EE 515 FEEDBACK CONTROL SYSTEMS (LAB)
ACTIVITY 5: State-Space Method
Name: _Arie Emmanuel Liston Date: September 27, 2017
Problem:
Obtain the analogous electric circuit of the following systems and
determine the transfer function and block diagram of the systems
shown using state-space method.
3 ()
a)
()
()
b) ()
Computation:
a.
Left loop
(4 2 + 2 + 6)1 () (2)2 () = 0
Middle loop
(1 )() + (4 2 + 4 + 6)2 () (6)3 () = ()
Right loop
(6)2 () + (4 2 + 2 + 6)3 () = 0
State Variables
1
1 = 1 ; 2 2 = 2 ; 3 3 = 3
1 2
1 = 1 ; 2 = 2
Left loop
1 + 1 + 21 = 0
Middle loop
() + 21 + 2 +22 + 2 = 0
Right loop
2 + 3 + 23 = 0
Outer loop
() + 1 + 1 + 2 + 22 + 3 + 23 = 0
Node left and middle loop
1 = 1 + 2
Node middle and right loop
2 = 2 + 3
1 + 2 2 0 1 0 1 0
2 2 0 0 1 2 1
3 = 0 0 +2 0 1 3 + 0 ()
1 0 1 0 1/2 1 0
[ 0]
[ 2 ] [ 0 1/3 1 0 ] [ ]
2
1
2
= [0 0 1 0 0] 3
1
[2 ]
+ 2 2 0 1 0
2 0 0 1
( ) = 0 0 +2 0 1
0 1 0 1/2
[ 0 1/3 1 0 ]
+
[
] +
[ ]
[ ]
( ) =
+
+
[
]
MATLAB Script:
syms s
A = [s+2 -2 0 1 0;-2 s 0 0 1;0 0 s+2 0 1;0 1 0 s 1/2;0 1/3
1 0 s];
inv0 = inv(A);
disp(inv0);
[ (- 3*s^4 - 6*s^3 + 4*s^2 + 2*s)/(- 3*s^5 - 12*s^4 +
4*s^3 + 40*s^2 + 3*s - 8), (- 12*s^3 - 30*s^2 + s +
8)/(2*(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)),
-(3*(3*s + 2))/(2*(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s
- 8)), -(- 3*s^3 - 6*s^2 + 4*s + 2)/(- 3*s^5 -
12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8), (3*(3*s^2
+ 8*s + 4))/(2*(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s -
8))]
[-(6*s)/(- 3*s^3 - 6*s^2 + 13*s + 8),
-(3*s*(s + 2))/(- 3*s^3 - 6*s^2 + 13*s + 8),
-3/(- 3*s^3 - 6*s^2 + 13*s + 8),
6/(- 3*s^3 - 6*s^2 + 13*s + 8),
(3*(s + 2))/(- 3*s^3 - 6*s^2 + 13*s + 8)]
[-(2*s)/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8),
-(s*(s + 2))/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s -
8), -(3*s^4 + 6*s^3 - 13*s^2 - 8*s + 1)/(- 3*s^5 - 12*s^4
+ 4*s^3 + 40*s^2 + 3*s - 8),
2/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8), -
(3*(- s^3 - 2*s^2 + 4*s + 2))/(- 3*s^5 - 12*s^4 + 4*s^3 +
40*s^2 + 3*s - 8)]
[ (6*s^2 + 11*s - 8)/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 +
3*s - 8), ((s + 2)*(6*s^2 + 11*s - 8))/(2*(- 3*s^5 -
12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)), -(3*(s^2 - 8))/(2*(-
3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)), -(3*s^4 +
12*s^3 - 4*s^2 - 34*s + 8)/(- 3*s^5 - 12*s^4 + 4*s^3 +
40*s^2 + 3*s - 8), -(3*(- s^3 - 2*s^2 + 8*s + 16))/(2*(-
3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8))]
[ (2*s*(s + 2))/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s -
8), (s*(s + 2)^2)/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s
- 8), -(3*(- s^3 - 2*s^2 + 4*s + 2))/(- 3*s^5 - 12*s^4 +
4*s^3 + 40*s^2 + 3*s - 8), -(2*(s + 2))/(- 3*s^5 - 12*s^4
+ 4*s^3 + 40*s^2 + 3*s - 8), (3*(s + 2)*(- s^3 - 2*s^2 +
4*s + 2))/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)]
dt0 = det(inv0);
disp(dt0);
-3/(- 3*s^5 - 12*s^4 + 4*s^3 + 40*s^2 + 3*s - 8)