0% found this document useful (0 votes)
33 views5 pages

State-Space Method: EE 515 - Feedback Control Systems (Lab)

The document provides the steps to obtain the transfer function of two systems using state-space methods. For the first system, it derives the state-space representation and computes the inverse and determinant of the state matrix. For the second system, it similarly derives the state-space representation and computes the inverse of the state matrix to obtain the transfer function.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
33 views5 pages

State-Space Method: EE 515 - Feedback Control Systems (Lab)

The document provides the steps to obtain the transfer function of two systems using state-space methods. For the first system, it derives the state-space representation and computes the inverse and determinant of the state matrix. For the second system, it similarly derives the state-space representation and computes the inverse of the state matrix to obtain the transfer function.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

EE 515 FEEDBACK CONTROL SYSTEMS (LAB)

ACTIVITY 5: State-Space Method

Name: _Arie Emmanuel Liston Date: September 27, 2017

Problem:

Obtain the analogous electric circuit of the following systems and


determine the transfer function and block diagram of the systems
shown using state-space method.

3 ()
a)
()

()
b) ()
Computation:

a.

Left loop

(4 2 + 2 + 6)1 () (2)2 () = 0

Middle loop

(1 )() + (4 2 + 4 + 6)2 () (6)3 () = ()

Right loop

(6)2 () + (4 2 + 2 + 6)3 () = 0

State Variables
1
1 = 1 ; 2 2 = 2 ; 3 3 = 3

1 2
1 = 1 ; 2 = 2

Left loop

1 + 1 + 21 = 0

Middle loop

() + 21 + 2 +22 + 2 = 0

Right loop

2 + 3 + 23 = 0

Outer loop

() + 1 + 1 + 2 + 22 + 3 + 23 = 0

Node left and middle loop

1 = 1 + 2

Node middle and right loop

2 = 2 + 3

1 + 2 2 0 1 0 1 0
2 2 0 0 1 2 1
3 = 0 0 +2 0 1 3 + 0 ()
1 0 1 0 1/2 1 0
[ 0]
[ 2 ] [ 0 1/3 1 0 ] [ ]
2

1
2
= [0 0 1 0 0] 3
1
[2 ]
+ 2 2 0 1 0
2 0 0 1
( ) = 0 0 +2 0 1
0 1 0 1/2
[ 0 1/3 1 0 ]

+

[
] +


[ ]
[ ]
( ) =
+

+




[

]

MATLAB Script:

syms s

A = [s+2 -2 0 1 0;-2 s 0 0 1;0 0 s+2 0 1;0 1 0 s 1/2;0 1/3


1 0 s];
inv0 = inv(A);

disp(inv0);

[ (- 3*s^4 - 6*s^3 + 4*s^2 + 2*s)/(- 3*s^5 - 12*s^4 +


4*s^3 + 40*s^2 + 3*s - 8), (- 12*s^3 - 30*s^2 + s +
8)/(2*(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)),
-(3*(3*s + 2))/(2*(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s
- 8)), -(- 3*s^3 - 6*s^2 + 4*s + 2)/(- 3*s^5 -
12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8), (3*(3*s^2
+ 8*s + 4))/(2*(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s -
8))]
[-(6*s)/(- 3*s^3 - 6*s^2 + 13*s + 8),
-(3*s*(s + 2))/(- 3*s^3 - 6*s^2 + 13*s + 8),
-3/(- 3*s^3 - 6*s^2 + 13*s + 8),
6/(- 3*s^3 - 6*s^2 + 13*s + 8),
(3*(s + 2))/(- 3*s^3 - 6*s^2 + 13*s + 8)]

[-(2*s)/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8),


-(s*(s + 2))/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s -
8), -(3*s^4 + 6*s^3 - 13*s^2 - 8*s + 1)/(- 3*s^5 - 12*s^4
+ 4*s^3 + 40*s^2 + 3*s - 8),
2/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8), -
(3*(- s^3 - 2*s^2 + 4*s + 2))/(- 3*s^5 - 12*s^4 + 4*s^3 +
40*s^2 + 3*s - 8)]

[ (6*s^2 + 11*s - 8)/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 +


3*s - 8), ((s + 2)*(6*s^2 + 11*s - 8))/(2*(- 3*s^5 -
12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)), -(3*(s^2 - 8))/(2*(-
3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)), -(3*s^4 +
12*s^3 - 4*s^2 - 34*s + 8)/(- 3*s^5 - 12*s^4 + 4*s^3 +
40*s^2 + 3*s - 8), -(3*(- s^3 - 2*s^2 + 8*s + 16))/(2*(-
3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8))]

[ (2*s*(s + 2))/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s -


8), (s*(s + 2)^2)/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s
- 8), -(3*(- s^3 - 2*s^2 + 4*s + 2))/(- 3*s^5 - 12*s^4 +
4*s^3 + 40*s^2 + 3*s - 8), -(2*(s + 2))/(- 3*s^5 - 12*s^4
+ 4*s^3 + 40*s^2 + 3*s - 8), (3*(s + 2)*(- s^3 - 2*s^2 +
4*s + 2))/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)]

dt0 = det(inv0);
disp(dt0);

-3/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)

You might also like