9899          Ifthemeanandvarianceofadatasetarenotaboutthe
                                                             0!                    same,thenthePoissonmodelwouldnotbeagood
                                                                                   representation of that set
                                                                                   representationofthatset.
                                   InExcel
                   0.989948 =1POISSON(0,4.6,FALSE)
                                                                                            Thederivationofthemeanandvarianceisshowninthetext.
  Sec 23-9 Poisson Distribution                                             79     Sec 2-                                                                      80
                                                                                                                                                                          1
                                                                                                                                                                                13/07/54
 CHS316StatisticsforChemicalEngineering,Semester1,AY2011             CHS316StatisticsforChemicalEngineering,Semester1,AY2011
 Dr.Wanwipa Siriwatwechakul                                                 Dr.Wanwipa Siriwatwechakul
Exercise1                                                              Exercise2
 Supposethatthenumberofcustomerswho                              Thenumberoftelephonecallsthatarrivesataphoneswitchboard
                                                                           ismodeledasaPoissonrandomvariables.Assumethatonthe
  enterabankinanhourisaPoissonrandom                             average, there are 20 phone calls per hours.
                                                                           average,thereare20phonecallsperhours.
  variableandthatP(X=0) =0.04.Determinethe                       a)   What is the probability that      a) Let X denote the number of calls in one hour. Then, X
                                                                                                               is a Poisson random variable with  = 20.
  meanandvarianceofX                                                     there are exactly 18 calls in 1
                                                                             hour?                                                                    e20 2018
                                                                                                                                        P(X = 18) =             = 0.0844
                                                                                                                                                         18!
            P(X = 0) = exp(-).                                         b) What is the probability that        b)  = 10 for a thirty minute period.
                                                                           there are 3 or fewer calls in                                e10101 e10102 e10103
                                                                                                                   P(X  3) = e 20 +          +       +        = 0.0103
            Therefore,  = ln(0.04) = 3.219.                              30 minutes?                                                     1!      2!      3!
                                                                                                               c) Let Y denote the number of calls in two hours.
                                                                        c)   What is the probability that      Then, Y is a Poisson random variable
                                                                             are exactly 30 calls in 2 hrs?                                e40 4030
                                                                                                                            P(Y = 30) =              = 0.0185
            Consequently, E(X) = V(X) = 3.219.                                                                                                30!
                                                                        d) What is the probability that        d) Let W denote the number of calls in 30 minutes. Then W
                                                                           there are exactly 10 calls in       is a Poisson random variable with = 10.
                                                                           30 minutes?
                                                                                                                                           e101010
                                                                                                                           P(W = 10) =              = 0.1251
                                                                   82                                                                         10!                          84