JAM 2016 Math Stats Exam
JAM 2016 Math Stats Exam
n              x ,, x  : x  , i  1,, n
                   1      n     i
P A Probability of an event A
                                       e   x , x  0,
Exp                    f x |                         ,  0
                                      0,          otherwise
 n2,                                             
               A constant such that P W   n2,   , where W has  n2 distribution
AC Complement of an event A
B  m, n       x 1  x 
                   m 1       n 1
                                     dx, m  0, n  0
               0
f Derivative of function f
MS                                                                                                       2/18
JAM 2016                                                                        MATHEMATICAL STATISTICS - MS
                                                      SECTION  A
                                MULTIPLE CHOICE QUESTIONS (MCQ)
Q. 1  Q.10 carry one mark each.
 Q.1       Let
                                 1 2 0 2
                                  1 2 1 1 
                               P           .
                                  1 2 3 7 
                                            
                                  1 2 2 4 
           Then rank of P equals
           (A)   4
           (B)   3
           (C)   2
           (D)   1
                                             
                                    P
                                               0 
                                                      ,
                                      
           and P 1  P. Then
           (A)    0   and      1
           (B)    0   and      1
           (C)    0   and      2
           (D)    0   and       1
 Q.3       Let m  1. The volume of the solid generated by revolving the region between the y-axis and the
           curve x y  4, 1  y  m, about the y-axis is 15  . The value of m is
 Q.4       Consider the region S enclosed by the surface z  y 2 and the planes z  1, x  0, x  1, y  1
           and y  1. The volume of S is
                 1                         2                (C) 1
                                                                                      4
           (A)                       (B)                                        (D)
                 3                         3                                          3
MS                                                                                                       3/18
JAM 2016                                                                                         MATHEMATICAL STATISTICS - MS
Q.5 Let X be a discrete random variable with the moment generating function
                                             M X t   e
                                                                       , t  .
                                                              0.5 e t 1
Then P X 1 equals
                                            3 1 2                           1 1 2                         e 1 2
           (A) e  1 2                (B)     e                        (C)     e                  (D) e
                                            2                                2
                 1                          1                                2                          3
           (A)                        (B)                              (C)                        (D)
                 3                          2                                3                          4
Q.7 Let X be a continuous random variable with the probability density function
                                                         1
                                         f ( x)                  , x  .
                                                    (2  x 2 )3/2
Then E ( X 2 )
                                                 x  1 ,      0  x 1
                                       f ( x)                            ,   0.
                                                0,              otherwise
                                            1 2
           (A)  22                   (B)     2                       (C) 2  22                 (D) 12
                                            2
 Q.9                                                                                                                    1    n
           Let X 1 , X 2 , be a sequence of i.i.d. N (0,1) random variables.                   Then, as n  ,
                                                                                                                        n
                                                                                                                            X
                                                                                                                            i 1
                                                                                                                                   i
                                                                                                                                    2
           converges in probability to
           (A) 0                      (B) 0.5                          (C) 1                      (D) 2
MS                                                                                                                                 4/18
JAM 2016                                                                                                          MATHEMATICAL STATISTICS - MS
 Q.10      Consider the simple linear regression model with n random observations Yi   0  1 xi   i ,
           i  1, , n,  n  2  .  0 and 1 are unknown parameters, x1 , , xn are observed values of the
           regressor variable and 1 , ,  n are error random variables with E   i   0, i  1, , n, and for
                                                0, if i  j ,
           i, j  1, , n, Cov   i ,  j    2
                                                                                                                                  n
                                                               .                   For real constants a1 , , an , if            a Y           is an
                                                , if i  j
                                                                                                                                        i   i
                                                                                                                                 i 1
                  n                      n                                             n                    n
           (A)   a
                 i 1
                          i    0 and   a x
                                        i 1
                                                i    i   0                     (B)   a
                                                                                      i 1
                                                                                             i    0 and   a x
                                                                                                           i 1
                                                                                                                   i   i   1
                  n                      n                                             n                    n
           (C)    ai  1 and
                 i 1
                                         ai xi  0
                                        i 1
                                                                                (D)    ai  1 and
                                                                                      i 1
                                                                                                           a x
                                                                                                           i 1
                                                                                                                   i   i   1
                                                       1 2  x
                                                        y e , if 0  y  x  ,
                                          f ( x, y )   2
                                                       0,     otherwise.
Then P (Y 1| X 3) equals
                 1                                       1                            1                                    1
           (A)                                 (B)                              (C)                               (D)
                 81                                      27                           9                                    3
Q.12 Let X 1 , X 2 , be a sequence of i.i.d. random variables having the probability density function
                                                              1
                                                                        x 5 1  x  , 0  x  1,
                                                                                    3
                                                             
                                                    f ( x)   B (6, 4)
                                                             0,
                                                                                      otherwise.
                           Xi             1                   n                                    n U n  2 
           Let Yi              and U n                  Y .        If the distribution of                           converges to N  0,1 as
                          1 Xi           n               i 1
                                                                  i
                                                                                                      
           n  , then a possible value of  is
MS                                                                                                                                                 5/18
JAM 2016                                                                                   MATHEMATICAL STATISTICS - MS
Q.13 Let X 1 , , X n be a random sample from a population with the probability density function
                                                         4 e  4  x   , x   ,
                                           f  x |                                  ,   .
                                                         0,                 otherwise
If Tn min X 1 , , X n , then
Q.14 Let X 1 , , X n be i.i.d. random variables with the probability density function
                                                    e x , x  0,
                                           f  x  
                                                    0,     otherwise.
                                                                                 
           If X ( n )  max  X 1 , , X n  , then lim P X ( n )  log e n  2 equals
                                                 n
                                                                           0.5
           (A) 1  e 2                                         (B) e  e
                        2
                 e e                                           (D) e e
                                                                           2
           (C)
 Q.15                                                                                      
           Let X and Y be two independent N  0,1 random variables. Then P 0  X 2  Y 2  4 equals        
           (A) 1  e  2             (B) 1  e  4              (C) 1  e  1               (D)    e 2
                                                   0,       x  0,
                                                  x
                                                   ,        0  x  2,
                                                  8
                                         F  x   2
                                                  x ,       2  x  4,
                                                   16
                                                   1,       x  4.
                                                  
Then E X equals
                 12                        13                         31                           31
           (A)                       (B)                        (C)                         (D)
                 31                        12                         21                           12
MS                                                                                                                  6/18
JAM 2016                                                                                                            MATHEMATICAL STATISTICS - MS
Q.17 Let X 1 , , X n be a random sample from a population with the probability density function
                                                        1 
                                        f  x 
                                                                      
                                                                          , x  ,   0.
                                                                  x
                                                          e
                                                       2
           For a suitable constant K, the critical region of the most powerful test for testing H 0 :   1 against
           H1 :   2 is of the form
                       n                                                                      n
           (A)     
                   i 1
                            Xi  K                                                (B)    
                                                                                         i 1
                                                                                                    Xi  K
                    n                                                                         n
                            1                                                                       1
           (C)    
                  i 1      Xi
                               K                                                 (D)    
                                                                                         i 1       Xi
                                                                                                       K
variable
                                                                 X n  m  X n  m 1
                                     T 
                                                 n                            nm2
                                                 X             X1          X            X2 
                                                                          2                              2
                                                            i                            i
                                                i 1                          i  n 1
           is
           (A) tn  m  2
                       2
           (B)              tn  m1
                   n  m 1
                         2
           (C)               tn  m  4
                       nm4
(D) tn m 4
                  T T  1                                                              T T  1
           (A)                                                                    (B)
                     n2                                                                  n  n  1
                  T T  1                                                              T2
           (C)                                                                    (D)
                  n  n  1                                                             n2
MS                                                                                                                                             7/18
JAM 2016                                                                                                             MATHEMATICAL STATISTICS - MS
 Q.20      Let X be a random variable whose probability mass functions f  x | H 0  (under the null
           hypothesis H 0 ) and f  x | H1  (under the alternative hypothesis H1 ) are given by
                                                X x         0      1                           2                     3
                                              f  x | H0    0.4   0.3                      0.2                       0.1
                                              f  x | H1    0.1   0.2                      0.3                       0.4
                                                                       n         i 1    
                           n                                                                              1 2
                  1                                                     1                 
                       X
                                                                                        n
                                                                                    
                                       2
           (C)                     i                               (D)                  X          2
                 5n    i 1
                                                                                                    i
                                                                        5n         i 1   
 Q.22      An institute purchases laptops from either vendor V1 or vendor V2 with equal probability. The
           lifetimes (in years) of laptops from vendor V1 have a U  0, 4  distribution, and the lifetimes (in
           years) of laptops from vendor V2 have an Exp 1 2  distribution. If a randomly selected laptop in
           the institute has lifetime more than two years, then the probability that it was supplied by vendor V2
           is
                  2                                    1                        1                                              2
           (A)                                  (B)                (C)                                               (D)
                 2e                                  1 e                   1  e 1                                       2  e 1
MS                                                                                                                                               8/18
JAM 2016                                                                                                         MATHEMATICAL STATISTICS - MS
                                                  dy
                                           x4         4 x 3 y  sin x  0; y    1, x  0.
                                                  dx
                         
           Then y          is
                        2
                  10 1   4                                                           12 1   4 
           (A)                                                                (B)
                         4                                                                  4
                  14 1   4                                                           16 1   4 
           (C)                                                                (D)
                         4                                                                   4
                                                      
           (A)   a
                 n 1
                         n       converges but        b
                                                      n 1
                                                               n   does NOT converge
                                                     
           (B)    bn converges but
                 n 1
                                                  a
                                                  n 1
                                                               n   does NOT converge
                                           
           (C) both       an and
                         n 1
                                           b
                                           n 1
                                                  n    converge
                                                          
           (D) NEITHER               an NOR
                                    n 1
                                                           b
                                                          n 1
                                                                   n   converges
 Q.25      Let
                                  x sin 2 1 x  , x  0,                                            x  sin x  sin 1 x  , x  0,
                        f  x                                                   and      g  x  
                                 0,                x  0,                                           0,                        x  0.
           Then
           (A)    f is differentiable at 0 but g is NOT differentiable at 0
           (B)   g is differentiable at 0 but f is NOT differentiable at 0
           (C)   f and g are both differentiable at 0
           (D)   NEITHER f NOR g is differentiable at 0
MS                                                                                                                                        9/18
JAM 2016                                                                                       MATHEMATICAL STATISTICS - MS
                                                                                1
           (A) there does NOT exist any x1   0, 2  such that f   x1  
                                                                                2
           (B) there exist x2   0, 2  and x3   2, 4  such that f   x2   f   x3 
           (C) f   x   0 for all x   0, 4 
           (D) f   x   0 for all x   0, 4 
                                      d2y       dy
                                  4      2
                                            12     9 y  0, y (0)  1, y(0)   4.
                                      dx        dx
Then y 1 equals
                      1 3                                           3 3
           (A)         e     2
                                                           (B)        e        2
                      2                                              2
                      5 3                                            7 3
           (C)         e     2
                                                           (D)         e       2
                      2                                               2
                                                     g  x 
                                                                  x  t  e dt.
                                                                            t
                                                                0
           The area between the curve y  g   x  and the x-axis over the interval  0, 2 is
           (A) e 2  1                                                       
                                                                      (B) 2 e 2  1        
                  
           (C) 4 e 2  1                                             (D)   8e     2
                                                                                         1
MS                                                                                                                     10/18
JAM 2016                                                                        MATHEMATICAL STATISTICS - MS
                                                                                 
 Q.30      Let P be a 3  3 singular matrix such that P v  v for a nonzero vector v and
                                             1  2 5 
                                          P  0    0  .
                                              1   2 5
           Then
           (A) P 3 
                    1
                    5
                      7 P2  2 P 
           (B) P 3   7 P 2  2 P 
                    1
                    4
           (C) P   7 P 2  2 P 
                 3  1
                    3
           (D) P 3   7 P 2  2 P 
                    1
                    2
MS                                                                                                      11/18
JAM 2016                                                                             MATHEMATICAL STATISTICS - MS
                                                          SECTION - B
                                    MULTIPLE SELECT QUESTIONS (MSQ)
Q. 31  Q. 40 carry two marks each.
 Q.31      For two nonzero real numbers a and b, consider the system of linear equations
                                               a b   x  b         2
                                              b a   y   a        2 
                                                                            .
                                                     
                              
           (D) The series    
                             n 1
                                    an converges
                                                                           1 
                                             f  x  x  e1    x3
                                                                     1       .
                                                                           x3 
MS                                                                                                           12/18
JAM 2016                                                                                     MATHEMATICAL STATISTICS - MS
           (A) f  x  is continuous at x  2
           (B) g  x  is continuous at x  2
           (C) f  x   g  x  is continuous at x  2
           (D) f  x  g  x  is continuous at x  2
(A) P F | E P F
                        
           (B) P E | F C  P  E 
           (C)   PF | E   PF 
                          C
           (A) H 0 : 2  1 against H1 : 2  2
           (B) H 0 : 2  1 against H1 : 2  4
           (C) H 0 : 2  2 against H1 : 2  1
           (D) H 0 : 2  1 against H1 : 2  0.5
MS                                                                                                                          13/18
JAM 2016                                                                                         MATHEMATICAL STATISTICS - MS
                          n
                 1
           (D)
                 2n
                         X
                         i 1
                                 i
                                  2
                                      is the uniformly minimum variance unbiased estimator for  2
Q.39 Let X 1 , , X n be a random sample from a population with the probability density function
                                                         e  x , x  0,
                                           f  x |                        ,   0.
                                                        0,         otherwise
                                                                                        
                2                2 n,  2 
                                      2                                           2 n,  
                                                                                     2
           (A)                                                     (B)  0,              
                  2 n ,1   2
                                ,
                      n               n
                                                                                   n
                                                                                           
                2  Xi 2  Xi                                           2 Xi 
                i 1                i 1                                        i 1    
                                                                             n              n
                                                                                                      
                2                2 n,  2 
                                     2                                    2        X i   2     Xi 
           (C)  n                                                  (D)  2                          
                  2 n ,1   2                                                i 1           i 1
                               , n                                                       , 2
                                                                         2 n ,  2  2 n ,1   2 
                 Xi                   Xi                                                         
                i 1              i 1                                                             
                                                      0,           x  2,
                                                      
                                                      1      7
                                            F  x     x 2   , 2  x  3,
                                                      10     3
                                                      1,          x  3.
MS                                                                                                                       14/18
JAM 2016                                                                                               MATHEMATICAL STATISTICS - MS
                                                            SECTION  C
                                         NUMERICAL ANSWER TYPE (NAT)
Q. 41  Q. 50 carry one mark each.
 Q.41                                                                                                           1 6
           Let X 1 , , X 10 be a random sample from a N  3,12  population. Suppose Y1                          X i and
                                                                                                                6 i 1
                                     Y1  Y2 
                                                  2
                  1 10
           Y2       X i . If
                  4 i7                  
                                                      has a 12 distribution, then the value of  is _______________
Q.42 Let X be a continuous random variable with the probability density function
                                                        2 x
                                                         , 0  x  3,
                                               f  x   9
                                                        0, otherwise.
                                                              
           Then the upper bound of P X  2  1 using Chebyshevs inequality is ________________
Q.43 Let X and Y be continuous random variables with the joint probability density function
                                                               x  y
                                                          e          ,    x, y  0,
                                             f  x, y   
                                                          0,           otherwise.
Then P X Y _____________________
Q.44 Let X and Y be continuous random variables with the joint probability density function
                                                             1   x2  y 2  2
                                             f  x, y        e                ,    x, y    2 .
                                                            2
Then P X 0, Y 0 _________________________
 Q.45                            
                                 1
           Let Y be a Bin  72,     random variable. Using normal approximation to binomial distribution,
                                 
                                 3
           an approximate value of P  22  Y  28  is ________________________
MS                                                                                                                             15/18
JAM 2016                                                                                      MATHEMATICAL STATISTICS - MS
T x, y , z 2 x y z , x z , 3 x 2 y z .
 Q.48                                                     1 
           The value of lim n  e  n cos  4 n   sin          is _________________________
                        n 
                                                          4 n 
 Q.50      Consider a differentiable function f on        0,1 with the derivative      f   x   2 2 x . The arc
           length of the curve y  f  x  , 0  x  1, is ________________________
m 1 1
                                      e
                                               y3
                                                    dy dx dz  e  1,
                                     1 0   x
then m ______________________
 Q.52      Let
                              1  3 3 
                         P  0  5 6  .
                              0  3 4 
           The product of the eigen values of P 1 is ________________________
MS                                                                                                                     16/18
JAM 2016                                                                                   MATHEMATICAL STATISTICS - MS
1 2 x2 2 2
                                               x            y        dy dx    r 3 dr d
                                                           2        2
0 x m 0
is ________________________
 Q.54                                    1
           Let a1  1 and an  2          for n  2. Then
                                         n
                                                      
                                                            1    1 
                                                         2  2 
                                                    n 1  an  a n 1 
           converges to ______________________
 Q.55      Let X 1 , X 2 , be a sequence of i.i.d. random variables with the probability density
           function
                                                   4 x 2 e  2 x , x  0,
                                          f  x  
                                                   0,              otherwise
                            n
                                                          3n                
           and let S n    X .
                           i 1
                                  i   Then lim P  S n 
                                           n
                                                           2
                                                                        3 n  is _____________________
                                                                             
Q.56 Let X and Y be continuous random variables with the joint probability density function
                                                       c x2
                                                            , 0  x  1, y  1,
                                         f  x, y    y 3                      ,
                                                      0,
                                                              otherwise
 Q.57       Two points are chosen at random on a line segment of length 9 cm. The probability that the
           distance between these two points is less than 3 cm is ______________________
MS                                                                                                                 17/18
JAM 2016                                                                            MATHEMATICAL STATISTICS - MS
Q.58 Let X be a continuous random variable with the probability density function
                                                  x 1
                                                       , 1  x  1,
                                        f  x   2
                                                  0,    otherwise.
                   1        1
           Then P     X 2    ________________________
                   4        2
 Q.59                                                                        1
           If X is a U  0,1 random variable, then P  min  X , 1  X        _________________
                                                                             4
 Q.60      In a colony all families have at least one child. The probability that a randomly chosen family from
           this colony has exactly k children is  0.5  ; k  1, 2, . A child is either a male or a female with
                                                      k
           equal probability. The probability that such a family consists of at least one male child and at least
           one female child is _________
MS 18/18