Chapter 10: AXISYMMETRIC ISO-P ELEMENTS                                                                                                                                   10–14
Homework Exercises for Chapter 10
                                                                                    Solutions
EXERCISE 10.1
Use the centroidal rule for the first one:
                                                                    
                                                                               ζi d A(e) = A F( 13 , 13 , 13 ) = A( 13 ) = A/3.                                        (E10.28)
                                                                        A(e)
Use the midpoint rule (simplest exact rule) for the second one:
            ζi ζ j d A(e) = (A/3)[F( 12 , 12 , 0) + F(0, 12 , 12 ) + F( 12 , 0, 12 )] = (A/3)[( 12 )2 + ( 12 )2 δi j ] = A(1 + δi j )/12.
    A(e)
                                                                                                                                                                       (E10.29)
For (E8.7) we need the 7-point rule. Three cases will be distinguished. For i = j = k,
                                              
                                                          ζi ζ j ζk d A(e) = A[w0 ( 13 )3 + 3w1 α1 β12 + 3w1 α2 β22 ] = A/60.                                          (E10.30)
                                                   A(e)
For i = j = k,
     
                ζi2 ζk d A(e) = A[w0 ( 13 )3 + 3w1 β1 (α12 + α1 β1 + β12 ) + 3w2 β2 (α22 + α2 β2 + β22 )] = A/30.                                                      (E10.31)
         A(e)
For i = j = k,
                           
                                      ζi3 d A(e) = A[w0 ( 13 )3 + 3w1 (α13 + 2β13 ) + 3w2 (α23 + 2β23 )] = A/10.                                                       (E10.32)
                               A(e)
Combining these 3 cases the result is γi jk A/60 as stated.
For (E8.8) we use (E8.5):                                                                              
                                                                (e)
                                                       r dA             =                 (r1 ζ1 + r2 ζ2 + r3 ζ3 ) d A(e) = A(r1 + r2 + r3 )/3.                        (E10.33)
                                              A(e)                                 A(e)
For (E8.9) we use (E8.6):
                                                                (e)
            ζi r d A             =                 ζi (r1 ζ1 + r2 ζ2 + r3 ζ3 ) d A(e) = (A/12)r j (1 + δi j ) =                               1
                                                                                                                                             12
                                                                                                                                                  A(r1 + r2 + r3 + ri ). (E10.34)
     A(e)                                   A(e)
For (E8.10) we use (E8.6) again, but more steps are needed:
                                                  
                                      (e)
                           2
                           r dA              =                (r1 ζ1 + r2 ζ2 + r3 ζ3 )2 d A(e)
                    A(e)                               A(e)
                                                                                                                                             
                                                                                                  ζ1 ζ1    ζ1 ζ2   ζ1 ζ3                    r1
                                             = [ r1            r2        r3 ]                              ζ2 ζ2   ζ2 ζ3       d A(e)       r2
                                                                                       A(e)
                                                                                      symm                         ζ3 ζ3                    r3
                                                                                                    
                                                                                    A 2 1 1            r1
                                                                                                                                                                       (E10.35)
                                             = [ r1            r2        r3 ]             1 2 1 d A(e) r2
                                                                              A(e) 12     1 1 2        r3
                                                                                   1 1 1   1 0 0            
                                                                                                                   r1
                                                   A
                                             =        [ r1              r2 r3 ]            1 1 1 + 0 1 0    d A(e) r2
                                                   12                              A(e)    1 1 1      0 0 1        r3
                                                                                                                  
                                             =      1
                                                   12
                                                          A (r1 + r2 + r3 )2 + r12 + r22 + r32 .
                                                                                                          10–14
10–15                                                                                                                                        Solutions to Exercises
EXERCISE 10.2
It’s an easy one using the summation convention to write r 2 = r j rk ζ j ζk :
                                                                                                  
                                 (e)                                           (e)
                      ζi r d A
                         2
                                       =              ζi ζ j ζk r j rk d A           = r j rk                  ζi ζ j ζk d A(e) = r j rk γi jk /60.        (E10.36)
               A(e)                            A(e)                                                     A(e)
EXERCISE 10.3
For (E8.12):
                                           Rule                                             Case (a)                       Case (b)
                                           1 point                                        1.5000A/a                        0.5000A
                                           3 points (E8.2)                                1.8000A/a                        0.5222A
                                           3 points (E8.3)                                1.6667A/a                        0.5222A
                                           7 points                                       1.8800A/a                        0.5232A
                                           Exact (to 5 digits)                            2.0000A/a                      0.52324A
For case (a) the 7-point rule is 6% off; next best result is given by the 3-interior-point rule.
For (E8.13):
                                                                                     	                             	             	
                                       Rule                                              ζ1 /r                         ζ2 /r =       ζ3 /r
                                       1 point                                 0.5000A/a                               0.5000A/a
                                       3 points (E8.2)                         0.8000A/a                               0.5000A/a
                                       3 points (E8.3)                         0.6667A/a                               0.5000A/a
                                       7 points                                0.8800A/a                               0.5000A/a
                                       Exact                                   1.0000A/a                               0.5000A/a
EXERCISE 10.4
With the constitutive matrix                                                                                      
                                                                       1                        0   0          0
                                                                     0                         1   0          0
                                                                 E= E                                            ,                                        (E10.37)
                                                                       0                        0   1          0
                                                                                                               1
                                                                       0                        0   0          2
we get                                                         
                                           Kr 1r 1 = E                    (qr 1 qr 1 + qθ1 qθ1 + 12 qz1 qz1 ) d A(e) ,                                     (E10.38)
                                                                   A(e)
                                                                                     
                                                              Kr 1z1 = E                        1
                                                                                                  q q
                                                                                                2 r 1 z1
                                                                                                                d A(e) ,                                   (E10.39)
                                                                                         A(e)
                                                                          
                                                      Kz1z1 = E                      (qz1 qz1 + 12 qr 1 qr 1 ) d A(e) .                                    (E10.40)
                                                                              A(e)
From the isoparametric definition,
                                           ∂ζ1   1                                       ∂ζ1                                   ζ1  1 1
                             qr 1 =            =− ,                       qz1 =              = 0,                      qθ1 =      = − ,                    (E10.41)
                                           ∂r    a                                       ∂z                                    r   r a
                                                                                      10–15
Chapter 10: AXISYMMETRIC ISO-P ELEMENTS                                                                                 10–16
Using the midpoint rule:
                                                                               1    ζ12                    E A 2 1  1 2 1                   
     K r 1r 1 = E                     +           r d A(e) =        3
                                                                      + 3 ( 2 ) / 2 + ( 12 )2 / 12 = E A/a = 12 Eb.   (E10.42)
                        A(e)       a2   r2                      a
(Using other rules would change this value, but this is enough for comparison with the computer work.)
Similarly,
                                                                    K r 1z1 = 0.                                      (E10.43)
                                                         K z1z1 = E A/(3a) = 16 Eb.                                   (E10.44)
EXERCISE 10.5
Note br = ρω2 (ζ1 r1 + ζ2 r2 + ζ3 r3 ) = ωa(ζ2 + ζ3 ). For the displacement ordering u r 1 , u r 2 , u r 3 , u z1 , u z2 , u z3
we get
                                               ωa 2 ζ (ζ + ζ )2                      1/10 
                                                      1 2       3
                                          ωa 2 ζ2 (ζ2 + ζ3 )2                       1/5 
                                                   2                2
                                               ωa   ζ  (ζ  + ζ   )    (e)                 
                                    (e)
                                   f =ρ              3   2     3      d A = ρ Aω a  1/5  .
                                                                                  2 2
                                                                                                                      (E10.45)
                                                        0                            0 
                                         A(e)                                             
                                                                0                                 0
                                                                0                                 0
EXERCISE 10.6
                                                           0
                                                                                        0
                                                                                                     
                                                          0                         0 
                                                                       (e)               
                                   f(e)   =ρ               0           d A = −ρga A  0  .                         (E10.46)
                                                    −ga ζ1 (ζ2 + ζ3 )                    
                                              A(e)                                   1/6 
                                                     −ga ζ2 (ζ2 + ζ3 )                  1/4
                                                     −ga ζ3 (ζ2 + ζ3 )                  1/4
EXERCISE 10.7
                                           ζ /r − 1/a                                                 1/3
                                                                                                                
                                             1
                                     ζ2 /r + 1/a                                                     1    
                                           ζ3 /r  (e)                                                       
     (e)
    f =                     (e)
                B α T r d A = α T
                 T                                     d A = α T A                                   1/r   .     (E10.47)
                                                0                                                      0    
           A(e)                      A(e)                                                                   
                                                                      −r/b                            −2a/(3b)
                                                                      r/b                              2a/(3b)
EXERCISE 10.8
EXERCISE 10.9
EXERCISE 10.10
                                                                     10–16
10–17                                                                                                          Solutions to Exercises
EXERCISE 10.11
(a)   The displacement field u = u(r, z) is a function of r and z only (no theta dependence). Thus, it can be
      modeled axisymmetrically by a FE mesh on the (r, z) plane. But in this case the FE displacement field
      has the form
                                        u r = u z = 0,      u θ = u θ (r, z)                      (E10.48)
      so that there is only one degree of freedom per node. This DOF is the displacement normal to the plane
      of the mesh.
(b)   The nontrivial parts of the strain-displacement and constitutive equations are
                                                ∂    1
                                                  −                                                      
                                  γr θ                                      σr θ                             γr θ
                                             =  ∂r   r u ,                             G          0
                                                          θ                            =                          .          (E10.49)
                                  γzθ                ∂                      σzθ          0          G        γzθ
                                                     ∂z
      Consequently
                    (e)
                                                                                                                      
                    N1,r − N1(e) /r           (e)
                                             N2,r − N2(e) /r   ...    (e)
                                                                     Nn,r − Nn(e) /r                               G   0
          B=              (e)                      (e)                     (e)
                                                                                                ,       E=               .   (E10.50)
                         N1,z                     N2,z         ...        Nn,z                                     0   G
                                                               10–17