0% found this document useful (0 votes)
40 views1 page

For Muli

This document contains trigonometric identities for sine, cosine, tangent, and cotangent functions. It includes basic definitions of trig functions at common angles, addition and subtraction formulas, double angle formulas, formulas for sums and differences of trig functions, and product-to-sum and sum-to-product formulas. Various trig identities are provided with angles in degrees and radians.

Uploaded by

rozemath
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
40 views1 page

For Muli

This document contains trigonometric identities for sine, cosine, tangent, and cotangent functions. It includes basic definitions of trig functions at common angles, addition and subtraction formulas, double angle formulas, formulas for sums and differences of trig functions, and product-to-sum and sum-to-product formulas. Various trig identities are provided with angles in degrees and radians.

Uploaded by

rozemath
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 1

Dadeno

sin cos tg ctg



sin  1  cos 2  tg 1
 1  tg 2  1  ctg 2
cos  1  sin 2  1 ctg
 1  tg 2  1  ctg 2
tg sin   1  cos2  1
 1  sin 2  cos ctg
ctg  1  sin 2  cos 1
sin   1  cos  2 tg

 0 30 45 60 90 180 270


sin 0 1 2 3 1 0 -1
2 2 2
cos 1 3 2 1 0 -1 0
2 2 2
tg 0 3 1 3 / 0 /
3
ctg / 3 1 3 0 / 0
3

sin ( + ) = sin  cos  + cossin  sin (- ) = sin  cos  - cos sin 
cos ( + ) = cos  cos  - sin  sin  cos ( - ) = cos  cos  + sin  sin 

tg  tg ctg  ctg  1


tg (   )  ctg (   ) 
1  tg  tg ctg  ctg
2tg ctg 2  1
sin 2  2 sin  cos cos 2  cos2   sin 2  tg 2  ctg 2 
1  tg 2 2ctg
 1  cos  1  cos  1  cos  1  cos
sin  cos  tg  ctg 
2 2 2 2 2 1  cos 2 1  cos

     
sin   sin   2 sin cos sin   sin   2 cos sin
2 2 2 2
     
cos  cos   2 cos cos cos  cos   2 sin sin
2 2 2 2
sin(   ) cos(   )
tg  tg  ctg  ctg 
cos cos  sin  sin 
cos  cos   cos(   )  cos(   )
1
2
sin   sin    cos(   )  cos(   )
1
2
sin   cos   sin(   )  sin(   )
1
2

You might also like