0% found this document useful (0 votes)
434 views281 pages

Set Theory for Nepali Students

This document provides examples and instructions for answering set theory questions using Venn diagrams. It discusses concepts like union, intersection, complement of sets. It provides sample questions and answers involving 2-3 sets and asks students to practice similar questions. The document aims to help students understand and represent relationships between sets visually using Venn diagrams to solve problems involving sets.

Uploaded by

Deepal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
434 views281 pages

Set Theory for Nepali Students

This document provides examples and instructions for answering set theory questions using Venn diagrams. It discusses concepts like union, intersection, complement of sets. It provides sample questions and answers involving 2-3 sets and asks students to practice similar questions. The document aims to help students understand and represent relationships between sets visually using Venn diagrams to solve problems involving sets.

Uploaded by

Deepal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 281

If]q M !

;d"x (Sets)

!= kl/ro
k|frLg sfnb]lv g} xfd|f] b}lgs hLjgdf ;d"x l;b\wfGt -set theory_ k|of]u x“'b} cfPsf] 5 .
v]ns'b jf 3/fo;L sfddf klg o;sf] k|of]u klxnf] k6s ul0ft1 hh{ sfG6/n] u/]sf x'g\ .
To;}n] pgnfO{ ;d"xsf hGdbftfsf ¿kdf lnOG5 . hf]g e]g (John Venn) n] HofldtLo
cfs[ltaf6 ;d"xsf] ;DaGwnfO{ cem k|:6\ofPsf] kfOG5 . cfw'lgs ul0ftsf] cWoogdf ;d"x
l;b\wfGt (set theory) geO{ gx'g] ljifo j:t' ag]sf] 5 . ;d"x zAbnfO{ group, collection,
aggregate, class cflb zAbx¿af6 klg lrlgG5 .
dfWolds lzIff kf7\oj|md 2064 / ljlzi6Ls/0f tflnsf 2065 n] sIff 10 sf] clgjfo{ ul0ft
ljifodf ;d"x kf7af6 lgDg lnlvt ljifoj:t', k/LIffsf nflu ;+1fgfTds If]qcg';f/sf k|Zg
;ª\Vof / cª\s ef/sf] Joj:yf u/]sf] 5 .
j|m=;= ljifoj:t' 1fg l;k hDdf l;k ;d:of hDdf s'n If]qut
tyf ;+1fg / cª\s ;dfwfg cª\s hDdf s'n hDdf
If]q af]w cª\s cª\s
5f]6f pTt/ nfdf] pTt/
cfpg] cfpg] k|Zg
! ;d"x ! $ $ $
(Set)

@= cfwf/e"t tYo tyf ;"q


of] PsfO cWoogkZrft\ ljb\ofyL{x¿ ;d"x ;DaGwL zflAbs ;d:ofx¿df e]g lrqsf] k|of]uåf/f
;dfwfg ug{ ;Sg] 5g\ . o;sf nflu b'O{ / ltg ;d"xsf] zflAbs ;d:ofx¿ ;f]lwg] 5g\ . oL
pb\b]Zo k|fKt ug{ lgDg lnlvt ljifo j:t'sf af/]df ljb\ofyL{nfO{ hfgsf/L x'g cfjZos 5 .
-s_ ;d"xsf] ;+of]hg (
olb A / B b'O{ cf]6f ;d"x eP ( eGgfn] A
df dfq, B df dfq cyjf A tyf B b'j}df ePsf ;a} ;b:o
k5{g\ .

1
-v_ ;d"xx¿sf] k|ltR5]bg ( )
olb A / B b'O{ cf]6f ;d"x eP ;d"xsf] k|ltR5]bg
( ) df A / B b'j}df ePsf ;femf ;b:ox¿ k5{g\ .

-u_ ;d"xx¿sf] km/s


-c_ ;d"x A km/s B, ( ) df A df dfq ePsf
;b:ox¿ k5{g\ .
-cf_ ;d"x B km/s A, ( ) df B df dfq ePsf

;b:ox¿ k5{g\ .
-3_ ;d"xsf] k'/s cyjf A' df A df gePsf t/ ;j{Jofks
;d"x U df ePsf ;b:ox¿ k5{g\ .

-ª_ ;d"xsf] u0ffTdstf


;d"xdf /x]sf ;b:ox¿sf] ;ª\VofnfO{ To; ;d"xsf] u0fgfTdstf elgG5 . o;nfO{ n(A),
n(B) cflbn] hgfOG5 .

o; kf7df k|of]u x'g] s]xL ;"qx¿


;"qx¿ e]glrqsf db\btaf6 agfpg] k|of; ul/g'k5{ . s]xL dxTTjk"0f{ ;'qx¿ tn k|:t't ul/Psf 5g\
M
-s_ olb / b'O{ cf]6f ;d"x / ;j{Jofks ;d"x xf] eg]
-c_ gvlK6Psf] ;d"xsf nflu
-cf_ vlK6Psf] ;d"xsf nflu
-O_
-O{_
-p_
-v_ ;d"xx¿ A, B / C 5g\ ;fy} U ;j{Jofks ;d"x xf] eg] M
-c_
-cf_
-O_
-O{_
-p_
2
#= k|Zgsf] pTt/ lb“bf Wofg lbg'kg]{ s'/fx¿
-s_ k|ZgnfO{ Wofg lbP/ k9\g'xf];\ .
-v_ k|Zgdf lbOPsf s'/fx¿nfO{ 5'6\ofP/ n]Vg'xf];\ .
-u_ e]glrq k]lG;nn] sf]g'{xf];\ .
-3_ e]glrqdf gfds/0f jf ;ª\s]t lbg'k/]df klg k]lG;nn] g} n]Vg'xf];\ .
-ª_ e]glrq klxn] agfpg] jf kl5 agfpg] :ki6 x'g'xf];\ .
$= gd'gf k|Zgf]Tt/ tyf cEof;
gd'gf k|Zg !
/ ;j{Jofks ;d"x sf pk;d"xx¿ x'g\ . olb
eP,
-s_ dflysf] tYonfO{ e]glrqdf k|:t't ug'{xf];\ .
-v_ sf] dfg lgsfNg'xf];\ .
pTt/ M oxfF, lbOPsf]

-s_

-v_ ;"qcg';f/,

ca ,

cEof;sf nflu k|Zg


dflysf pbfx/0f x]/L tnsf k|Zgx¿ xn ug{'xf];\ .
!= olb eP,
-s_ sf] dfg kTtf nufpg'xf];\ .
-v_ of] tYonfO{ e]g lrqdf b]vfpg'xf];\ .

3
@= olb
eP,
-s_ sf] dfg kTtf nufpg'xf];\ .
-v_ pSt tYonfO{ e]g lrqdf b]vfpg'xf];\ .
#= olb
/ eP,
-s_ x sf] dfg kTtf nufpg'xf];\ .
-v_ of] tYonfO{ e]g lrqdf b]vfpg'xf];\ .
pTt/x¿ M ! s_ 65 @ s_ 15 # s_ 80
gd'gf k|Zg @
120 hgfsf] Pp6f ;d"xdf hgfnfO{ ul0ft dg kbf]{ /x]5, hgfnfO{ lj1fg dg kbf]{ /x]5 /
hgfnfO{ b'j} dg gkg]{ /x]5 eg],
-s_ pSt tYofª\snfO{ e]g lrqdf k|:t't ug{'xf];\ .
-v_ b'j} ljifo dg k/fpg]sf] ;ª\Vof kTtf nufpg'xf];\ .
pTt/ M -s_ oxfF lbOPsf], hDdf ;ª\Vof hgf,
ul0ft dg k/fpg]sf] ;ª\Vof hgf,
lj1fg dg k/fpg]sf] ;ª\Vof hgf,
b'j} dg gk/fpg] hgf
-v_ b'j} ljifo dg k/fpg]sf] ;ª\Vof
;"qcg';f/,

hgf
ca,

hgf
b'j} ljifo dg k/fpg]sf] ;ª\Vof 52 hgf /x]5 .
cEof;sf nflu k|Zg
dflysf pbfx/0f x]/L tnsf k|Zgx¿ xn ug{'xf];\ .
!= 12 hgfsf] Pp6f ;d"xdf 9 hgfnfO{ ddM dg kbf]{ /x]5, 7 hgfnfO{ rfpldg dg kbf]{ /x]5 /
2 hgfnfO{ b'j} dg gkg]{ /x]5 eg],
-s_ pSt tYofª\snfO{ e]glrqdf k|:t't ug'{xf];\ .
-v_ b'j} dg k/fpg]sf] ;ª\Vof kTtf nufpg'xf];\ .
@= s'g} ufp“sf] hg;ª\Vof 4000 dWo] 2000 n] sflGtk'/, 1800 n] gful/s b}lgs klqsf
k9\bf /x]5g\ / 400 hgfn] s'g} klg klqsf k9\b}gg\ eg],
4
-s_ pSt tYonfO{ e]glrqdf b]vfpg'xf];\ .
-v_ b'j} klqsf k9\g] dflg;sf] ;ª\Vof kTtf nufpg'xf];\ .
#= Pp6f ljb\ofnosf 60 hgf ljb\ofyL{dWo] 35 hgfn] ;ª\uLt / 45 hgfn] g[Tosf] sIff lnG5g\
eg] b'j} sIff lng] ljb\ofyL{sf] ;ª\Vof kTtf nufO{ e]glrqdf b]vfpg'xf];\ .
pTt/x¿ M
! v_ 6 hgf @ v_ 200 hgf # 20 hgf

gd'gf k|Zg #
200 hgfdf ul/Psf] ;j]{If0fdf 30 hgf g[To ug{ / ufpg b'j} ghfGg], 60 hgf ufpg dfq hfGg] /
50 hgf g[To dfq hfGg] kfOof] eg],
-s_ pSt tYofª\snfO{ e]glrqdf k|:t't ug{'xf];\ .
v_ g[To hfGg]sf] ;ª\Vof kTtf nufpg'xf];\ .
pTt/ M
oxfF lbOPsf] hDdf ;ª\Vof hgf,
g[To / ufpg b'j} ghfGg] hgf,
ufpg dfq hfGg] hgf,
g[To dfq hfGg] hgf /
lut ufpg hfGg] ;ª\Vof n (D) = ?
-s_ e]glrqdf b]vfpFbf,

-v_ ;"qcg';f/ g[To / ufpg hfGg] hDdf,

hgf
g[To / ufpg b'j} hfGg]

= hgf
ca, g[To hfGg]sf] ;ª\Vof

hgf

5
cEof;sf nflu k|Zg
dflysf pbfx/0f x]/L tnsf k|Zgx¿ xn ug{'xf];\ .
!= 50 hgfdf ul/Psf] ;j]{If0fdf 10 hgf g]kfnL / cª\u|]hL b'j} ghfGg], 25 hgf g]kfnL dfq hfGg]
/ 8 hgf cª\u|]hL dfq hfGg] kfOof] eg],
-s_ pSt tYofª\snfO{ e]glrqdf k|:t't ug'{xf];\ .
-v_ cª\u|]hL hfGg]sf] hDdf ;ª\Vof kTtf nufpg'xf];\ .
@= 400 hgfsf] Pp6f ;j]{If0fdf 100 hgf lj|ms]6 / km'6an b'j} gv]Ng], 250 hgf km'6an dfq
v]Ng] / 88 hgf lj|ms]6 dfq hfGg] kfOof] eg],
-s_ pSt tYofª\snfO{ e]glrqdf k|:t't ug'{xf];\ .
-v_ lj|ms]6 v]Ng]sf] hDdf ;ª\Vof kTtf nufpg'xf];\ .
#= Pp6f k/LIffdf 40 % ul0ftdf dfq pTtL0f{{, 30 % lj1fgdf dfq pTtL0f{{ / % % b'j}df cg'TtL0f{
eP eg],
-s_ b'j} ljifodf slt k|ltzt pTtL0f{{ eP <
-v_ ul0ftdf hDdf slt k|ltzt pTtL0f{{ eP <
! v_ 15 hgf @ v_ 126 hgf # v_ 65 % v_ 25 %

gd'gf k|Zg $
hgf ufp“n]df ul/Psf] ;j]{If0f0fdf hgfn] b'w, hgfn] bxL / hgfn] b'j} dg k/fpg]
atfP eg],
-s_ pSt tYofª\snfO{ e]glrqdf k|:t't ug'{xf];\ .
-v_ b'w / bxL b'j} glkpg]sf] ;ª\Vof kTtf nufpg'xf];\ .

pTt/ M
oxfF lbOPsf], hDdf ;ª\Vof hgf
b'w dg k/fpg] hgf
bxL dg k/fpg] hgf
b'j} dg k/fpg] hgf
b'j} dg gk/fpg]
-s_ e]glrqdf b]vfp“bf,

6
-v_ ;"qcg';f/,

hgf
ca, hgf
cEof;sf nflu k|Zg
dflysf pbfx/0f x]/L tnsf k|Zgx¿ xn ug{'xf];\ .
!= sIff !! sf hgf ljb\ofyL{nfO{ k|Zg ubf{ hgfn] kf]v/f dg k/fP, hgfn]
lrtjg dg k/fP / hgfn] b'j} 7fp“ dg k/fPsf] kfOof] eg],
-s_ pSt tYofª\snfO{ e]glrqdf k|:t't ug'{xf];\ .
-v_ b'j} 7fp“ dg gk/fpg]sf] ;ª\Vof kTtf nufpg'xf];\ .
@= hgf l;kfxLdf ul/Psf] ;j]{If0fdf hgfn] lrof, hgfn] skmL / hgfn] b'j} dg
k/fpg] atfP eg],
-s_ pSt tYofª\snfO{ e]glrqdf k|:t't ug'{xf];\ .
-v_ lrof / skmL b'j} dg gk/fpg]sf] ;ª\Vof kTtf nufpg'xf];\ .
#= Pp6f sn]hdf hgf ljb\ofyL{ /x]5g\ . To;dWo] hgf ufpg / g[To b'j} hfGg] /x]5g\,
hgf ufpg hfGg] / hgf g[To hfGg] /x]5g\ eg],
-s_ pSt tYofª\snfO{ e]glrqdf k|:t't ug'{xf];\ .
-v_ ufpg / g[To b'j} ghfGg]sf] ;ª\Vof kTtf nufpg'xf];\ .
pTt/x¿
! v_ 50 hgf @ v_ 125 hgf # v_ 30 hgf
gd'gf k|Zg %
hgfn] lbPsf] Pp6f k/LIffdf cª\u|]hLdf pTtL0f{, ul0ftdf pTtL0f{ / b'j}df
pTtL0f{ eP eg],
-s_ b'j} ljifodf cg'TtL0f{ x'g] slt hgf /x]5g\ <
-v_ Ps ljifodf dfq pTtL0f{ x'g] slt /x]5g\ <
oxfF, hDdf ;ª\Vof
cª\u|]hLdf pTtL0f{
ul0ftdf pTtL0f{
b'j}df pTtL0f{
-s_ ;"qcg';f/,

km]l/,

7
ca b'j} ljifodf cg'TtL0f{ x'g] ;ª\Vof hgf
-v_ Ps ljifodf dfq pTtL0f{

ca, Ps ljifodf dfq pTtL0f{


hgf
cEof;sf nflu k|Zg
dflysf pbfx/0f x]/L tnsf k|Zgx¿ xn ug{'xf];\ .
!= Pp6f k/LIffdf 70 % cª\u|]hLdf pTtL0f{, 75 % ul0ftdf pTtL0f{ / 60 % b'j}df pTtL0f{ ePsf
/x]5g\ olb b'j}df 9 hgf cg'TtL0f{ ePsf /x]5g\ eg] hDdf slt hgfn] k/LIff lbPsf /x]5g\ kTtf
nufpg'xf];\ . pTt/ M
@= ljhok'/ ufp“sf dlxnfsf] ;j]{If0fdf 45 % dlxnfn] lth dgfp“bf /x]5g\, 65% dlxnfn] 57
dgfp“bf /x]5g\ / 28 % n] b'j} dgfpFbf /x]5g\ eg] e]glrq agfO{ sDtLdf Pp6f kj{ dg k/fpg]
dlxnfsf] k|ltzt kTtf nufpg'xf];\ . pTt/ M
#= ;~hLjgLsf ljb\ofyL{x¿ dWo] 50% n] lrof dg k/fpbf /x]5g\ , 70% n] slkm dg k/fpbf
/x]5g\ , 10 % nfO{ b'a} dg gkg]{ /x]5 . 120 hgfn] b'a} dg k/fpg] kfO{of] eg] e]g lrqsf]
k|of]u u/L hDdf ljb\ofyL{ ;ª\Vof kTtf nufpg'xf];\ .
pTt/x¿ M
!= 60 hgf @= 82 % #= 400 hgf

gd'gf k|Zg ^
Pp6f ;d"xdf ul/Psf] ;j]{If0fdf lrof dg k/fpg] 60 hgf, slk dg k/fpg] 45 hgf, b'w dg
k/fpg] 30 hgf, skmL / lrof b'j} dg k/fpg] 25 hgf, lrof / b'w b'j} dg k/fpg] 20 hgf, skmL
/ b'w b'j} dg k/fpg] 15 hgf / ltg}cf]6f dg k/fpg] 10 hgf e]l6P eg] hDdf slt hgfnfO{ ;f]
k|Zg ;f]lwPsf] lyof] < e]g lrq agfO{ xn ug'{xf];\ .
;dfwfg M T
C
;j}If0fdf ;xefuL hDdf JolStx¿nfO{ 'U' ;fy} lro,
15
slkm / b'w nfO{ T, C / M j|md;“u} dfGbf, 25
n(T) = 60 15
10
n(c) = 45 10 5
n(M) = 30
5

8
ca,

= 60 + 45 + 30 - 25 - 20 - 15 + 1-
= 85 hgf

ctM ;j]{If0fdf ;f]lwPsf hDdf dflg; 85 hgf /x]5g\ .

9
If]q M @ cª\s ul0ft (Arithmetic)
If]q kl/ro
dfWolds lzIff kf7\oj|md 2064 / ljlzi6Ls/0f tflnsf 2065 n] sIff 10 sf] clgjfo{ ul0ft ljifodf
lgDgfg';f/sf ljifo j:t', k/LIffsf nflu ;+1fgfTds If]qcg';f/sf k|Zg ;ª\Vof / cª\s ef/sf]
Joj:yf u/]sf] 5 .
j|m; ljifo 1fg / l;k hDdf l;k ;d:of hDdf s'n If]qut
j:t'÷;+1fg af]w cª\s ;dfwfg cª\s hDdf s'n
If]q cª\s hDdf
cª\s
2 5f]6f pTt/ nfdf] pTt/
cfpg] cfpg] k|Zg
2.1 ;do / 1 4 4 16
sfo{÷sfd
2.2 Gffkmf / 1 2 1 4 4
gf]S;fg
2.3 rlj|mo Aofh, 1 2 1 4 6
hg;ª\Vof
j[b\lw / ld>
x|f;

kf7 2.1 M ;do / sfo{÷sfd (Time and Work)

!= kl/ro
o; kf7df P]sLs lgodsf cfwf/df ;do / sfo{÷sfd;“u ;DalGwt ;d:ofx¿ ;dfwfg ug]{ vfnsf
;d:ofx¿ ;dfj]z ul/Psf 5g\ . k/LIffdf o;sf ljifo j:t'af6 ;d:of ;dfwfg txsf] Pp6f nfdf]
pTt/ cfpg] k|Zg ;f]lwg] Joj:yf 5 .
!= cfwf/e"t tYo tyf ;"qx¿
-s_ ljr/0f (Variation)
xfd|f] b}lgs hLjgdf cfO/xg] Jofjxfl/s ;d:ofnfO{ j:t'sf] kl/0ffd, ltgsf] d"No, sfdbf/sf]
;ª\Vof, sfd ug{ nfUg] ;ª\Vof h:tf ljleGg r/x¿sf] cGt/ ;DaGwnfO{ ljr/0f elgG5 .
ljr/0f b'O{ lsl;dsf x'G5g\ .
-c_ k|ToIf ljr/0f (Direct Variation) M olb xfdLn] Pp6f kl/0ffdnfO{ 36fp“bf csf]{
kl/0ffd klg 36\5 eg] / Pp6f kl/0ffd a9fp“bf csf]{ kl/0ffd klg a9\5 eg] To:tf]

10
ljr/0fsf] k|lj|mofnfO{ k|ToIf ljr/0f elgG5 . pbfx/0fsf nflu olb b'O{cf]6f sfkLsf] d"No ?=
$) k5{ eg] Pp6f sfkLsf] d"No ?=$) ÷ @ = ?= @) x'G5 . To;} u/L $ cf]6f sfkLsf] d"No
?= @) × $ = ?= *) x'G5 .
-cf_ ck|ToIf ljr/0f (Indirect Variation) M olb xfdLn] Pp6f kl/0ffdnfO{ 36fp“bf csf]{
kl/0ffd a9\5 eg] / Pp6f kl/0ffd a9fp“bf csf]{ kl/0ffd 36\5 eg] To:tf] ljr/0fsf]
k|lj|mofnfO{ ck|ToIf ljr/0f elgG5 . pbfx/0fsf nflu olb b'O{ hgf dflg;n] Pp6f sfd $
lbgdf ug{ ;S5g\ eg] ! hgf dflg;n] ;f] sfd ug{ $ × @ lbg = * lbg nufp“5g\ . To:t},
u/L ToxL sfd $ hgf dflg;n] * ÷ $ = @ lbg nufp“5g\ .
@= ljz]if Wofg lbg'kg]{ s'/fx¿
• lbOPsf] kl/df0fnfO{ Pp6} PsfOdf abNg'kb{5 . Ps PsfOdf kl/jlt{t kl/df0fnfO{
;f]lwPsf] kl/df0fdf n}hfg'kb{5 . kl/df0f w]/} x'g] eP u'0ff / yf]/} x'g] eP efu ug]{ s'/f
ofb ug'{kb{5 . t/ leGg dfg PseGbf sd x'g] ePdf of] lj|mof pN6f] x'G5 . abNg'kg]{
s'/fx¿ w]/} ePdf Ps k6sdf Pp6fnfO{ dfq abNg'kb{5 .
• h'g PsfOdf pTt/ lgsfNg'kg]{ xf] To;nfO{ bfof“tk{m n]Vg'kb{5 .
• lbOPsf] ;d:ofnfO{ tflnsLs/0f u/]/ ;dfwfg ubf{ ;lhnf] x'G5 .
• tflnsf ljlw jf ;do / sfo{÷sfd h'g ljlwaf6 ug]{ eP klg ;'?df af“sL /x]sf]
sfo{÷sfd / lbgx¿ kTtf nufOxfNg'kb{5 .
• tflnsf lgdf{0f ubf{ Pp6f k'/} jfSosf] gDa/x¿ Pp6} nx/df n]Vg'kb{5 .
• h'g s'/fnfO{ rnåf/f dflgPsf] 5 To;};“u x/]s s'/fsf] ;DaGw k|ToIf jf ck|ToIf s:tf]
5 < yfxf kfpg'kb{5, h:t} M dfG5]sf] ;DaGw lbg;“u ck|ToIf x'G5 eg] dfG5] /
sfo{÷sfdsf] ;DaGw k|ToIf x'G5 .
• k|ToIf ;DaGw x'g]sf] jf0f Ps}lt/ kmsf{pg ;lsG5 eg] ck|ToIf ;DaGwdf pN6f] lbzflt/
uPsf] b]vfOG5 . o;/L ;dLs/0f agfp“bf ;f]xLcg'¿k n]Vg Wofg k'¥ofpg'k5{ .
• cfotleq sf]8 u/]sf s'/fx¿nfO{ ljz]if Wofg lbg'k5{ .
• ;do / sfo{÷sfd ljlwdf dflg;sf ;ª\Vof rflxPdf ;lhnf]sf nflu o;nfO{ ;a}eGbf
bfof“k6\l6 n]Vg] ug'{k5{ .
• dflgPsf] rn x, y z cflbsf] dfg lg:s]kl5 To;sf] cy{ v'nfO{ pTt/ n]Vg'k5{ .

11
#= gd'gf k|Zgf]Tt/ tyf cEof;
#=! cfwf/e"t tyf k'g/fjnf]sg cEof;
-b'O{hgf;“u ;DalGwt ;do / sfdsf ;d:ofx¿_
gd'gf 1 :
A / B ldn]/ s'g} sfd j|mdzM 20 lbgdf ug{ ;S5g\\ . B n] 5 lbgdf ug]{ sfd A n] 4 lbgdf ug]{
eP, k|To]snfO{ PSn} PSn} sfd ;Sg slt slt ;do nfUnf < kTtf nufpg'xf];\ .
;dfwfg
oxfF, k|Zgcg';f/ B sf] 5 lbgsf] sfd = A sf] 4 lbgsf] sfd
∴ 5B = 4A
4 5
B = 5 A / A = 4 B.
ca, (A + B) = (A + B)
 4  5 
cyjf, A + 5 A= 4 B + B
   
9A 9B
cyjf, 5 = 4 E
A A

k|Zgfg';f/,
(A + B) n] 1 sfd 20 lbgdf ug{ ;S5g\\ .
9A
A

5 n] 1 sfd 20 lbgdf ug{ ;S5g\\ .


E
A

9
A n] 1 sfd 20 × 5 lbgdf ug{ ;S5g\\ . A

E
A

= 36 lbg .
90
km]l/, 4 n] 1 sfd 20 lbgdf ug{ ;S5g\\ .
A

E
A

9
B n] 1 sfd 20 4 lbgdf ug{ ;S5g\\ . = 45 lbg .
A A

ctM A nfO{ ;f] sfd ;Sg 36 lbg / B nfO{ ;f] sfd ;Sg 45 lbg nfUbf] /x]5 .
csf]{ tl/sf
dfgf}“, A n] 4 lbgdf x sfd l;Wofp“5g\\ .
x
∴ A n] 1 lbgdf 4 sfd l;Wofp“5g\\ . A A

∴ B n] 5 lbgdf x sfd l;Wofp“5g\\ .


x x
∴ A / B ldnL 1 lbgdf 4 + 5 Error! Bookmark not defined.sfd l;Wofp“5g\\ .
 
A E A A A

9x
= 20A

12
∴ A / B ldnL 20 lbgdf 9x sfd l;Wofp“5g\\ .
k|Zgcg';f/, A / B ldnL 20 lbgdf 1 sfd l;Wofp“5g\\ .
1
∴ 9x = 1 or, x = 9 A

1
To;}n] A n] 4 lbgdf 9 sfd l;Wofp“5g\\ .
A A

1
∴ To;}n] A n] 4 lbgdf 9 sfd l;Wofp“5g\\ . A A

∴ A n] 36 lbgdf 1 sfd l;Wofp“5g\\ .


1
B n] 5 lbgdf 9 sfd l;Wofp“5g\\ .
A A

B n] 45 lbgdf 1 sfd l;Wofp“5g\\ . cfjZos lbg = 45 lbg .

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. /fd / Zofdn] s'g} sfd 60 lbgdf ug{ ;S5g\\ . /fdn] 2 lbgdf ug]{ sfd Zofdn] 3 lbgdf ug]{ eP
k|To]snfO{ PSnfPSn} sfd ug{ slt slt ;do nfUnf < kTtf nufpg'xf];\ .
-pTt/ M 100 lbg, 150 lbg_
2. Zofd / s[i0fn] s'g} sfd 50 lbgdf ug{ ;S5g\\ . Zofdn] 5 lbgdf ug]{ sfd s[i0fn] 3 lbgdf ug]{
eP k|To]snfO{ PSnfPSn} sfd ;Sg slt slt ;do nfUnf < kTtf nufpg'xf];\ .
1
-pTt/ M 1333 , 80 lbg_
A E A

3. ph]nL / h'gls/Ln] s'g} sfd 70 lbgdf ug{ ;S5g\\ . olb ph]nLn] 4 lbgdf ug]{ sfd h'gls/Ln]
3 lbgdf ug]{ eP k|To]snfO{ PSnfPSn} sfd ;Sg slt ;do nfUnf < kTtf nufpg'xf];\ .
1 1
pTt/ M 1633 lbg, 1222 lbg_
A E A A E A

gd'gf 2 :
A / B n] s'g} Ps sfd j|mdzM 12 / 18 lbgdf ;S5g\\ . b'j}n] sfd ;'? u/sf] s]xL lbgkl5 A n] 5f]8\5
/ af“sL sfd B n] 6 lbgdf k'/f u/]5 eg] A n] slt lbg;Dd ;“u} sfd u/]/ 5f8]sf] lyof] < kTtf
nufpg'xf];\ .
;dfwfg M
oxfF dfgf}“, A n] x lbg;Dd ;“u} sfd u/]sf] lyof] .
1
A sf] 1 lbgsf] sfd = 12 A

1
B sf] 1 lbgsf] sfd = 18 A

13
1 1
(A + B) sf] 1 lbgsf] sfd = 12 + 18 A

E
A A

1 1
(A + B) sf] x lbgsf] sfd = x 12 + 18
 
A E

1 1
B n] 6 lbgdf u/]sf] sfd = 6 × 18 = 3 A

E
A A

1 1 1
k|Zgcg';f/, x 12 + 18 + 3 = 1
 
A E A A A

E E

5x 1
cyjf, 36 A

E
A =1–3 A

2 36
cyjf, x = 3 × A A

E
A

5 E

24 4
cyjf, x= A

5 E
A ∴ x=45 A

4
ctM A n] 4 5 lbg ;“u} sfd u/]/ sfd 5f8]sf] lyof] .
A A

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. P / Q n] s'g} sfd 15 / 18 lbgdf ug{ ;S5g\\ . b'j}n] sfd ;'? u/]sf] s]xL lbgkl5 P n]
5f]8]5 / af“sL sfd Q n] 3 lbgdf k'/f ub{5 eg] P n] slt lbg ;“u} sfd u/]/ 5f8]sf] lyof] <
9
-pTt/ M 611 lbg_ A E A

2. /fd / xl/n] s'g} sfd 20 / 24 lbgdf ug{ ;S5g\\ . b'j}n] sfd ;'? u/]sf] s]xL lbgkl5 /fdn]
5f]8]5 / af“sL sfd xl/n] 4 lbg sfd u/]/ 5f8]sf lyP . b'j}hgf ldnL slt lbg;Dd sfd
u/]5g\ < kTtf nufpg'xf];\ .
1
-pTt/ M 911 lbg_ A E A

3. wgdfof / dgdfofn] s'g} sfd 25 / 30 lbgdf ug{ ;S5g\\ . b'j}n] sfd ;'? u/sf] s]xL
lbgkl5 wgdfofn] sfd 5f]l85g\\ / af“sL sfd dgdfofn] 5 lbgdf k'/f ul/g\ eg] wgdfofn]
slt lbg sfd u/]/ 5f8]sL lyOg\ <
4
-pTt/ M 1111 lbg_
A E A

gd'gf 3 :
A nfO{ Pp6f sfd k'/f ug{ 20 lbg nfU5 . PSn}n] 5 lbg;Dd sfd u/]/ af“sL sfd B ;“u ldnL u5{ . olb
;Dk"0f{ sfd k'/f x'g 15 lbg nfu]5 eg] B PSn}n] Tof] sfd k'/f ug{ slt lbg nfUnf < kTtf
nufpg'xf];\ .
;dfwfg M
oxfF, A n] 1 sfd 20 lbgdf ub{5 .
14
1
A n] 20 sfd 1 lbgdf ub{5 .
A

E
A

5 1
A n] 20 = 4 sfd 5 lbgdf ub{5 .
A

E
A A

E
A

 1 3
(A + B) n] 1 – 4 = 4 sfd (15 – 5) = 10 lbgdf ;S5 .
 
A E A A A

3 1 3
(A + B) n] 4 × 10 = 40 sfd 1 lbgdf ;S5 . A A

E
A

E
A A

E
A

3 1
B PSn}]n] 1 lbgdf 40 – 20 sfd l;Wofp“5 .
 
A E A

3–2 1
B PSn}]n] 1 lbgdf = 40 = 40 sfd l;Wofp“5 . A

E
A A

E
A

B PSn}n] 1 sfd 40 lbgdf ;S5 . ctM B nfO{ ;f] sfd ;Sg nfUg] ;do 40 lbg .

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. P nfO{ Pp6f sfd k'/f ug{ 30 lbg nfU5 . pm PSn}n] 5 lbg;Dd sfd u/]/ af“sL sfd Q
;“u ldnL u5{ . olb ;Dk"0f{ sfd k'/f x'g 16 lbg nfu]5 eg] Q PSn}nfO{ Tof] sfd k'/f ug{
1
slt lbg nfUnf < -pTt/ M 533 lbg_ A E A

2. dLgfnfO{ Pp6f sfd k'/f ug{ 50 lbg nfU5 . pm PSn}n] 20 lbg;Dd sfd u/]/ af“sL sfd
aLgf;“u ldnL ub{l5g\ . olb ;Dk"0f{ sfd k'/f x'g 15 lbg nfu]5 eg] aLgf PSn}nfO{ Tof] sfd
k'/f ug{ slt lbg nfUnf < -pTt/ M 50 lbg_
3. k|ltefnfO{ Pp6f sfd k'/f ug{ 60 lbg nfU5 . pm PSn}n] 15 lbg;Dd sfd u/]/ af“sL sfd
/]lhgf;“u ldnL ub{l5g\\ . olb ;Dk"0f{ sfd k'/f x'g 20 lbg nfu]5 eg] /]lhgf PSn}nfO{ Tof]
sfd k'/f ug{ slt lbg nfUnf < -pTt/ M 48 lbg_
gd'gf 4 :
df]xg / ;f]xg ldn]/ s'g} Pp6f sfd 30 lbgdf l;Wofp“5g\\ . b'j} ldnL 20 lbg;Dd sfd u/]/ ;f]xgn]
5f8]5 . olb df]xg PSn}n] af“sL sfd 35 lbgdf l;Wofpg ;S5 eg] ;f]xg PSn}n] k'/} sfd slt
lbgdf l;Wofpnfg\ <
;dfwfg
oxfF, df]xg / ;f]xgsf] 30 lbgsf] sfd = 1
1
cyjf, df]xg / ;f]xgsf] 1 lbgsf] sfd = 30 A

1 2
cyjf, df]xg / ;f]xgsf] 20 lbgsf] sfd = 30×20 = 3 A

E
A A

15
2 1
af“sL sfd = 1 – 3 = 3A A

E
A

1
df]xgn] 35 lbgdf af“sL = 3 sfd u5{ . A A

1
;f]xgn] 1 lbgdf af“sL = 3 × 35 sfd u5{ . A

E
A

1 1
;f]xgn] 1 lbgdf af“sL = 30 – 3 × 35 [∴ ;f]xg = -df]xg + ;f]xg_ – df]xg ]
A

E
A A

E
A

7-2
= 210 A E

5
= 210 A E

1
= 42 A

ctM ;f]xgnfO{ 1 sfd ug{ nfUg] ;do = 42 lbg .

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. k|df]b / /fdrGb|n] s'g} sfd j|mdzM 30 / 20 lbgdf ug{ ;S5g\\ . b'j} ldnL s]xL lbg;Dd sfd
u/]kl5 /fdrGb|n] 5f]8] . olb af“sL sfd k|df]bn] 15 lbgdf k'/f u/] eg] /fdrGb|n] slt
lbg;Dd ;“u} sfd u/]/ 5f8]sf lyP < -pTt/ M 6 lbg_
2. /fd / Zofdn] s'g} sfd j|mdzM 15 / 10 lbgdf ug{ ;S5g\\ . b'j} ldnL s]xL lbg;Dd u/]kl5
/fdn] 5f]8] / af“sL sfd Zofdn] 5 lbgdf k'/f u/]sf lyP eg] /fdn] slt lbg;Dd ;“u} sfd
u/]/ 5f8]sf lyP . -pTt/ M 3 lbg_
3. k|df]b / /fdrGb|n] s'g} sfd j|mdzM 30 / 20 lbgdf ug{ ;S5g\\ . b'j} ldnL s]xL lbg;Dd sfd
u/]kl5 /fdrGb|n] 5f]8] . olb af“sL sfd k|df]bn] 15 lbgdf k'/f u/] eg] /fdrGb|n] slt
lbg;Dd ;“u} sfd u/]/ 5f]8]sf lyP . -pTt/ M 6 lbg_

gd'gf 5:
2
;f}/enfO{ Ps lbg nfUg] sfd uf}/jnfO{ b'O{ lbg nfU5 . olb uf}/jn] Pp6f sfdsf] 5 efu ;Sg A A

24 lbg nufp“5 eg] b'j} ldn]/ ;f] k'/f sfd ;Sg slt lbg nufpnfg\ <

;dfwfg M
2
oxf“, uf}/jn] 5 efu sfd 24 lbgdf ;S5 .
A A

16
2 1
uf}/jn] 5×24 = 60 sfd 1 lbgdf u5{ .
A

E
A A

E
A

1 1 1
ctM -;f}/e ± uf}/j_ n] 30 + 60 = 20 sfd 1 lbgdf ug{ ;S5 . A

E
A A

E
A A

E
A

,, ,, 1 sfd 20 lbgdf ug{ ;S5 .

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. uf]kL / s[i0f ldnL s'g} sfd 24 lbgdf ug{ ;S5g\\ . uf]kLn] 4 lbgdf u/]sf] sfd s[i0fn] 6 lbgdf ug{
;S5 eg] k|To]sn] PSnfPSn} slt lbgdf k'/f ug{ ;S5g\ < -pTt/ M 40 lbg, 60 lbg_
2
2. bofnfO{ 1 lbg nfUg] sfd dfofnfO{ 3 lbg nfU5 . olb bofn efu 5 sfd 30 lbgdf ug{ A A

1
;S5 eg] b'j} ldnL ;f] k'/f sfd ;Sg slt lbg nufpnfg\ < -pTt/ M 564 lbg_ A E A

2
3. s?0ffnfO{ 3 lbg nfUg] sfd ;fu/nfO{ 5 lbg nfU5 . olb s?0ffn] Pp6f sfdsf] 3 efu sfd ;Sg A

E
A

3
30 lbg nufp“5 eg] b'j} ldn]/ ;f] k'/f ug{ slt lbg nufpnfg\ < -pTt/ M 184 lbg_ A E A

gd'gf 6:
2
dbgn] Pp6f sfdsf] 5 efu 9 lbgdf l;Wofp“5 . af“sL sfd ug{ p;n] cd/nfO{ af]nfp“5 . b'j} A

E
A

ldnL ;f] sfd 6 lbgdf l;Wofp“5g\\ eg] cd/ PSn}n] k'/} sfd l;Wofpg slt lbg nfUnf <
;dfwfg M
2
oxfF, dbgn] 5 efu sfd 9 lbgdf l;Wofp“5 .
A A

2 2
dbgn] 5 × 9 = 45 efu sfd 1 lbgdf l;Wofp“5 .
A

E
A A

E
A

2 3
dbgn] / cd/n] ldn]/ u/sf] sfd = 1 – 5 = 5 A A

E
A

3
oxf“, dbg / cd/n] 5 efu sfd 6 lbgdf l;Wofp“5 . A A

3 1
dbg / cd/n] 5 × 6 = 10 efu sfd 1 lbgdf l;Wofp“5 .
A

E
A A E A

1 2
cd/ PSn}n] 10 – 45 efu sfd 1 lbgdf l;Wofp“5 .
 
A E A

cd/ PSn}n] k'/f (1) sfd 18 lbgdf l;Wofp“5 .

17
cEof;sf nflu k|Zg
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
2
1. /fdn] Pp6f sfdsf] 3 efu 30 lbgdf l;Wofp“5 . af“sL sfd ug{ p;n] xl/nfO{ af]nfp“5 /
A

E
A

b'j} ldnL ;f] sfd 8 lbgdf l;Wofp“5g\\ eg] xl/ PSn}nfO{ k'/} sfd ;Sg slt lbg nfUnf <
4
-pTt/ M 537 lbg_
A E A

2
2. /dfn] Pp6f sfdsf] 5 efu 18 lbgdf l;Wofp“5 . af“sL sfd ug{ p;n] cl:dtfnfO{ af]nfp“5
A

E
A

/ b'j} ldnL ;f] sfd 9 lbgdf l;Wofp“5g\\ eg] cl:dtf PSn}nfO{ k'/} sfd l;Wofpg slt lbg
1
nfUnf < -pTt/ M 222 lbg_
A E A

3
3. A n] Pp6f sfdsf] 5 efu 25 lbgdf l;Wofp“5 . af“sL sfd ug{ p;n] B nfO{ af]nfp“5 / b'j}
A A

ldnL ;f] sfd 10 lbgdf l;Wofp“5g\\ eg] B PSn}nfO{ k'/} sfd l;Wofpg slt lbg nfUnf <
1
-pTt/ M 622 lbg_ A E A

gd'gf 7 :
ljsf;n] s'g} sfd 6 lbgdf k'/f ug{ ;S5 . lgdf{0fn] 9 lbgdf ;f]xL sfd k'/f ug{ ;S5 . ;f] sfd
3 lbg;Dd b'j} ldn]/ ul/;s]kl5 ljzfnn] 5f]8]5 eg] M
-s_ ljsf; PSn}n] af“sL sfd slt slt lbgdf k'/f unf{ <
-v_ k'/f sfd slt lbgdf ;lsPnf <

;dfwfg M
oxf“, ljsf;n] 6 lbgdf 1 sfd u5{ .
1
lgdf{0fn] 1 lbgdf 6 sfd u5{g\ .
A A

lgdf{0fn] 9 lbgdf 1 sfd u5{g\ .


1
lgdf{0fn] 1 lbgdf 9 sfd u5{g\ .
A A

1 1  5
-ljsf; ± lgdf{0f_ n] 1 lbgdf 6 + 9 = 18
 
A E A A

E E

5 5
ljsf; ± lgdf{0fn] 3 lbgdf 3 × 18 = 6 sfd l;Wofp“5g\ . A

E
A A A

18
5 1
af“sL sfd = 1 – 6 = 6
A A

E
A

1
(i) ljsf;n] af“sL sfd 6 sfd 1 lbgdf k'/f ug{ ;S5 .
A A

jf af“sL sfd 6 lbgdf k'/f ug{ ;S5 .


(ii) k'/} sfd l;Wofpg nfu]sf] ;do
= 3 lbg + 1 lbg = 4 lbg

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. A n] s'g} sfd 18 lbgdf k'/f ug{ ;S5 / B n] 24 lbgdf ;f]xL sfd k'/f ug{ ;S5 . ;f] sfd
6 lbg;Dd b'j} ldn]/ ul/;s]kl5 B n] 5f]8]5 eg],
1
(i) A Psn}n] af“sL sfd slt lbgdf k'/f unf{ < -pTt/ M 72 lbg_ A E A

1
(ii) k'/f sfd slt lbgdf ;lsPnf < -pTt/ M 132 lbg_
A E A

2. P n] s'g} sfd 20 lbgdf k'/f ug{ ;S5 / n] 30 lbgdf ;f]xL sfd k'/f ug{ ;S5 . ;f] sfd
10 lbg;Dd b'j} ldn]/ ul/;s]kl5 Q n] 5f]8]5 eg],
1
(i) P PSn}n] af“sL sfd slt lbgdf k'/f unf{ < -pTt/ M 33 lbg_
A E A

1
(ii) k'/f sfd slt lbgdf ;lsPnf < -pTt/ M 33 lbg_
A E A

19
#=@ nfdf] pTt/ cfpg] k|Zgx¿ -ltg hgf;“u ;DalGwt ;do / sfdsf ;d:ofx¿_

gd'gf 1 :
A n] s'g} sfd 10 lbgdf / B n] 12 lbgdf ug{ ;S5g\\ . olb C sf] ;xof]u lnO{ ltgLx¿n] ;f] sfd
4 lbgdf ug{ ;S5g\\ eg] C PSn}n] ;f] sfd slt lbgdf ;S5 < kTtf nufpg'xf];\ .
;dfwfg
oxf“, A sf] 10 lbgsf] sfd = 1
1
A sf] 1 lbgsf] sfd = 10 A

B sf] 12 lbgsf] sfd = 1


1
B sf] 1 lbgsf] sfd = 12A

A + B + C) sf] 4 lbgsf] sfd = 1


1
(A + B + C) sf] 1 lbgsf] sfd = 4 A

1 1 1 1
∴ C sf] 1 lbgsf] sfd = 4 – 10 – 12 = 15
A A

E
A

E
A A

E
A A

1 1 1
= 4 – 10 – 12
A

E
A A

E
A A

E
A

= (15-6-5)/60
= 4/60
1
= 15 A

∴ C sf] 15 lbgsf] sfd = 1


ctM C PSn}n] ;f] sfd 15 lbgdf ;S5 .

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. /fdn] s'g} sfd 10 lbgdf / xl/n] 12 lbgdf ug{ ;S5g\, s[i0fsf] ;xof]u lnO{ ltgLx¿n] ;f]
sfd 5 lbgdf ug{ ;S5g\\ eg] s[i0f PSn}n] ;f] sfd slt lbgdf ;S5 <
-pTt/ M 60 lbg_
2. P n] s'g} sfd 16 lbgdf / Q n] 24 lbgdf ug{ ;S5g\\ . R sf] ;xof]u lnO{ ltgLx¿sf] ;f] sfd 12
lbgdf ug{ ;S5g\\ eg] R PSn}n] ;f] sfd slt lbgdf ;S5 < -pTt/ M 48 lbg_
3. dLgf / /Lgfn] s'g} Pp6f sfd j|mdzM 24 / 32 lbgdf ug{ ;S5g\\ . lbgfsf] ;xof]u lnO{
ltgLx¿n] ;f] sfd 12 lbgdf ug{ ;S5g\\ eg] aLgf PSn}n] ;f] sfd slt lbgdf ;lS5g\\ <
-pTt/ M 96 lbg_

20
gd'gf 2:
A, B / C n] s'g} sfd j|mdzM 10 lbg, 20 lbg / 30 lbgdf ;S5g\\ . ltg} hgf ldnL sfd ;'?
u/]sf] 4 lbgkl5 A n] 5f]8\5 . C n] sfd ;dfKt x'g'eGbf 5 lbg klxn] 5f]8]5 eg] sfd ;dfKt x'g
slt lbg nfUnf <
;dfwfg M
oxfF, dfgf}“ x lbgdf ;f] sfd ;dfKt x'G5 .
A sf] 10 lbgsf] sfd = 1
1
A sf] 1 lbgsf] sfd = 10 A

4
A sf] 4 lbgsf] sfd = 10 A

B sf] 20 lbgsf] sfd = 1


1
B sf] 1 lbgsf] sfd = 20 A

E
A

x
B sf] x lbgsf] sfd = 20 A

C sf] 30 lbgsf] sfd = 1


1
C sf] 1 lbgsf] sfd = 30 A

x–5
C sf] (x – 5) lbgsf] sfd = 30 A

4 x x–5
To;sf/0f, 10 + 20 + 30 = 1
A A

E
A

E
A A

E
A

24 + 3x + 2x – 10
cyjf, A

60 =1 E
A

cyjf, 5x + 14 = 60
cyjf, 5x = 46
1
x = 9 5 lbg A E A

1
ctM ;f] sfd ;dfKt x'g 9 5 lbg nfU5 . A E A

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. A n] s'g} sfd 10 lbgdf ug{ ;S5 . B n] 12 lbgdf / C n] 15 lbgdf ug{ ;S5g\ . ;a} ldnL
sfd ;'? u5{g\ t/ A n] 2 lbgkl5 sfd 5f8\5 . B n] sfd ;lsg'eGbf 3 lbg cl3 sfd
5f]8\5 eg] ;f] sfd slt lbgdf ;dfKt xf]nf < -pTt/ M 7 lbg_
2. s'g} sfd A n] 10 lbgdf B n] 20 lbgdf / C n] 30 lbgdf ;S5g\ . ltg} hgf ldnL sfd
;'? u/]sf] 4 lbgkl5 A n] sfd 5f]8\5 . C n] sfd ;dfKt x'g'eGbf 3 lbg klxn] 5f]8]5 eg]
2
sfd ;dfKt x'g slt lbg nfUnf < -pTt/ M 8 5 lbg_ A E A

21
3. s'g} sfd P n] 20 lbgdf, Q n] 30 lbgdf / R n] 40 lbgdf ;f]xL ;S5g\\ . ltg} hgf ldnL
sfd ;'? u/]sf] 8 lbgkl5 P n] sfd 5f]8\5 . R n] sfd ;dfKt x'g'eGbf 3 lbg klxnf] 5f]8]5
4
eg] sfd ;dfKt x'g slt lbg nfUnf < -pTt/ M 117 lbg_ A E A

yk cEof;sf nflu k|Zg


1. 20 hgf dflg;n] Pp6f sfd 30 lbgdf ug{ ;S5g\\ . olb ;f] sfd 6 lbg cufj} k'/f ug'{5 eg]
slt hgf dflg; yKg' knf{ < -pTt/ M 5 hgf_
2. 45 hgf dflg;n] k|ltlbg 12 306fsf] b/n] 30 lbgdf ug{ ;Sg] sfd 60 hgf dflg;n] 10
306fsf] b/n] slt lbgdf l;Wofpnfg\ < -pTt/ M 27 lbg_
3. Pp6f 5fqfjf;df 500 hgf ljb\ofyL{nfO{ 40 lbg k'Ug] /;b 5 . Tof] /;bn] yk 10 lbg
k'¥ofpg slt hgfnfO{ 5fqjf;af6 cGoq ;fg'{ k5{{ < -pTt/ M 100 hgf_
4
4. P n] Pp6f sfdsf] 9 efu 36 lbgdf l;Wofp“5 . af“sL sfd ug{ p;n] Q nfO{ af]nfp“5 / b'j}
A E A

ldnL ;f] sfd 12 lbgdf l;Wofp“5g\\ eg] Q PSn}nfO{ k'/} sfd l;Wofpg slt lbg nfUnf < -pTt/
5
M 2911 lbg_ A E A

5. Pp6f Aof/]sdf /x]sf s]xL l;kfxLnfO{ 30 lbg k'Ug] /;b lyof] . 10 lbgkl5 ;f] Aof/]saf6 60
hgf l;kfxLn] 5f]8] . ca ;f] /;b tf]lsPsf] lbgeGbf yk 10 lbgnfO{ k'Uof] eg] ;f] Aof/]sdf
;'?df slt l;kfxL lyP < -pTt/ M 180 hgf_
6. P / Q ldn]/ s'g} sfd 40 lbgdf ug{ ;S5g\\ . Q n] 5 lbgdf ug]{ sfd P n] 4 lbgdf ug]{ eP
2
k|To]snfO{ PSnfPSn} sfd ;Sg slt slt ;do nfUnf < -pTt/ M663 lbg, 100 lbg A E A

8. A / B n] s'g} sfd j|mdzM 32 / 24 lbgdf ;S5g\\ . b'j}n] sfd ;'? u/]sf] s]xL lbgkl5 A n]
5f]8\5 / af“sL sfd B n] 8 lbgdf k'/f u/]5 eg] A n] slt lbg ;“u} sfd u/]/ 5f8]sf] lyof] <
1
-pTt/ M 97 lbg_
A E A

9. A nfO{ Pp6f sfd k'/f ug{ 40 lbg nfU5 . pm PSn}n] 10 lbg;Dd sfd u/]/ af“sL sfd B
;“u ldnL u5{ . olb ;Dk"0f{ sfd k'/f x'g 20 lbg nfu]5 eg] B PSn}nfO{ Tof] sfd k'/f ug{
slt lbg nfUnf < -pTt/ M 22 lbg_
10. /Lt' / gLt' ldn]/ s'g} Pp6f sfd 40 lbgdf l;Wofpg ;S5g\\ . b'j} ldnL 25 lbg;Dd sfd
u/]/ gLt'n] 5fl85g\\ . olb /Lt' Psn}n] af“sL sfd 45 lbgdf l;Wofpg ;lS5g\\ eg] gLt' PSn}n]
k'/} sfd slt lbgdf l;Wofplng\ < -pTt/ M 60 lbg_
11. D n] s'g} sfd 40 lbgdf k'/f ug{ ;S5 / R n] 50 lbgdf ;f]xL sfd k'/f ug{ ;S5 . olb ;f]
sfd 20 lbg;Dd b'j} ldn]/ ul/;s]kl5 R 5f]8]5 eg],
(i) D PSn}n] af“sL sfd slt lbgdf k'/f unf{ < -pTt/ M 4 lbg_
(ii) k'/f sfd slt lbgdf ;lsPnf < -pTt/ M 24 lbg_
12. A, B / C n] s'g} Pp6f sfd j|mdzM 30, 40 / 60 lbgdf k'/f ug{ ;S5g\ . ltg} hgf ldn]/ sfd
;'? u/]sf] 10 lbgkl5 B n] 5f]8\of] . B n] 5f8]sf] 4 lbgkl5 A n] 5f]8\5 . af“sL sfd C n] k'/f
ub{5 eg] C n] hDdf slt lbg sfd u¥of] < -pTt/ M 3 lbg_

22
kf7 2.2 gfkmf / gf]S;fg, 5'6 tyf d"No clej[b\lw s/
(Profit and Loss, Discount and Value Added Tax)

o; kf7df gfkmf / gf]S;fg ;DaGwL ;d:of -cª\lst d"No, 5'6, d"No clej[b\lw s/ ;d]t_ ;dfwfg
ug]{ vfnsf ;d:ofx¿ ;dfj]z ul/Psf 5g\ . k/LIffdf o;sf ljifoj:t'af6 Pp6f b'O{ cª\s ef/sf]
5f]6f] l;k txsf] tyf Pp6f rf/ cª\s ef/sf] ;d:of ;dfwfg txsf] nfdf] pTt/ cfpg]] k|Zg u/L
hDdf 5 cª\s ef/sf k|Zgx¿ ;f]lwg] Joj:yf 5 .
2. cfwf/e"t tYo tyf ;"qx¿
-s_ cfwf/e"t wf/0ffx¿
gfkmf / gf]S;fg cl3Nnf sIffx¿af6 ;'?jft ul/Psf] 5 . lgDg lnlvt kl/efiffx¿sf] cWoog
u/f}+“ M
-c_ j|mo d"No (Cost Price)
;fdfg vl/b ubf{ ltl/Psf] d"NonfO{ ;f] ;fdfgsf] j|mo d"No elgG5 / o;nfO{ ;ª\lIfKt ¿kdf
j|m=d"= (C.P.) n]lvG5 .
-cf_ ljj|mo d"No (Selling Price)
s'g} klg ;fdfg laj|mL ubf{ k|fKt x'g] /sdnfO{ ;f] ;fdfgsf] ljj|mo d"No elgG5 . o;nfO{
;ª\lIfKt ¿kdf lj=d"=(S.P.) åf/f hgfOG5 .
-O_ gfkmf (Gain or Profit)
olb s'g} klg ;fdfgsf] vl/b d"No (C.P.) eGbf ljj|mo d"No (S.P) w]/} eP S.P. / C.P. larsf]
cGt/nfO{ gfkmf (profit or gain) elgG5 .
To;sf/0f, gfkmf = S.P. – C.P. x'G5 .
-O{_ 3f6f jf gf]S;fg (Loss)
s'g} klg j:t'sf] ljj|mo d"No (S.P.) eGbf j|mo d"No (C.P. ) w]/} eP C.P, / S.P larsf] cGt/nfO{
pSt ;fdfgdf x'g] 3f6f (Loss) elgG5 .
To;sf/0f 3f6f (Loss) = C.P. – S.P. x'G5 .
ctM olb S.P. > C.P. eP gfkmf = SP – CP /
olb S.P. < CP eP 3f6f = CP – SP x'G5 .

cGTodf,
SP × 100
(i) S.P. / gfkmf % (G%) lbOPdf, CP = (100 + G%)
A E

SP × 100
(ii) S.P. / gf]S;fg % (L%) lbOPdf, CP = (100 + L%)
A E

23
-p_ 5'6 (Discount)
s'g} klg j:t' ljqmL ubf{ To; j:t'sf] ljj|mo d"Noaf6 s]xL /sd jf s]xL k|ltzt /sd
36fP/ lbOG5 eg] o;/L 36fPsf] /sdnfO{ 5'6 elgG5 . a]Rgsf nflu tf]lsPsf] cª\lst d"No
(marked price) df s]xL /sd sd u/]/ jf 36fP/ a]lrG5 eg] To:tf] /sd 5'6 /sd xf] .
k|ltztdf n]lvPsf] 5'6nfO{ 5'6 k|ltzt elgG5 .
t;y{, jf:tljs 5'6 = cª\lst d"No – ljj|mo d"No
5'6 k|ltzt = jf:tljs 5'6 / cª\lst d"No × 100 %
• s/ nfUg] /sd = hDdf cfDbfgL – s/ gnfUg] /sd
Taxable Income = Total Imcome – Exempted Limit
• ljj|mo d"No -Eof6 /sd;lxt_ = -c=d= – 5'6_ ++ lj= d"= sf] Eof6 %
• SP1= (MP–D) + VAT
• Eof6 /sd = lj=d"=sf] Eof6 k|ltzt , (VAT = VAT% of SP)

@= ljz]if Wofg lbg'{kg]{ s'/fx¿


1. olb j|mo d"No / ljj|mo d"Nosf kl/df0fx¿km/s km/s ePdf ;aeGbf klxnf a/fa/
kl/df0fsf j|mo d"No / laj|mo d"No lgsfn]/ gfkmf jf gf]S;fg lgsfNg' k5{ .
2. ;fdfGotof gfkmf jf gf]S;fg k|ltzt j|mo d"Noaf6 lgsflnG5 .
3. 5'6 hlxn] klg d"Noaf6 lgsflnG5 .
4. ljleGg lzif{sx¿sf vr{x¿ -3/fo;L, oftfoft, dd{t ;+xf/, tyf cGo ljljw_
5. d"No clej[blw s/ hlxn] klg a:t'sf] clGtd 5'6 kl5sf] ljj|mo d"Nodf nfUg] u5{ . o;sf]
b/ pNn]v gePsf] cj:yfdf 13 % /xg] 5 .
6. d"= c= s= jf VAT h] n]v] klg d"No clej[b\lw s/ eGg] a'em\g'kb{5 .

#= gd'gf k|Zgf]Tt/ tyf cEof;


#=! 5f]6f] pTt/ cfpg] k|Zg ;DaGwL cEof;
gd'gf 1 :
k|ltefn] Pp6f 38L ?= 1800 df lsg]/ ?= 2250 df laj|mL ubf{ slt k|ltzt kmfObf ul/g\ <
;dfwfg
oxf“,
j|mo d"No (CP) = ?=1800
ljj|mo d"No (S.P.) = ?. 2250
S.P. > CP ePsfn], gfkmf (G) = SP – CP
= ?=2250 – ?=1800
= ?= 450
ca, gfkmf k|ltzt (%) = P/CP × 100
450
= 2250 × 100
A E A

24
= 25%
ctM gfkmf k|ltzt = 20%
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
[

1. gfkmf k|ltzt kTtf nufpg'xf];\ .


-s_ C.P. = ?= 750 / S.P. = ?= 825 -pTt/ M 10% )
-v_ C.P. = ?= 850 / S.P. = ?= 1120 (pTt/ M 31.76%)
2. 3f6f k|ltzt kTtf nufpg'xf];\ .
-s_ C.P. = ?= 650 / S.P. = ?= 585 (pTt/ M 10%)
-v_ C.P. = ?= 1875 / S.P. = ?= 1425 (pTt/ M 24%)
gd'gf 2 :
/Ghgn] Pp6f SofNs'n]6/ ?= 800 df vl/b u/L 25% 3f6f vfO{ laj|mL u/]5 eg] p;n] sltdf ;f]
SofNs'n]6/ laj|mL u/]5 <
;dfwfg M
oxf“, j|mo d"No (C.P.) = ?= 800, 3f6f % (L%) = 25%
ljj|mo d"No (S.P.) = ?
klxnf] tl/sf,
xfdLnfO{ yfxf 5, ljj|mo d"No (S.P.) = C.P. (100
100
– L%)
A

E
E A

800(100 – 25)
= A

100 E
E

= ?= 600
bf];|f] tl/sf,
25% gf]S;fgsf] cyf{g';f/,
C.P. ?= 100 eP S.P. = ?= 75 x'G5 .
75
cyjf, C.P. ?= 1 eP S.P. = ?= 100 A x'G5 . E A

∴ CP ?= 800 eP S.P. = ?= A
75
100 × 800E A x'G5 .
∴ laj|mo d"No (S.P.) = ?=600
t];|f] tl/sf,
25% 3f6fsf] cy{af6,
ljj|mo d"No (S.P.) = CP sf] (100% – L%)
= ?= 800 × (100% – 25%)
= ?= 800 × 75%
= ?= 800
= ?=600
rf}yf] tl/sf M
ljj|mo d"No = C.P. – gf]S;fg (l)

25
= ?= 800 – ?= 800 sf] 25%
= ?= 800 – ?= 800 x
∴ ljj|mo d"No (S.P.) = ?= 600

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. ljj|mo d"No (S.P.) kTtf nufpg'xf];\ . (pTt/ M ?= 1767)
-s_ C.P. = ?= 1425, gfkmf (G) = 24%
-v_ C.P. = ?= 1875, gfkmf (G) = 20% (pTt/ M ?= 2250)
2. ljj|mo d"No (S.P.) kTtf nufpg'xf];\ .
-s_ C.P. = ?= 4235, gf]S;fg (L) = 20% (pTt/ M ?= 3388)
-v_ C.P. = ?= 5050, gf]S;fg (L) = 10% (pTt/ M ?= 4545)
gd'gf 3 :
s'g} ;fdfg ?= 1620 df laj|mL ubf{ 10% gf]S;fg x'G5 eg] ;f] ;fdfgsf] j|mo d"No kTtf nufpg'xf];\ .
;dfwfgM
oxf“, ;fdfgsf] ljj|mo d"No (S.P) = ?= 1620
k|ltzt gf]S;fg (L) = 10%
;fdfgsf] j|mo d"No (C.P.) = ?
ca, 10% gf]S;fgsf] cyf{g';f/,
S.P. = C.P. sf] 90%
90
cyjf, 1620 = C.P. × 100 A

100
cyjf, 1620 × 90 = C.P.
A

E
A

∴ C.P. = 1800
ctM ;f] ;fdfgsf] j|mo d"No (C.P.) = ?= 1800 k5{ .

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. j|mo d"No (C.P.) kTtf nufpg'xf];\ .
-s_ lj=d"= (S.P.) = ?= 4545, gfkmf (G) = 25% pTt/ M ?= 3636
-v_ lj=d"= (S.P) = ?= 3798, gfkm (G) = 10% pTt/ M ?= 3450
2. j|mo d"No (C.P.) kTtf nufpg'xf];\ .
-s_ 10% gf]S;fg ;x]/ Pp6f /]l8of] ?= 5454 df laj|mL ul/of] . pTt/ M ?= 6060
-v_ 20% gf]S;fg ;x]/ Pp6f sDKo'6/ ?= 56560 df laj|mL ul/of] . pTt/ M ?= 70700

26
gd'gf –4 :
s'g} ljj|m]tfn] Pp6f /]l8of] ?= 225 df vl/b u/L ?=15 dd{tdf vr{ ub{5 . olb p;n] ;f] /]l8of] ?=
300 df laj|mL u5{ eg] p;sf] gfkmf k|ltzt slt xf]nf <
;dfwfg M
oxf“, /]l8of]sf] j|mo d"No (CP) = ?= 225
yk dd{t vr{ = ?= 15
/]l8of]sf] ljj|mo d"No (S.P.) = ? =300
∴ /]l8of]sf] hDdf j|mo d"No (C.P.) = ?=225 + ?=15 = ?= 240

csf]{ tl/sf M
oxf“, /]l8of]sf] j|mo d"No (C.P)
= ?= 225 + ?= 15 = ?= 240
/]l8of]sf] ljj|mo d"No (S.P) = ?= 300
gfkmf k|ltzt (G%) = ?
xfdLnfO{ yfxf 5,
gfkmf k|ltzt =
=
= 25%
ca, gfkmf = SP - CP ?= 300 - ?= 240 = ?= 60
60
∴ gfkmf k|ltzt = = 240 × 100 = 25%
A A

ctM cfjZos gfkmf k|ltzt = 25%

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. v'b|f k;n]n] Pp6f SofNs'n]6/ ?= 1350 df vl/b u/L dd{t vr{ ?= 50 nufO{ dd{t u¥of] .
olb ;f] SofNs'n]6/sf] ljj|mo d"No ?= 1540 eP gfkmf k|ltzt kTtf nufpg'xf];\ .
pTt/ M 10%)
2. /fdn] Ps 3f/L s]/f ?= 225 df vl/b u/L l/S;f ef8f ?= 15 vr{ u/]/ cfk\mgf] k;ndf
Nofof] . olb p;n] pSt s]/fwf/L ?= 300 df laj|mL u¥of] eg] p;sf] gfkmf k|ltzt kTtf
nufpg'xf];\ . -pTt/ M 25%)
3. ;lagn] 1 bh{g sfkL ?= 240 df vl/b u/L k|lt uf]6f ?= 18 sf b/n] a]r]5 eg] hDdf
gf]S;fg k|ltzt kTtf nufpm . -pTt/ M 10%)
gd'gf 5 :
Pp6f sf]6sf] cª\lst d"No ?= 3500 k5{ . k;n]n] 15% 5'6 lbof] eg],
(i) 5'6 /sd slt xf]nf < (ii) ljj|mo d"No slt xf]nf <

27
;dfwfg M
oxf“, sf]6sf] cª\lst d"No (M.P.) = ?= 3500
5'6 (d) = 15%
(i) 5'6 /sd = M.P. sf] d%
15
= ?= 3500 sf] 15% = 3500 × 10 = ?= 525A E A

∴ 5'6 /sd = ?= 525


(ii) S.P. = ?

xfdLnfO{ yfxf 5,
SP = MP – discount = ?= 3500 – ?= 525
∴ ljj|mod"No (S.P.) = ?= 2975

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. Pp6f df]6/;fOsnsf] cª\lst d"No ?= 120000 k5{ . b;}+sf] pknIodf 15% 5'6 lbOPsf] eP
;f]sf] d"No slt xf]nf < -pTt/ M ?= 102000)
2. Pp6f j:t'sf] jf:tljs d"Nodf 15% a9fO cª\lst d"Nodf ?= 1380 sfod ul/of] ;f] j:t'sf]
jf:tljs d"No kTtf nufpg'xf];\ . -pTt/ M ?= 1200)
3. Pp6f SofNs'n]6/sf] cª\lst d"No ?. 260 5 . 5% 5'6 lb“bf ljj|mo d"No slt xf]nf <
-pTt/ M ?= 247)
4. /htn] Pp6f j:t' 25% 5'6 lbO{ ?= 2250 df a]Rof] eg] o;sf] cª\lst d"No slt xf]nf <
-pTt/ M 3000)
gd'gf 6 :
?= 7500 d"No n]lvPsf] Pp6f 6]lnlehg ?= 5700 df laj|mL ul/of] eg] 5'6 k|ltzt kTtf nufpg'xf];\ .
;dfwfg M
oxf“, /]l8of]sf] cª\lst d"No (M.P.) = ?= 7500
/]l8of]sf] ljj|mo d"No (S.P.) = ?= 5700
5'6 /sd (d) = MP – SP = ?= 7500 – ?= 5700 = ?= 1800
d 1800
∴ 5'6 k|ltzt (d %) = M.P.
A × 100 = 7500 × 100 = 24
E A A E A

∴ 5'6 k|ltzt ( d %) = 24%

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
!= ?= 15,000 d"No n]lvPsf] Pp6f Pn l; 8L nfO{ ?= 12,000 df laj|mL ul/of] eg] 5'6 k|ltzt kTtf
nufpg'xf];\ . -pTt/ M 20%_
@= slt k|ltzt 5'6 lbP/ lalqm ubf{ ?= 38,000 c+lst d"No ePsf] :df6{ kmf]gnfO{ ?= 32,300 df laj|mL
ug{ ;lsG5 <-pTt/ M 15%_
28
gd'gf 7 :
Pp6f b/fhdf df 15% 5'6 kfP/ ¿ 7650 df lslgof] eg] b/fhsf] cª\lst d"No kTtf nufpg'xf];\ .
;dfwfg M
oxF“,
b/fhdf 5'6 (D) = 15%
b/fhsf] ljj|mo d"No (SP) = ¿ 7650
xfdLnfO{ yfxf 5,
S.P = M=P – 5'6
cyjf, ?= 7650 = MP – M=P sf] 15%
cyjf, ?= 7650 = M=P – M=P
cyjf, ?= 7650 =
cyjf, M.P = ?= 9000
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf ;"qx¿ xn ug]{ k|of; ug'{xf];\ .
1= ;'hgn] Pp6f SofNs'n]6/ 8 % 5'6 kfO{ ?= 888 df lsGof] eg] pSt SofNs'n]6/sf] cª\lst
d"No slt lyof] < -pTt/ M ?= 965.21_
2= Pp6f ;fdfgsf] ljj|mo d"No ?= 9680 5 . olb cª\lst d"Nodf 12% 5'6 lbP/ laj|mL ul/G5
eg] To; ;fdfgsf] cª\lst d"No kTtf nufpg'xf];\ . -pTt/ M ?= 11,000_
3= s'g} j:t'sf] ljj|mo d"No ?= 320 5 . olb To;sf] cª\lst d"Nodf 29 % 5'6 lbP/ laj|mL
ul/Psf] eP cª\lst d"No slt lyof] xf]nf < -pTt/ M ?= 450.70_
4= s]zjn] Pp6f sf]6 245 % 5'6 kfP/ ?= 5625 df lsg] eg] sf]6sf] cª\lst d"No
lgsfNg'xf];\ . -pTt/ M ?= 7500_

gd'gf 8 :
Pp6f d"lt{sf] cª\lst d"No ?= 8,500 5 . 10 % VAT ;lxt ;f] d"lt{sf] ljj|mo d"No kTtf
nufpg'xf];\ .
;dfwfg M
oxf“
d"lt{sf] cª\lst d"No -M.P) ?= 8,500
VAT = 10%
ljj|mo d"No -S.P) = <
xfdLnfO{ yfxf 5,
SP = M=P + M=P sf] 10%
= ?= 8500 +?= 8500 x
= ?= 9350
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf ;"qx¿ xn ug]{ k|of; ug'{xf];\ .
29
1= Pp6f cfO/gsf] cª\lst d"No ? 4200 5 . olb 13% VAT hf]8]/ laj|mL ubf{ ;f] cfO/gsf]
d"No slt k5{ < -pTt/ M ?= 4746_
2. 15% VAT ;lxt cª\lst d"No ?= 17,500 ePsf] s'g} /]lk|mlh/]6/sf] ljj|mo d"No slt k5{ <
-pTt/ M ?= 20,125_
3= Pp6f lx6/ Uof;sf] cª\lst d""No ? 7,800 cª\lst ul/Psf] 5 / 10% VAT tf]lsPsf] 5
eg] j|m]tfn] pSt Uof;sf] d"No slt ltg'{k5{ < -pTt/ M ?= 8,580_

gd'gf 9 :
olb lbksn] Pp6f df]afOn kmf]g 13 % VAT lt/L ?= 4,800 df lsGof] eg] df]afOn kmf]gsf] cª\lst
d"No slt
lyof] <
;dfwfg M
oxfF,
df]afOn kmf]gsf] ljj|mo d"No (S=P) = ?= 4,800
VAT = 135
cª\lst d"No (M=P) = <
cª\lst d"No (M=P) = ?= x -dfgf+}_
k|Zgg';f/,
S.P = M=P + VAT
cyjf, ?= 4800 = x + x sf] 13%
cyjf, ?= 4800 = x + x x
cyjf, ?= 4800 =
cyjf, x = ?= 4247=79
ctM pSt df]afOn kmf]gsf] cª\lst d"No ?= 4247=78 /x]5 .

ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf ;"qx¿ xn ug]{ k|of; ug'{xf];\ M


1= olb /ljgn] 6]lnlehg 10% VAT ;lxt ?= 9625 df lsg]/ NofP eg] 6]lnlehgsf] cª\lst
d"No slt xf]nf < -pTt/ M ?= 8,750_
2. s'g} j:t'sf] ljj|mo d"No ?= 15255 5 . olb ;f] j:t'df 13% VAT nfU5 eg] j:t'sf] cªlst
d"No lgsfNg'xf];\ . -pTt/ M ?= 13,500_
3. s'g} j:t'sf] d"Nodf 15 % VAT lt/L ?= 172.50 df laj|mL ul/of] eg] VAT afx]ssf] d"No
lgsfNg'xf];\ . -pTt/ M ?= 150_

30
@ nfdf] pTt/ cfpg] k|Zgx¿ ;DaGwL cEof;
gd'gf 1 :
s'g} ;fdfg ?= 1620 df laj|mL ubf{ 10% gf]S;fg x'G5 eg] 5% gfkmf ug{ pSt ;fdfg s'g d"Nodf
a]Rg'knf{ <
;dfwfg M
oxf“, klxnf] cj:yf S.P. = ?= 1620 , gf]S;fg = 10%
bf];f] cj:yf S.P. = ?, gfkmf = 5%
klxnf] cj:yfaf6
CP sf] (100% – 10%) = ?= 1620
cyjf, CP × 90% = ? 1620
90
cyjf, CP × 100
A = ?=1620
E A

cyjf, CP = ?= 1620 × 100 90 A E

∴ C.P. = ?= 1800
bf];|f] cj:yfaf6,
CP sf] (100% + 5%) = S.P.
cyjf, 1800 × 105% = SP
cyjf, 1800 × 105
A

100 = S.P.
E A

∴ SP = ?= 1890
ctM 10% gfkmf ug{ ;f] ;fdfg ?= 1890 df a]Rg'k5{ .
cEof;sf nflu k|Zg
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. olb Pp6f ;fdfgnfO{ ?= 23 df laj|mL ul/G5 eg], 15% gfkmf x'G5 . 10% sf] gfkmf agfpg pSt
;fdfg sltdf laj|mL ug'{k5{ < kTtf nufpg'xf];\ . -pTt/ M ?= 22)
2. Pp6f 38L ?= 2700 df a]Rbf 10% gf]S;fg x'G5 . pSt 38Lsf]
-s_ j|mo d"No slt xf]nf < -pTt/ M ?= 3000)
-v_ 20% gfkmf ug{ sltdf a]Rg'knf{ < (pTt/ M ?= 3600)
3. Pp6f l;nfO d]l;g ?= 12690 df laj|mL ubf{ 6% gfkmf x'G5 . 4% gfkmf lng ;f] d]l;g sltdf
a]Rg'knf{ < -pTt/ M ?= 12450.57)
gd'gf 2 :
A n] Pp6f /]l8of] B nfO{ a]r]5 . B n] ;f] /]l8of] C nfO{ 10% gfkmf lnP/ a]r]5 . olb C n] B nfO{
?= 726 lt/]sf] eP B n] A nfO{ slt lt/]5 <
;dfwfg M
oxf“, B n] A ;“u lsg]sf] 38Lsf] d"No = x dfgf}“
k|Zgaf6,
x + x sf] 10% = ?= 726

31
10
cyjf, x + x × 100 = ?= 726
A A

11x 10
cyjf, 10 = ?= 726 × 11
A

E
A A

cyjf, x = ?= 660
ctM B n] A nfO{ lt/]sf] d"No = ?= 660.

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. Pp6f sDkgLn] ?= 12000 df sfk]{6 tof/ u5{ . ;f] sDkgLn] l8n/nfO{ 15% gfkmfdf laj|mL
u5{ . l8n/n] v'b|f Jofkf/LnfO{ 10% kmfObf / v'b|f Jofkf/Ln] u|fxsnfO{ 5% 3f6fdf laj|mL
ub{5 eg] u|fxsn] ;f] sfk]{6nfO{ slt lt5{ xf]nf < kTtf nufpg'xf];\ .
(pTt/ M ?=14421)
2. A n] Pp6f 6]lnlehgdf B nfO{ 10% kmfObfdf laj|mL u¥of] . B n] ;f] 6]lnlehg C nfO{ 20%
kmfObfdf laj|mL u¥of] . olb C n] pS6 6]lnlehg ?= 1650 df vl/b u/]sf] lyof] eg] A n]
sltdf vl/b u/]sf] lyof] xf]nf < kTtf nufpg'xf];\ . (pTt/ M ?=1250)
3. /fhgn] Pp6f lstfa ?= 180 df lsg]/ 20% gfkmfdf ;fhgnfO{ a]Rof] . ;fhgn] ;f] lstfa 20
% gf]S;fgdf lg/fhgnfO{ a]Rof] eg] lg/fhgn] 5% gfkmf lng ;f] lstfa sltdf laj|mL ug'{knf{
< kTtf nufpg'xf];\ . (pTt/ M ?= 181.44)
gd'gf 3 :
Pp6f Jofkf/Ln] b'O{ cf]6f 38L ?= 400 df lsg]5 . Pp6fdf 5% gfkmf / csf]{df 5% 3f6f x'g] u/L a]r]5 .
olb b'j} 38Lsf] ljj|mo d"No a/fa/ eP 38Lsf] Jofkf/df p;nfO{ k|fKt ePsf] gfkmf jf gf]S;fg slt x'G5
< kTtf nufpg'xf];\ .
;dfwfg M
oxf“, b'O{ cf]6f 38Lsf] j|m=d"= (C.P.) = ?= 400
klxnf] 38Lsf] j|m=d"= (C.P) = x
bf];|f] 38Lsf] j|m=d"= (C. P) = ?= (400 – x)
klxnf] 38Lsf] lj=d"= (S.P) = x + x sf] 5%
= x sf] 105%
105
= x × 100 A

21x
= 20 A

bf];|f] 38Lsf] la=d"= (S.P) = (400 – x) sf] 95%


95
= (400 – x) × 100 A

32
19
= 20 (400 – x)
A

E
A

k|Zgcg';f/, b'j} 38Lsf] S.P. a/fa/ ePsfn],


21x 19(400 – x)
20 = 20 A

E
A A

E E

cyjf, 21x = 7600 – 19x


cyjf, 40x = 7600
7600
cyjf, x = 40 = ?=190
A

E
A

21x
hDdf S.P. = 20 × 2
A

E
A

21 × 190 × 2
=A

20 E
A

= ?= 399
hDdf j|m=d"= (C.P) = ?= 400 ∴ C.P. > S.P. ePsfn]
gf]S;fg = CP – S.P. = ?= 400 – ?= 339 = ?= 1
gf]S;fg
gf]S;fg k|ltzt = C.P × 100 A

E
A

1
= 400 × 100
A

E
A

ctM s"n gf]S;fg k|ltzt = 0.25%


cEof;sf nflu k|Zg
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. Pp6f Jofkf/Ln] b'O{ cf]6f 38Lx¿ ?= 1000 df lsg]5 . p;n] Pp6fdf 20% gfkmf / csf]{df
20% 3f6f x'g] u/L a]r]5 . olb b'j} 38Lsf] ljj|mo d"No Pp6} eP p;nfO{ k|fKt ePsf] gfkmf
jf gf]S;fg k|ltzt slt xf] < lgsfNg'xf];\ . -pTt/ M 4% gf]S;fg_
2. k|sfzn] b'O{ cf]6f ;fOsnx¿ ?= 3000 df lsg]5g\ . pgn] Pp6fdf 15% gf]S;fg / csf]{df
19% gfkmf x'g] u/L tL ;fOsnx¿ laj|mL u/]5g\ . kl5 pgn] k|To]s ;fOsnsf] laj|mo d"No
Pp6} ePsf] yfxf kfP5g\ . k|To]s ;fOsnsf] j|mo d"No kTtf nufpg'xf];\ .
(pTt/ M ?= 1750, ?= 1250)
3. k|tLsn] b'O{ cf]6f sDKo'6/x¿ hDdf ?= 130000 df lsg]5g\ . Pp6fnfO{ 20% gfkmf / csf]{nfO{
12% 3f6fdf laj|mL ubf{ of] yfxf eof] ls b'j} sDKo'6/sf] ljj|mo d"No Pp6} /x]5 . k|To]s
sDKo'6/sf] j|mo d"No kTtf nufpg'xf];\ . (pTt/ M ?= 55000, ?= 75000)
gd'gf 4 :
Ps hgf Jofkf/Ln] 2 cf]6f ;fOsn k|To]ssf] ?= 10000 df a]Rbf Pp6fdf 20% gfkmf / csf]{df
20% gf]S;fg eof] eg] p;nfO{ slt k|ltzt gfkmf jf gf]S;fg eof] xf]nf <

33
;dfwfg M
oxf“, 2 cf]6f ;fOsnsf] S. P. = 2 × 10000 = ?= 20000
100
klxnf] ;fOsnsf] C.P. = ?= 10000 sf] (100 + 20) A

25000
= ?= A

3 E

100
bf];|f] ;fOsnsf] C.P. = ?= 10000 × (100 – 20) A

= ?= 12500
25000
∴ hDdf C.P = ?= 12500 + ?= A

3 E

62500 1
= ?= A

3 E
A = ?= 20833 3 A

C.P. > S.P. ePsfn],


C.P. – S.P
gf]S;fg k|ltzt = C.P × 100%
A

E
A

1
?= 20833 3 – ?= 20000
= A

1 × 100% A

?= 208333 E E

= 4%
ctM gf]S;fg k|ltzt = 4%
csf]{ tl/sf
klxnf] ;fOsn
lj=d"\ (S.P) = j|m=d" (C.P) ± gfkmf
cyjf, 1000 = CP +
cyjf, 1000 =

cyjf,
cyjf, ?=

bf];|f] ;fOsn
la=d"\ = (S.P) = j|m=d"= (CP) – gf]S;fg
cyjf, 10000
cyjf, 10000 =

34
cyjf,
cyjf ?= 12500 - CP
hDdf (CP) = ?=
= ?=
oxf“ CP > SP ePsfn]
gf]S;fg k|ltzt
=
62500
3 -20000
A E A

= A

62500 ×100% EA

3
EA

= 4%

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. Pp6f dflg;n] b'O{ cf]6f l;nfO{ d]l;gx¿ k|To]ssf] ?= 2970 sf] b/df a]Rbf Pp6fdf 10%
gfkmf / csf]{df 10% gf]S;fg x'G5 eg] To; sf/f]jf/df p;nfO{ slt k|ltzt gfkmf jf
gf]S;fg eof] xf]nf < kTtf nufpg'xf];\ . -pTt/ M 1 % gf]S;fg_
2. Pp6f k;n]n] 2 cf]6f /]l8of]x¿ k|To]sssf] ?= 1500 df a]Rbf Pp6fdf 30% gfkmf /
csf]{df 30% gf]S;fg eof] eg] p;nfO{ slt k|ltzt gfkmf jf gf]S;fg eof] xf]nf <
-pTt/ M 9% gf]S;fg_
3. s]zjn] 2 cf]6f lstfax¿ k|To]ssf] ?= 800 df a]Rbf Pp6fdf 40% gfkmf / csf]{df 40%
gf]S;fg eof] eg] p;nfO{ slt k|ltzt gfkmf jf gf]S;fg eof] xf]nf < kTtf nufpg'xf];\ .
-pTt/ M 16% gf]S;fg_
gd'gf 5 :
Pp6f Sofd]/fsf] cª\lst d"No ?= 3200 5 . o;nfO{ k;n]n] 8% 5'6 lbPkl5sf] d"Nodf 10%
Eof6 nufO{ lbG5 eg] pSt Sofd]/fnfO{ u|fxsn] lsGg slt ltg'{knf{ <
;dfwfg M
oxf“, cª\lst d"No (M. P.) = ?= 3200
5'6 (d) = 8% / Eof6 = 10%
5'6kl5sf] d"No = ?= 3200 – ?= 3200 sf] 8%
= ?= 3200 sf] 92 %
92
= ?= 3200 × 100
A

= ?= 2944
Eof6;lxtsf] d"No = ?= 2944 + ?= 2944 sf] 10%

35
= ?= 2944 sf] 110%
110
= ?= 2994 × 100 A

= ?= 3238. 40
ctM ;f] Sofd]/fsf] Eof6;lxtsf] d"No = ?= 3238.40

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. Pp6f ;fOsnsf] cª\lst d"No ?= 5550 /flvPsf] lyof] . ;f] ;fOsndf 10% 5'6 lbO{ 15%
d"No clej[b\lw s/ nufp“bf ;f]sf] d"No slt knf{ < kTtf nufpg'xf];\ .
-pTt/ M ?= 5744.25)
2. Ps ;]6 sDKo'6/sf] cª\lst d"No ?= 65500 /flvPsf] lyof] . ;f] sDKo'6/df 12% 5'6 lbO{
15% d"No clej[b\lw s/ -VAT_ nufp“bf ;f]sf] d"No slt knf{ < kTtf nufpg'xf];\ .
-pTt/ M ?= 66286)
gd'gf 6 :
Pp6f ;fOsnsf] cª\lst d"Nodf 25% 5'6 lbO{ 15% Eof6 (VAT) nufOPsf] lyof] . olb ;f]
;fOsn ?= 3450 df a]lrPsf] lyof] eg] ;f] ;fOsnsf] cª\lst d"No slt x'G5 < kTtf nufpg'xf];\ .
;dfwfg M
dfgf}“, ;fOsnsf] cª\lst d"No = ?= x
Eof6 = 15%
5'6 = 25%
Eof6;lxtsf] d"No = ?=3450
ca, 5'6kl5sf] d"No = ?= x – ?= x sf] 25%
= ?= x sf] 75%
75
= ?= x × 100 A

3x
= ?= 4 A

3x 3x
Eof6;lxtsf] d"No = ?= A

4 +E
A ?= A

4
E
A sf] 15%
= ?=
= ?=
= ?=

cyjf

36
3450 =

cyjf,
cyjf, x - 4000
ctM ;f] ;fOsnsf] cª\lst d"No = ?= 4000.

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. Pp6f 38Lsf] cª\lst d"Nodf 25% 5'6 lbO{ 15% Eof6 (VAT) nufp“bf ?= 1725 eof] eg]
;f] 38Lsf] cª\lst d"No kTtf nufpg'xf];\ . -pTt/ M ? 2000)
2. Pp6f b/fhsf] cª\lst d"Nodf 25% 5'6 lbO{ 15% Eof6 (VAT) nufp“bf ?= 5085 eof] eg]
;f] b/fhsf] cª\lst d"No kTtf nufpg'xf];\ . -pTt/ M ?= 5895.65)
3. Pp6f df]afOn ;]6sf] cª\lst d"Nodf 15% 5'6 lbO{ 13% Eof6 (VAT) nufp“bf ?= 7684
eof] eg] ;f] df]afOnsf] cª\lst d"No kTtf nufpg'xf];\ . -pTt/ M ?= 8000)

gd'gf 7 :
Pp6f 38Lsf] cª\lst d"No j|mo d"NoeGbf 30% a9L /flvPsf] lyof] . olb ;f] 38LnfO{ 20% 5'6
u/L a]Rbf ?= 150 gfkmf x'g] eP5 eg] 38Lsf] cª\lst d"No / j|mo d"No kTtf nufpg'xf];\ .
;dfwfg M
dfgf}“, 38Lsf] j|mo d"No = ?= 100x
38Lsf] cª\lst d"No = ?= (100x + = ?= 130x

5'6 = 20%
gfkmf = ?= 150
5'6kl5sf] d"No = ?= 130x sf] (100 – 20)%
80
= ?= 130x 100
A

∴ S.P. = ?= 104x
gfkmf = ?= 150
cyjf, SP - CP = ?= 150
cyjf, 104x - 100x = ?= 150
cyjf, 4x = ?= 150
cyjf x = ?=
= ?= 37.50
ctM 38Lsf] j|mo d"No = ?= 100 × 37.50
= ?= 3750

37
38Lsf] cª\lst d"No = ?= 130 × 37.50
= ? 4875
cEof;sf nflu k|Zg
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. s'g} ;fdfgsf] j|mo d"No eGbf 25% n] a9L cª\lst d"No sfod ul/Psf] 5 . olb 15% 5'6
lbO{ a]Rbf ?= 125 gfkmf x'G5 eg] ;f] ;fdfgsf] ljj|mo d"No slt xf]nf < kTtf nufpg'xf];\ .
-pTt/ M ?= 2125)
2. Pp6f /]l8of]sf] cª\lst d"No j|mo d"No eGbf 40% a9L /flvPsf] lyof] . ;f] /]l8of]df 30%
5'6 u/L a]Rbf ?= 100 gf]S;fg eP5 eg] ;f] /]l8of]sf] cª\lst d"No slt sfod ul/Psf] lyof]
< kTtf nufpg'xf];\ . -pTt/ M ?= 7000)
3. Pp6f Sofd]/fsf] cª\lst d"No j|mo d"NoeGbf 20% a9L /flvPsf] lyof] . ;f] /]l8of]df 10%
5'6 u/L a]Rbf ?= 208 gfkmf eP5 eg] ;f] /]l8of]sf] cª\lst d"No slt sfod ul/Psf] lyof] <
kTtf nufpg'xf];\ . -pTt/ M ?= 3120)
gd'gf 8:
Pp6f Jofkf/Ln] s'g} j:t'sf] d"No ?= 550 cª\lst u/]5 / 10% u|fxsnfO{ 5'6 lbP5 . o;/L
Jofkf/Ln] ?= 75 gfkmf ub{5 eg] cª\lst d"No j|mo d"No eGbf slt k|ltzt a9L xf]nf < kTtf
nufpg'xf];\ .

;dfwfg M
oxf“, cª\lst d"No = ?= 550
5'6 = 10%
gfkmf = ?= 7.5
ljj|mo d"No (S.P.) = ?= 550 – ? = 550 sf] 10%
= ?= 550 - ?=
= ?= 550 - ?= 55
j|mo d"No (C.P.) = S.P. – gfkmf
= ?= 495 – ?= 75
= ?= 420
cª\lst d"No – j|mo d"No = ?= 550 – ?= 420
= ?= 130
130
ca, 420 × 100% = 30. 95%
A

E
A

ctM ;f] ;fdfgsf] cª\lst d"No j|mo d"No eGbf 30.95% w]/}n] a9L 5 .
cEof;sf nflu k|Zg
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'x{ f];\ .

38
1. k;n]n] s'g} j:t'sf] d"No ?= 4000 cª\lst u/]5 / 10% u|fxsnfO{ 5'6 lbP5 . o;/L
Jofkf/Ln] ?= 600 gfkmf ub{5 eg] slt k|ltzt ;f] j:t'sf] cª\lst d"No j|mo d"NoeGbf a9L
1
xf]nf < kTtf nufpg'xf];\ . -pTt/ M 33 3%)
A A

2. Zofdn] s'g} j:t'sf] d"No ?= 5000 cª\lst u/]5 / 15% u|fxsnfO{ 5'6 lbP5 . o;/L
Jofkf/Ln] ?= 250 gfkmf ub{5 eg] slt k|ltzt ;f] j:t'sf] cª\lst d"No j|mo d"NoeGbf a9L
xf]nf < kTtf nufpg'xf];\ . -pTt/ M 25%)
3. gf/fo0fn] s'g} j:t'sf] d"No ?= 3000 cª\lst u/]5 / 12% u|fxsnfO{ 5'6 lbP5 . o;/L
Jofk/Ln] ?= 140 gfkmf ub{5 eg] slt k|ltzt ;f] j:t'sf] cª\lst d"No j|mo d"NoeGbf a9L
xf]nf < kTtf nufpg'xf];\ . -pTt/ M 20%)
gd'gf 9 :
olb Pp6f 38L cª\lst d"Nodf laj|mL ubf{ ljj|m]tfnfO{ 20% gfkmf x'G5 t/ 5% 5'6 lb“bf
?= 140 dfq gfkmf x'G5 eg] ljj|m]tfn] pSt 38L sltdf lsg]sf] x'g'k5{ < kTtf nufpg'xf];\ .
;dfwfgM
oxf“, 38Lsf] cª\lst d"No = ?= x /
38Lsf] j|mo d"No (C. P.) = ?= y -dfgf}“_
ca, ljj|mo d"No (S.P.) = C.P + gfkmf
= y + y sf] 20%
6y
= 5
A

cª\lst d"Nodf 38L laj|mL ul/Psf] 5 . To;}n] S.P. = x


6y
∴ x= 5 A

6y
∴ cyjf, 5 × 95% – y = 140A

E
A

cyjf,
cyjf,
cyjf, =
14y
cyjf, 100 = 140
A

E
A

cyjf, y = 1000
ctM 38Lsf] j|mo d"No (C.P.) = ?= 1000
cEof;sf nflu k|Zg
ca dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M

39
1. s'g} Jofkf/Ln] Pp6f j:t'sf] cª\lst d"Nodf laj|mL ubf{ 50 % gfkmf ub{5 . olb u|fxsnfO{ 12
% 5'6 lb“bf ;f] j:t'sf] laj|mLdf ? 16 kmfObf u5{ eg] j:t'sf] j|mo d"No lgsfNg'xf];\ .
-pTt/ M ?= 50)
2. Pp6f Jofkf/Ln] s'g} j:t'nfO{ cª\lst d"Nodf laj|mL ubf{ 40 % gfkmf u5{ . olb p;n]
u|fxsnfO{ 15% 5'6 lb“bf ?= 76 gfkmf ub{5 eg] ;f] j:t'sf] cª\lst d"No kTtf nufpg'xf];\ .
-pTt/ M ?= 560)
3. Pp6f Jofkf/Ln] Pp6f ;fOsnsf] cª\lst d"Nodf laj|mL ubf{ -5'6 glb“bf_ 20 % gfkmf x'G5 t/
5% 5'6 lb“bf ?= 180 gfkmf x'G5 eg] laj|m]tfn] pSt ;fOsn sltdf lsg]sf] x'g'kb{5 < (pTt/
M ?= 545.45)
gd'gf 10 :
Ps k;n]n] s'g} ;fdfgdf cfkm"n] lsg]sf] d"Nodf 20% yk u/L cª\lst d"No lgwf{/0f ub{5 . olb
u|fxsx¿nfO{ 10% 5'6 lb“bf p;nfO{ ?= 120 gfkmf x'G5 eg] p;n] ;f] ;fdfg p;n] sltdf lsg]sf]
lyof] <
;dfwfg M
dfgf}“, j|mo d"No (C.P.) = 100x
k|Zgfg';f/, cª\lst d"No (M.P.) = 120x
ljj|mo d"No (S.P.) = M. P – 5'6 /sd
= 120x – 120x sf] 10%
= 120x × 120x ×
= 120x -12x
= 108x
ca, SP – CP = gfkmf
cyjf, 108x – 100x = 120
cyjf, 8x = 120
120
cyjf, x = 8
A

∴ x = 15
ctM 38Lsf] j|mo d"No = 100x
= 100 × 15
= ?= 1500
cEof;sf nflu k|Zg
ca dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. Ps hgf kmlg{r/ k;n]n] P6f 6]a'nsf] lsg]sf] d"Nodf 25% yk u/L cª\lst d"No lgwf{/0f ub{5 .
u|fxsnfO{ 10% 5'6 lbG5 o;f] ubf{ p;nfO{ ?= 500 gfkmf x'G5 eg] p;n] ;f] ;fdfg sltdf
lsg]sf] lyof] < kTtf nufpg'xf];\ . -pTt/ M ?=4000)

40
2. Ps hgf sDKo'6/ k;n]n] Pp6f sDKo'6/sf] lsg]sf] d"Nodf 30% yk u/L cª\lst d"No lgwf{/0f
ub{5 . u|fxsnfO{ 20 % 5'6 lbG5 . o;f] ubf{ p;nfO{ ?= 1800 gfkmf x'G5 eg] p;n] ;f] sDKo'6/
sltdf lsg]sf] lyof] < kTtf nufpg'xf];\ . -pTt/ M ?= 45000)
3. Pp6f :6];g/L k;n]n] Pp6f SofNs'n]6/sf] lsg]sf] d"Nodf 20% yk u/L cª\lst d"No
/fv]5 . olb 25 % 5'6 lbof] eg] p;nfO{ ?=100 gf]S;fg x'G5 . ;f] SofNs'n]6/sf] j|mod"No
slt lyof] xf]nf < kTtf nufpg'xf];\ . -pTt/ M ?= 1000)
gd'gf 11 :
Pp6f /]l8of]sf] cª\lst d"Nodf 20 % 5'6 lbO{ ;f] /sddf 10% d"No clej[b\lw s/ (VAT) hf]8]/
a]lrof] . olb lsGg] dflg;n] ?= 320 Eof6 lt/sf] lyof] eg] slt /sd p;n] 5'6 kfPsf] lyof] <
;dfwfg M
dfgf}“, cª\lst d"No = x
SP = x - x sf] 20%
=x-

Eof6 /sd = sf] 10%


=
=

t/, = 320
cyjf, 8x = 32000
cyjf, x = 4000
∴ 5'6 =
=
= ?= 800

cEof;sf nflu k|Zg


ca dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. Pp6f ;'6s];sf] cª\lst d"Nodf 10 % 5'6 lbO{ 13 % Eof6 hf]8]/ a]lrof] . olb lsGg] dflg;n] ?=
468 Eof6 lt/]sf] lyof] eg] p;n] slt /sd 5'6 kfPsf] lyof] <
-pTt/ M ?= 400)

41
2. Pp6f knª\sf] cª\lst d"Nodf 15% 5'6 lbO{ 13% Eof6 hf]8]/ a]lrof] . olb lsGg] dflg;n] ?=
636 Eof6 lt/]sf] lyof] eg] slt /sd 5'6 kfPsf] lyof] <
-pTt/ M ?. 863.34)
3. Pp6f ;fOsnsf] cª\lst d"Nodf 25% 5'6 lbO{ ;f] /sddf 10% Eof6 hf]8]/ a]lrof] . olb
5'6 /sd ?= 750 lyof] eg] ;f] ;fOsndf slt /sd Eof6 nufOPsf] lyof] <
-pTt/ M ?= 225)
gd'gf 12 :
s'g} j:t'sf] cª\lst d"No o;sf] ljj|mo d"No eGbf 25% a9L 5 . ;fy} o;sf] j|mo d"No o;}sf]
cª\lst d"No eGbf 30% sd 5 eg] 5'6 k|ltzt / gfkmf k|ltzt lgsfNg'xf];\ .
;dfwfg M
dfgf}“, laj|mo d"No (S.P.) = ?= x
MP = x sf] 25%
=x+x+
=
=
CP = sf] 30%
=
=
=
=
5'6 k|ltzt
5'6
5'6 % = M.P. × 100
A

E
A

20x
= 100x × 100
A

E
A

∴ 5'6 = 20%
gfkmf /sd = S.P. C.P = 80x – 70 x = 10x
gfkmf
gfkmf k|ltzt = CP × 100
A

E
A

10x
= 70x × 100
A

E
A

∴ gfkmf = 14.28%

42
cEof;sf nflu k|Zg
ca dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. s'g} j:t'sf] cª\lst d"No o;sf] ljj|mo d"NoeGbf 25% n] a9L 5 . ;fy} o;sf] j|mo d"No
o;}sf] cª\lst d"NoeGbf 30 % sd 5 eg] 5'6 k|ltzt / gfkmf k|ltzt kTtf
2
nufpg'xf];\ . -pTt/ M 20% / 147 %)
A E A

2. s'g} j:t'sf] cª\lst d"No o;sf] ljj|mo d"NoeGbf 25 % a9L 5 . ;fy} o;sf] j|mo d"No o;}sf]
1
cª\lst d"NoeGbf 33 3 % sd 5 eg] 5'6 k|ltzt / gfkmf k|ltzt kTtf nufpg'xf];\ . pTt/
A A

M 2%, 20 %
3. s'g} j:t'sf] cª\lst d"No o;sf] ljj|mo d"NoeGbf 60 % n] a9L 5 . ;fy} o;sf] j|mo d"No
o;}sf] cª\lst d"NoeGbf 50 % n] sd 5 eg] 5'6 k|ltzt / gfkmf k|ltzt kTtf nufpg'xf];\ .
-pTt/ M 37.5% / 25 %)
1
4. s'g} j:t'sf] cª\lst d"No o;sf] ljj|mo d"NoeGbf 11 9 % n] a9L 5 . ;fy} o;sf] j|mo d"No
A A

o;}sf] cª\lst d"NoeGbf 20% n] sd 5 eg] 5'6 k|ltzt / gfkmf k|ltzt kTtf nufpg'xf];\ .
-pTt/ M 10% / 12.5 %)
gd'gf 13 :
Pp6f 38L cª\lst d"Nodf ?= 255 5'6 lbO{ 15 % VAT hf]8]/ a]lrof] . olb VAT /sd
?= 450 lyof] eg] 38Lsf] cª\lst d"No / 5'6 /sd kTtf nufpg'xf];\ .
;dfwfg M
oxf“,
38Ldf 5'6 = 25%
38Ldf VAT = 15%
VAT /sd = ?= 450
cª\lst d"No (M.P) = <
5'6 /sd = <
cª\lst d"No (M.P) = x (dfgf“)}
5'k = MP sf] 5'6 %
= x sf] 25 %
=x
=
5'6kl5sf] lj=d" = M.P – 5'6
=x–
=

43
VAT /sd = sf] 15%
cyjf, ?= 450 =
cyjf, x = ?= 4000
5'6 /sd =
ctM ;f] 38Lsf] cª\lst d"No ?= 4000 / 5'6 /sd ?= 1000 /x]5 .
cEof;sf nflu k|Zg
1. Pp6f kª\vfsf] cª\lst d"nodf 20 % 5'6 lbO{ 10 % VAT hf]8]/ a]lrof] . olb VAT /sd
?= 200 lyof] eg] kª\vfsf] cª\lst d"No / 5'6 /sd kTtf nufpg'xf];\ .
-pTt/ M ?= 2500, ?= 500)
2. Pp6f lk|mhsf] cª\lst d"Nodf 25% 5'6 lbO{ 13% d"No clej[b\lw s/ hf]8]/ lslgof] . olb
d"No clej[b\lw s/ /sd ?= 780 eP cª\lst d"No / 5'6 /sd lgsfNg'xf];\ .
-pTt/ M ?= 8000, ?= 2000)
yk cEof;sf nflu k|Zg
1. k|jL0fn] ?= 800 df Pp6f SofNs'n]6/ vl/b u/L C.P sf] 98 df laj|mL u¥of] eg] p;n] slt
A E A

k|ltzt gfkmf k|fKt u¥of] < (pTt/ M 12.5%)


2. Pp6f Sofd/f ?= 8100 df a]Rbf 10% gf]S;fg x'G5 eg] 5% gfkmf lng s'g d"Nodf
a]Rg'knf{ < kTtf nufpg'xf];\ . kTtf nufpg'xf];\ . -pTt/ M ?= 9450)
3. A n] Pp6f 6]k/]s8{/ 20% gfkmf x'g]u/L B nfO{ a]r]5 . B n] ;f] 6]kf]l/s8{/ 10% gfkmf
lnP/ C nfO{ a]r]5 . olb C n] B nfO{ ?= 1320 lt/]sf] eP A sf] j|mo d"No kTtf nufpg'xf];\ .
-pTt/ M ?= 1000)
4. Pp6f Jofkf/Ln] b'O{ cf]6f 38Lx¿ ?= 1200 df lsg]5g\ . p;n] Pp6fdf 20% gfkmf /
csf]{df 20% 3f6f x'g] u/L a]r]5g\ . b'j} 38Lsf] ljj|mo d"No Pp6} eP p;nfO{ k|fKt ePsf]
gfkmf jf gf]S;fg k|ltzt slt xf] < lgsfNg'xf];\ . -pTt/ M gf]S;fg = 4% )
5. b'O{ cf]6f sDKo'6/x¿ k|To]ssf] ? 2000 df a]Rbf Pp6fdf 50% gfkmf / csf]{df 50%
gf]S;fg eof] eg] p;nfO{ slt k|ltzt gfkmf jf gf]S;fg eof] xf]nf < -pTt/ M 25% gf]S;fg_
6. Pp6f sDKo'6/sf] cª\lst d"No ?=4000 5 . o;nfO{ k;n]n] 10% 5'6 lbPkl5 13% d"No
clej[b\lw s/ (VAT) nufOlbG5 eg] pSt sDKo'6/nfO{ u|fxsn] lsGg slt
ltg'{knf{ < kTtf nufpg'xf];\ . -pTt/ M ?= 4068)
7. Pp6f ;fdfgdf ?=200 5'6 lnP/ ?= 1300 df lslgof] eg] 5'6sf] b/ lgsfNg'xf];\ .
-pTt/ M 1313 %) A E A

8. Pp6f 38Lsf] cª\lst d"No j|mo d"No eGbf 30% a9L /flvPsf] lyof] . ;f] /]l8of]df 15% 5'6
u/L a]Rbf ?= 210 gfkmf eP5 eg] ;f] /]l8of]sf] cª\lst d"No slt sfod ul/Psf] lyof] <
-pTt/ M ?= 2600)

44
9. j?0fn] s'g} j:t'sf] d"No ?= 5000 cª\lst u/]5 / 20% u|fxsnfO{ 5'6 lbP5 . o;/L
Jofkf/Ln] ?= 1000 gfkmf ub{5 eg] slt k|ltztn] ;f] j:t'sf] cª\lst d"No j|mo d"NoeGbf
2
a9L xf]nf < kTtf nufpg'xf];\ . -pTt/ M 66 3 %)
A A

10. olb 38L cª\lst d"Nodf laj|mL ubf{ laj|m]tfnfO{ 20 % gfkmf x'G5 t/ 5% 5'6 lb“bf
?= 280 dfq gfkmf x'G5 eg] laj|m]tfn] pSt 38L sltdf lsg]sf] x'g'kb{5 <
-pTt/ M ?= 848.48)
11. Pp6f :6];g/L k;n]n] Pp6f k':tssf] lsg]sf] d"Nodf 20% yk u/L cª\lst d"No /fv]5 . olb
30 % 5'6 lbof] eg] p;nfO{ ?= 64 gf]S;fg x'G5 . ;f] k':tssf]] j|mo d"No slt lyof] xf]nf <
-pTt/ M ?= 400)
12. Pp6f lk|mhsf] cª\lst d"Nodf 20 % 5'6 lbO{ ;f] /sddf 13 % Eof6 hf]8]/ a]lrof] . olb 5'6
/sd ?= 2400 eP ;f] lk|mhdf slt /sd Eof6 nufOPsf] lyof] < -pTt/ M ?= 1248)
13. Pp6f ;fdfgsf] cª\lst d"Nodf 15 % 5'6 lbO{ 10 % VAT hf]8]/ a]lrof] . olb 5'6 /sd
?= 2025 eP cª\lst d"No / VAT /sd lgsfNg'xf];\ . -pTt/ M ?= 13500, ?= 1147.50)

kf7 M 3. rj|mLo Aofh, hg;ª\Vof j[b\lw / ld> x|f; (Compound Interest,


Population Growth and Compound Depreciation)

o; kf7df kf7\oj|md / ljlzi6Ls/0f tflnsfn] Joj:yf u/] adf]lhd rj|mLo Aofh cw{ jflif{s k|0ffnLdf
a9Ldf b'O{ jif{;Dd / jflif{s k|0ffnLdf a9Ldf b'O{ jif{;Dddf ;d:ofx¿ hg;ª\Vof j[b\lw / ld>x|f;
;DjlGwt ;d:ofx¿ ;dfj]z ul/Psf 5g\ . To;} u/L hg;ª\Vof j[b\lw / ld> x|f;sf aflif{ssf dfq
;d:ofx¿ ;dfj]; ul/Psf 5g\ . P;= Pn= ;L= k/LIffdf o; kf7;“u ;DjlGwt ljifo j:t'x¿af6 Pp6f
b'O{ cª\s ef/sf] 5f]6f] k|Zg 1fg tyf af]w txsf] / Pp6f ;d:of ;dfwfg txsf] u/L hDdf b'O{ cf]6f
hDdf 6 cª\sef/sf k|Zgx¿ ;f]Wg] Joj:yf /x]sf] 5 .
3.1 rj|mLo Aofh (Compound Interest)
1. cfwf/e"t tYo tyf tyf ;"qx¿
-s_ cfwf/e"t wf/0ffx¿
rlj|mo Aofh
s'g} wg/flz lglZrt ;dofjlw h:t} M rf}dfl;s, cw{ jflif{s, dfl;s cfpg] ld> wgn] bf];|f]
;dofjlwsf] nflu d"n wgsf ¿kdf /xL km/s Aofh lbG5 eg] o;/L cfPsf] Aofh g} rj|mLo
Aofh (Compound Interest) xf] .
csf]{ cy{df
rj|mLo ld> wg / jf:tljs d"n wglarsf] leGgtf (difference) nfO{ rj|mLo Aofh
elgG5 . ;fwf/0f Aofhsf] Aofh nfUb}g . t/ rj|mLo Aofhsf] klg Aofh nfUg] k|rng 5 .
-v_ dxTTjk"0f{ ;"qx¿

45
R
1. rj|mLo ld> wg (A) = P (1+ 100 )T A E A

rj|mLo Aofh (C.I) = P {(1+ 100) –1)}


R T
2. A E A

oxf“, P = ;fjf“ -d"n wg_ R = Aofhb/ k|lt jif{, T = ;do jif{df x'G5 .
rj|mLo AofhnfO{ jflif{s, cw{ jflif{s rf}dfl;s cyjf dfl;s b/n] lgsfNg ;lsG5 .
3. olb rj|mLo Aofh k|To]s cfwf cfwf jif{df jf cw{ jflif{s lnOG5 eg] xfdLn] ;donfO{ bf]Aa/
agfpg'k5{ / Aofh b/nfO{ cfwf agfpg'k5{ .
R T
oxf“, C.I= P [(1+ 100)
A E A –1]) jflif{s
R1 T1
C.I = [(1+ 100) –1]) cw{ jflif{s
A E A

R 2T R
∴C.I = P [(1+ 100) –1]) hxf“, R1= 2 / T1= 2T
A E A A E A

4. jif{ / dlxgf sf] rlj|mo ld>wg


/ rlj|mo Aofh (CI) = CA - P

2. pTt/ n]Vbf Wofglbg'kg]{ s'/fx¿


1. rj|mLo Aofh ;DaGwL ;"qx¿ s]xL sl7g 5g\ . xf]l;of/Lk"j{s ofb ug'{kb{5 .
2. PsfOx¿ ;fwf/0f Aofhdf h:t} u/L k|of]u ug'{k5{ .
3. jflif{snfO{ cw{ jflif{sdf n}hf“bf ;donfO{ 2 n] u'0fg / Aofh b/nfO{ cfwf ug'{kb{5 .
4. ;dfgfGt/ ;"q agfp“bf ljz]if Wofg lbg'k5{ .
5. pTt/ n]Vbf PsfO n]Vg la;{g' x'“b}g .

3. gd'gf k|Zg / cEof;


3.1 5f]6f] pTt/ cfpg] k|Zg ;DaGwL cEof;

gd'gf 1 :
?= 8000 sf] jflif{s 15% sf] b/n] 2 jif{sf] rj|mLo ld>wg kTtf nufpg'xf];\ .
;dfwfg M
oxf“, d"n wg (P) = ?= 8000
Aofh b/ (R) = 15%
;do (T) = 2 jif{
;"qcg';f/,

46
 R T
rj|mLo ld> wg (C.A.) = P 1 + 100
E

 
A

 15 2
= ?= 8000 1 + 100
E

 
A

= ?= 8000 × 13.225
= ?= 10580
ctM rj|mLo ld> wg (C.A.) = ?= 10580

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. d"n wg (P) = ?= 8000, ;do (T) = 2 jif{ / Aofh b/ (R) = 10% k|lt jif{
-pTt/ M ?= 9680)
2. d"n wg (P) = ? 10000, ;do (T) = 2 jif{ / Aofh b/ (R) = 12% k|lt jif{
-pTt/ M ?= 12544)
3. d"nwg (P) = ? 15000, ;do (T) = 3 jif{ / Aofh b/ (R) = 15% k|lt jif{ -pTt/ M ?= 22813.13)
4. ;fjf“ (P) = ?= 9000, ;do (T) = 3 jif{ / Aofh b/ (R) = 8% k|lt jif{
-pTt/ M ?= 11337.41)
gd'gf 2 :
?= 5000 sf] jflif{s 10% sf] b/n] 2 jif{sf] rj|mLo Aofh kTtf nufpg'xf];\ .
;dfwfg M
oxf“, d"n wg (P) = ?= 5000
;do (T) = 2 jif{
Aofh b/ (R) = 10%
;"qcg';f/,
rj|mLo Aofh (C.I.) =
= = 1050
ctM rj|mLo Aofh (C.I.) = ?=1050
cEof;sf nflu k|Zg
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. ?= 8000 sf] jflif{s 10% k|lt jif{sf] Aofh b/n] 3 jif{sf] rj|mLo Aofh kTtf nufpg'xf];\ .
-pTt/ M ?= 2648)
2. ?= 10000 sf] jflif{s 8 % k|lt jif{sf] Aofh b/n] 2 jif{sf] rj|mLo Aofh kTtf nufpg'xf];\ .
-pTt/ M ?=1664)
3. ?= 6000 sf] jflif{s 15 % k|lt jif{sf] Aofh b/n] 2 jif{sf] rj|mLo Aofh kTtf
nufpg'xf];\ . -pTt/ M ?=1935)
47
4. s[i0fn] g]kfn a}ª\s lnld6]8 6f“8L ahf/af6 rj|mLo jflif{s Aofh 10% sf b/n] ?=9000
C0f lnof] . ca 2 jif{kl5 p;n] a}ª\snfO{ slt Aofh a'emfpg'knf{ < kTtf nufpg'xf];\ .
-pTt/ M ?= 1890)
gd'gf 3 :
?= 2000 sf] jflif{s 10% Aofh b/n] 2 jif{sf] cw{ jflif{s rj|mLo Aofh kTtf nufpg'xf];\ .
;dfwfg M
oxf“, d"n wg (P) = ?= 2000
Aofh b/ (R) = 10% k|lt jif{sf]
;do (T) = 2 jif{
;"qfg';f/,
cw{ jflif{s rj|mLo Aofh (C.I.) =
 10 2×2 
= 2000 1 + 200 – 1
  
A E

= 200 × 0.21550625
= 431.0125
ctM cw{ jflif{s rj|mLo Aofh (C.I.) = ?= 431.01

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
cw{ jflif{s rj|mLo Aofh kTtf nufpg'xf];\ .
1
1. d"n wg (P) = ?= 12000, jflif{s Aofh b/ (R) = 8% / ;do (T) = 1 2 jif{ A

E
A

-pTt/ M ?= 1498.37)
2. d"n wg (P) = ?= 2000, jflif{s Aofh b/ (R) = 10% / ;do (T) = 2 jif{
-pTt/ M ?=431.01)
1
3. d"nwg (P) = ?= 1000, jflif{s Aofh b/ (R) = 10% / ;do (T) = 1 2 jif{ A A

-pTt/ M ?= 157.63)
3.2 nfdf] pTt/ cfpg] k|Zgf]Tt/ / cEof;
gd'gf 1 :
?=15000 sf] 1 jif{ 6 dlxgfsf] jflif{s 10% sf] b/n] ;fwf/0f Aofh / rj|mLo Aofh kTtf
nufpg'xf];\ .
;dfwfgM
 6 3
oxf“ d"n wg (P) = ?= 15000 ;do (T) = 1 jif{ 6 dlxgf = 1 + 12 = 2 jif{
 
A E A A A

Aofh b/ (R) = 10% c k|lt jif{


48
PTR 15000 × 3 × 10
(i) ;fwf/0f Aofh (S.I.) = 100 =
100 × 2
A A A

E
E

= ?= 2250
 R 1 
(ii) 1 jif{sf] rj|mLo Aofh (C.I.) = P 1 + 100 – 1
  
A E

 R 1 
= 15000 1 + 100 – 1
  
A E

1
= 1500 × 10 A

= ?= 1500
af“sL 6 dlxgfsf nflu
;fjf“ (P) = ?= 15000 + ?= 1500 = ?= 16500
6 1
Aofhb/ (R) = 10% ;do (T) = 6 dlxgf = 12 = 2 jif{ A

E
A A A

P×T× R 16500 × 10
∴ Aofh = 100 = = ?= 825
100 × 2
A A A A

E
E

ctM hDdf rj|mLo Aofh = ?= 1500 + ?= 825


= ?= 2325
ctM 1 jif{ 6 dlxgfsf] rj|mLo Aofh = ?= 2325

csf]{ tl/sf
CA =
n = jif{sf] ;ª\Vof, m = dlxgfsf] ;ª\Vof
=
= ?= 17325
∴ CI = CA - P
= ?= 17325 - ?= 15000 = ?= 2325

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. Pshgf dflg;n] ?= 5000 jflif{s 12 % sf b/n] 3 jif{nfO{ nufgL u/]5 eg],
(i) p;n] 3 jif{sf] cGtdf slt ;fwf/0f Aofh kfpnf < -pTt/ M ?= 1800)
(ii) 3 jif{sf] cGtdf slt rlj|mo Aofh kfpnf < -pTt/ M ?= 2024.64)
2. jflif{s 20 % Aofhb/df ;Ltfn] lgzf;“u ?= 5500 ;fk6L lnOl5g\ eg] 2 jif{sf] cGTodf
;fwf/0f Aofh / rj|mLo Aofh lgsfNg'xf];\ . -pTt/ M ?= 2200, ?= 2420)

49
3. jflif{s 21 k|ltzt Aofhb/df ;Gtf]ifn] ;'/]z;“u ?= 1,30,000 ;fk6L lnP5 eg] 3 jif{sf]
cGTodf x'g] ;fwf/0f Aofh / jflif{s rj|mLo Aofh lgsfNg'xf];\ .
-pTt/ M ?= 81900, ?= 100302.93)
4. jflif{s 21 k|ltzt Aofh b/df ;Gtf]ifn] ;'/]z;“u ?= 1,50,000 ;fk6L lnP5 eg] 2 jif{sf] cGTodf
x'g] ;fwf/0f Aofh / jflif{s rj|mLo Aofh lgsfNg'xf];\ . pTt/ M ?= 63000, ?= 69615

gd'gf 2 :
?= 4000 sf] jflif{s 10 % Aofh b/n] 1 jif{sf] cGTodf ;fwf/0f Aofh / cw{ jflif{s rj|mLo Aofh
slt slt xf]nf < kTtf nufpg'xf];\ .
;dfwfg M
oxf“, d"n wg (P) = ?= 40000
Aofh b/ (R) = 10% k|lt jif{
;do (T) = 1 jif{
P×T×R
(i) ;fwf/0f Aofh (S. I.) = 100 A

E
A

4000 × 1 × 10
= A

100 E

= ?= 400

(ii) ;"qaf6, cw{jflif{s rj|mLo Aofh (C.I.) =


=
41
= 4000 × 400 = ?= 410
A

E
A

ctM ;fwf/0f Aofh = ?= 400 / cw{jflif{s rj|mLo Aofh = ?= 410

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. ?= 5000 sf] jflif{s 10% Aofh b/n] 1 jif{sf] cGTodf ;fwf/0f Aofh / cw{ jflif{s rj|mLo
Aofh kTtf nufpg'xf];\ . -pTt/ M ?= 500, ?= 512.5)
1
2. ?= 8000 sf] jflif{s 8% Aofhb/n] 12 jif{sf] cGTodf ;fwf/0f Aofh / cw{jflif{s rj|mLo
A

E
A

Aofh kTtf nufpg'xf];\ . -pTt/ M ?= 960, ?= 998.91)


3. jflif{s 10 % Aofh b/df /fdn] ;Ltf;“u ?= 4800 ;fk6L lnP5 eg] 1 jif{sf] cGTodf
(i) pgn] ;fwf/0f Aofh slt ltg'{knf{ < -pTt/ M ?= 480)
(ii) cw{ jflif{s rj|mLo Aofh slt ltg'{knf < -pTt/ M ?= 492)

50
4. jflif{s 12 % Aofhsf b/n] /fdn] Zofd;“u ?=4250 ;fk6L lnP5 eg] Ps jif{sf] cGTodf
(i) /fdn] slt ;fwf/0f Aofh ltg'{knf{ < -pTt/ M ?= 510)
(ii) cw{ jflif{s rj|mLo Aofh slt ltg'{knf{ < -pTt/ M ?= 525.30)
gd'gf 3 :
?= 5000 sf] 3 jif{sf] 10% jflif{s Aofh b/n] ;fwf/0f Aofh / rj|mLo Aofhdf slt km/s knf{
< kTtf nufpg'xf];\ .
;dfwfg M
oxf“, d"n wg (P) = ?= 5000
;do (T) = 3 jif{
Aofhb/ (R) = 10% k|lt jif{
PTR
(i) ;fwf/0f Aofh (S.I.) = 100 A

E
A

5000 × 3 × 10
= 100
A

= ?= 1500
 R T 
(ii) rj|mLo Aofh (C.I.) = 1 + 100 – 1
  
A E

 10  3

= 1 + 100 – 1
  
A E

331
= 5000 × 1000 A

= ?= 1655
ctM ;fwf/0f Aofh / rj|mLo Aofhdf km/s ?= 1655 – ?= 1500 = ?= 155

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. ?= 7500 sf] jflif{s 10% Aofh b/n] 2 jif{df x'g] rlj|mo Aofh / ;fwf/0f Aofhsf] km/s kTtf
nufpg'xf];\ < -pTt/M– ?= 75)
2 .?= 5120 sf] 3 jif{sf] 12.5% jflif{s Aofh b/n] x'g] rlj|mo Aofh / ;fwf/0f Aofhdf slt
km/s knf{ < -pTt/ M ?= 250)
3. ?= 18000 sf] jflif{s 15 % Aofhb/df 2 jif{df x'g] ;fwf/0f Aofh / jflif{s rj|mLo Aofhdf
x'g] km/s kTtf nufpg'xf];\ < -pTt/ M ?= 405)
gd'gf 4 :
s'g} /sdsf] k|ltjif{ 5% Aofhsf] b/n] 2 jif{df ldl>t Aofh / ;fwf/0f Aofhsf] km/s 120 eP ;f]
/sd slt xf]nf < kTtf nufpg'xf];\ .
;dfwfg M
oxf“, Aofh b/ (R) = 5% k|lt jif{, ;do (T) = 2 jif{, ;fjf“ (P) = ?
51
PTR P × 2 × 5 P
;"qcg';f/, ;fwf/0f Aofh = 100 = A

100 = 10
E
A A

E
A A

rj|mLo Aofh CI =
41 41P
= P × 400 = 400
A

E
A A

k|Zgfg';f/, C. I. – S. I. = ?= 120
41P P
cyjf, 400 – 10 = ?= 120
A

E
A A

E
A

41 P – 40P
cyjf, A

400 = ?= 120 E
A

P
cyjf, 400 = ?= 120
A

E
A

∴ P = ?= 48000.
ctM ;f] /sd ?= 48000 /x]5 .

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. jflif{s 20 % Aofh b/n] 2 jif{df x'g] s'g} wgsf] ldl>t Aofh / ;fwf/0f Aofhsf] km/s
Rs. 400 x'G5 eg] ;f] wg kTtf nufpg'xf];\ < -pTt/ M ?= 10,000)
2. s'g} ?lkof“sf] jflif{s 15%sf b/n] 3 jif{df rj|mLo Aofh b/ / ;fwf/0f Aofhdf km/s
?= 283.5 x'G5 eg] ;fjf“ kTtf nufpg'xf];\ . -pTt/ M ?= 4000)
3. s'g} ?lkof“sf] jflif{s 8% b/n] 2 jif{df rj|mLo Aofh / ;fwf/0f Aofhdf km/s ?= 32 x'G5
eg] ;fjf“ kTtf nufpg'xf];\ . -pTt/ M ?= 5000)
gd'gf 5 :
s'g} /sdsf] 2 jif{df x'g] ;fwf/0f Aofh rj|m:o AofheGbf ?= 90 n] sd 5 . olb jflif{s Aofhb/
15% sfod ul/Psf] lyof] eg] d"n wg slt x'G5 < kTtf nufpg'xf];\ .

;dfwfgM
oxf“,
;do (T) = 2 jif{
Aofhb/ (R) = 15%
d"nwg (P) = ?
k|Zgcg';f/,
CI – SI = 90

52
 R T 
cyjf, P 1 + 100 – 1 –
  
A E A

 15  2
 P × 2 × 15
cyjf, P 1 + 100 – 1 – 100 = 90
  
A E A A A

129 3
cyjf, P × 400 – P × 10 = 90
A

E
A A

E
A

129P – 120P
cyjf, A

400 = 90 E
A

9P
cyjf, 400 = 90
A

E
A

400
cyjf, P = 90 × 9 = 4000 A

E
A

ctM d"nwg = ?= 4000.


cEof;sf nflu k|Zg
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. k|ltjif{ 10% Aofhsf] b/n] 2 jif{df s'g] /sdsf] ;/n;fwf/0f Aofh rj|mLo AofheGbf
?=360 sd x'g cfp“5 eg] d"n wg kTtf nufpg'xf];\ . -pTt/ M ?= 36000)
2. k|ltjif{ 15% Aofhsf b/n] 2 jif{df s'g} /sdsf] ;fwf/0f Aofh rj|mLo AofheGbf
?= 180 sd x'g cfp“5 eg] d"n wg kTtf nufpg'xf];\ . -pTt/ M ?= 8000)
3. k|ltjif{ 10% Aofhsf b/n] 2 jif{df s'g} /sdsf] ;fwf/0f Aofh rj|mLo AofheGbf
?= 420 sd x'g cfp“5 eg] d"n wg kTtf nufpg'xf];\ . -pTt/ M?= 42000)
gd'gf 6 :
s'g} wg/flzsf] 10% jflif{s Aofhsf] b/n] b'O{ jif{df rj|mLo Aofh ?= 420 x'G5 eg] TolTts}
;dosf nflu pxL g} jflif{s Aofhb/n] ;f]xL ;fjf“df nfUg] ;fwf/0f Aofh slt x'G5 < lgsfNg'xf];\ .
;dfwfgM
oxf“, Aofhb/ (R) = 10% k|lt jif{
;do (T) = 2 jif{
;fjf“ (P) = ?
;"qcg';f/,
 R T 
rj|mLo Aofh = P 1 + 100 – 1
  
A E

cyjf, 420 = P
cyjf, 420 = P
cyjf, 420 = P

53
21
cyjf, 420 = P × 100 A

420 × 100
cyjf, A

21 E
=P A

∴ P = ?= 2000

km]l/, ;"qcg';f/
PTR
;fwf/0f Aofh (SI) = 100 A

?= 2000 × 2 × 20
100 = A

= ?= 200
ctM ;fwf/0f Aofh (C.P.) = ?= 200

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. ?= 5000 sf] 2 jif{df jflif{s 20% sf b/n] x'g] rlj|mo Aofh slt xf]nf < ;f]xL b/df ;f] /sdsf]
;fwf/0f Aofhcg'¿k TolTt g} Aofh kfpg slt ;do nfUnf < -pTt/ M ?= 2200, 2.2 jif{_
2. jflif{s 10% Aofhb/df 2000 sf] 2 jif{df ldl>t Aofh slt xf]nf . ;f]xL /sdsf] Tolt g} Aofh
;f]xL cjlwdf kfpg ;fwf/0f Aofh b/ slt sfod ug'{knf{ <-pTt/ M ?=420, 10.5% k|lt jif{_
3. s'g} wg/fzLsf] 10% jflif{s Aofhsf] b/n] 2 jif{df rj|mLo Aofh ?= 840 x'G5 eg] TolTts}
;dosf nflu pxL g} Aofh b/n] ;f]xL ;fjfdf nfUg] ;fwf/0f Aofh lgsfNg'xf];\ .
-pTt/ M ?= 800)
gd'gf 7 :
jflif{s rj|mLo Aofh k|0ffnLcg';f/ s'g} /sdsf] ld> wg 2 jif{df ?= 7260 / 3 jif{df ?= 7986
k'U5 eg] ;fjf“ / Aofhsf] b/ kTtf nufpg'xf];\ .
;dfwfgM
oxf“, 2 jif{sf] ld> wg (A1) = ?= 7260 / 3 jif{sf] ld> wg (A2) = ?= 7986
dfgf}“, ;"qcg';f/,
 R T
A = P 1 + 100 E

 
A A

 R 2
T = 2 jif{ x'“bf, A1 = P 1 + 100 E

 
A

 R 2
∴ 7260 = P 1 + 100 ……………….. (i) E

 
A A

 R 3
T = 3 jif{ x'“bf, A2 = P 1 + 100 E

 
A

54
 R 3
∴ 7986 = P 1 + 100 ………………… (ii) E

 
A A

cj ;dLs/0f (ii) nfO{ ;= (i) n] efu ubf{–


 R 3
P 1 + 100
7986  
7260 = 
A A

R 2
A A

P 1 + 100
E

 
E E

R 11
cyjf, 1 + 100 = 10 A A

E
A

R 11
cyjf, 100 = 10 – 1
A

E
A A

E
A

R 1
cyjf, 100 = 10
A

E
A A

∴ R = 10% k|lt jif{


R sf] dfg ;= (i) df /fVbf
 10 2
7260 = P 1 + 100 E

 
A

121
cyjf, 7260 = P × 100 A

100
cyjf, P = 7260 × 121 A

∴ P = ?= 6000
ctM ;fjf“ = ? 6000 / Aofhb/ 10% k|lt jif{

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1= jflif{s rj|mLo Aofh b/df s'g} wg/fzLsf] 2 jif{ / 3 jif{sf] cGTodf j|mdzM ld> wgx¿ ?=
26460 / ?= 27783 x'G5 eg] rj|mLo Aofhb/ / pSt wg/fzL kTtf nufpg'xf];\ .
-pTt/ M 5%, ?= 240900)
2. k|ltjif{ 20% Aofhsf b/n] s'g} /sdsf] rlj|mo jflif{s Aofh 3 jif{df ;fwf/0f AofheGbf ?=
384 n] a9L x'g cfp“5 eg] d"nwg lgsfNg'xf];\ . -pTt/ M ?= 3000)
3 jflif{s ldl>t Aofhcg';f/ 2 jif{ / 3 jif{df s'g} /sdsf] ld>wgx¿ j|mdzM ?=12100 /
13310 k'Ub5 eg] d"nwg / Aofhb/ kTtf nufpg'xf];\ . -pTt/ M ?= 10,000, 10%)

gd'gf 8 :
?= 10000 sf] 2 jif{df cw{jflif{s rj|mLo Aofhb/df rj|mLo Aofh ?= 4641 x'G5 eg] Aofhsf] b/
kTtf nufpg'xf];\ .
55
;dfwfg M
oxf“, d"nwg (P) = ?=10000
;do (T) = 2 jif{
Aofhb/ (R) = ?
cw{jflif{s ld>Aofh (C. I.) = ?= 4641
 R 2T 
;"qcg';f/, C. I. = P 1 + 100 – 1
  
A E

14641  R 4
cyjf, 10000  200 – 1
=  1 +
E

A A A A

4641 R 4
cyjf, 1 + 10000 = 1 + 200
A A

E
A
E

4641 R 4
cyjf, 10000 = 1 + 200
A A

E
A
E

11 4 R 4
cyjf, 10 = 1 + 200
A E A A
E

R 11
cyjf, 1 + 200 = 10 – 1
A A

E
A A

R 1
cyjf, 200= 10
A A

E
A

∴ R = 20%

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1
1. ?= 5000 sf] 1 2 jif{df cw{jflif{s rj|mLo Aofh ?= 624.32 x'G5 eg] Aofhsf] b/ kTtf A A

nufpg'xf];\ . -pTt/ M 8% k|lt jif{_


1
2. ?= 8000 sf] 1 2 jif{df cw{jflif{s rj|mLo Aofh ?= 998.912 x'G5 eg] Aofhsf] b/ kTtf A A

nufpg'xf];\ . -pTt/ M 8% k|lt jif{_


3. ?= 12000 sf] 2 jif{df cw{jflif{s rj|mLo Aofh b/df rj|mLo Aofh ?= 2586.075 eP Aofhsf]
b/ kTtf nufpg'xf];\ . -pTt/ M 10%)

4. ?= 15000 sf] 2 jif{df cw{jflif{s rj|mLo Aofh b/df rj|mLo Aofh ?= 3232.59375 eP
Aofhsf] b/ kTtf nufpg'xf];\ . -pTt/ M 10% k|lt jif{_

yk cEof;sf nflu k|Zg

56
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. ?= 12000 sf] jflif{s 20% Aofh b/df 2 jif{df x'g] ;fwf/0f Aofh / jflif{s rj|mLo Aofhdf
x'g] km/s kTtf nufpg'xf];\ < -pTt/ M ?= 480)
2. jflif{s 10% Aofhsf b/n] 2 jif{df x'g] s'g} wg /fzLsf] rj|mLo Aofh / ;fwf/0f Aofhsf]
km/s ?. 20 x'G5 eg] ;f] wg kTtf nufpg'xf];\ . -pTt/ M ?= 2000)
3. k|ltjif{ 5% Aofhsf b/n] 2 jif{df s'g} /sdsf] ;fwf/0f Aofh rj|mLo AofheGbf
?= 120 sd 5 eg] d"n wg kTtf nufpg'xf];\ . (pTt/ M ?= 48000)
4. s'g} wg/flzsf] 15% jflif{s Aofhsf] b/n] 2 jif{df rj|mLo Aofh ?= 1935 x'G5 eg] TolTts}
;dosf nflu pxL g} Aofhb/n] ;f]xL ;fjf“df nfUg] ;fwf/0f Aofh lgsfNg'xf];\ .
-pTt/ M ?= 1800)
5. jflif{s rj|mLo Aofh k|0ffnLcg';f/ s'g} /sdsf] ld> wg 2 jif{df ?= 6050 k'Ub5 / 3 jif{df
?= 6655 k'Ub5 eg] ;f] /sd slt lyof] . -pTt/ M ?= 5000)
kf7 M 3.1.2 hg;ª\Vof j[b\lw / ld> x|f;
(Population Growth and Compound Depreciation)
1. cfwf/e"t tYo tyf ;"qx¿
-s_ cfwf/e"t wf/0ffx¿
-c_ hg;ª\Vof j[b\lw
Pp6f lglZrt ;dofjlwdf hg;ª\Vofdf ePsf] ;fk]lIft j[b\lwnfO{ hg;ª\Vof j[b\lw
elgG5 .
-cf_ ;fwf/0f x|f; (Simple Depreciation)
s'g} j:t'sf] d"Nodf k|To]s jif{ jf lglZrt ;dosf] cGt/fndf Pp6} b/ (same rate)
df x|f; cfp“5 eg] To:tf] x|f;nfO{ ;fwf/0f x|f; elgG5 .
-O_ ld> x|f; (Compound depreciation)
s'g} j:t'sf] d"Nodf k|To]s jif{df lglZrt ;dodf x'g] ;fk]lIfs x|f;nfO{ ld> x|f;
elgG5 .
-v_ dxTTjk"0f{ a'“bf tyf ;"qx¿
1. dfgf}+, R % n] k|ltjif{ hg;ª\Vofdf x'g] j[b\lwsf b/n] ;'?sf] hg;ª\VofnfO{ hgfp“5 eg] T
jif{kl5sf] hg;ª\Vof
P1 =P ( 1+ 100
A
R T
) E

hxf“ P / PT n] j|mdzM z'?sf] / T jif{ kl5sf] hg;ª\VofnfO{ hgfp“5g\ .


2. olb R % k|ltjif{df x'g] hg;ª\Vof x|f;sf] b/ eP T jif{kl5sf] hg;ª\Vof
PT =P ( 1+ 100
A
R T
) E

57
3. olb R1 % n] Pp6f lglZrt ;dosf] j[b\lw b/ / R% n] csf]{ lglZrt ;dosf] j[b\lw b/nfO{
hgfp“5 eg] T jif{sf] hg;ª\Vof
PT =P ( 1+ 100
A
R T
) 1 1
E A x P1 =P ( 1+ 100
A
R T
2
) 2
E x'G5 .
A

4. olb ‘P’ ;'?sf] d"No / ‘F’ clGtd d"No xf] eg] jflif{s ;fwf/0f x|f;nfO{ o;/L lgsflnG5
P–F
;fwf/0f x|f; (D) = n A E

hxf“, n = ;fdfgsf] cg'dflgt l6sfp jif{ ;ª\Vof


o;nfO{ x|f;sf] a/fa/ ls:tf (equal installment) tl/sf klg elgG5 .
P, PT, R / T n] j|mdM z'?sf] d"No, T jif{ kl5sf] d"No, x|f; b/ / ;do jif{df nfO{ hgfp“5 eg]
x'G5 .

-u_ pTt/ n]Vbf Wofg lbg'kg]{ s'/fx¿


1. ;dfgfGt/ ;"q agfp“bf ;Demg'kb{5 .
2. pTt/ n]Vbf PsfO n]Vg la;{g' x“'b}g .

3. gd'gf k|Zgf]Tt/ / cEof;


3.1. 5f]6f] pTt/ cfpg] k|Zg ;DaGwL cEof;
gd'gf 1 :
s'g} ufp“sf] hg;ª\Vof 2 jif{ klxn] 5400 lyof] . Toxf“sf] hg;ª\Vof j[b\lw b/ 5 % 5 eg] xfnsf]
hg;ª\Vof kTtf nufpg'xf];\ .
;dfwfg M
;'?sf] hg;ª\Vof (P) = 5400
hg;ª\Vof j[blwb/ (R) = 5%
xfnsf] hg;ª\Vof (PT) = ?
;do (T) = 2 jif{
 R T
;"qcg';f/, xfnsf] hg;ª\Vof (PT) = P 1 + 100 E

 
A

R 2

cyjf P2 = 540 1 + 100 E

 
A

2
21
= 5400 × 20
E

 
A

441
= 5400 × 400 A

∴ xfnsf] hg;ª\Vof (PT) = 5934 nueu


cEof;sf nflu k|Zg

58
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. s'g} ufp“sf] hg;ª\Vof 2 jif{ klxn] 7000 lyof] . Toxf“sf] hg;ª\Vof j[b\lw b/ 3.1 % 5 eg]
xfnsf] hg;ª\Vof lgsfNg'xf];\ < -pTt/M– 7441 hgf_
2. 2 jif{ klxn] Pp6f ufp“sf] hg;ª\Vof 16000 lyof] . pSt ufp“sf] hg;ª\Vof j[b\lw b/ 5% 5
eg] clxn]sf] hg;ª\Vof slt xf]nf < -pTt/ M17640 hgf_
3. Pp6f ;x/sf] hg;ª\Vof k|To]s jif{ 3 k|ltztsf] b/n] j[b\lw x'G5 . olb clxn]sf] hg;ª\Vof
480000 eP b'O{ jif{kl5 pSt ;x/sf] hg;ª\Vof slt xf]nf < -pTt/ M 50923 hgf_
gd'gf 2 :
Pp6f ufp“sf] hg;ª\Vof Ps jif{ klxn] 10,000 lyof] . clxn]sf] hg;ª\Vof 10,210 5 eg]
hg;ª\Vof j[b\lw b/ slt x'G5, lgsfNg'xf];\ .
;dfwfg M
;'?sf] hg;ª\Vof = 10000
xfnsf] hg;ª\Vof (P) = (PT) = 10210
hg;ª\Vof j[b\lw b/ (R) = ?
;do (T) = 1 jif{
;"qcg';f/,
 R T
PT = P 1 + 100 E

 
A

 R 2
cyjf, 10210 = 10000 1 + 100 E

 
A

 R  2 1021
cyjf, 1 + 100 = 1000 E

 
A A A

R 21
cyjf, 100 = 1000
A

E
A A

21
cyjf, R = 10 A

∴ R = 2.1
ctM cfjZos hg;ª\Vof j[b\lw b/ = 2.1%
cEof;sf nflu k|Zg
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. Pp6f ufp“sf] 1 jif{ klxn]sf] hg;ª\Vof 8000 lyof] . olb xfnsf] hg;ª\Vof 8400 eP 5 eg]
hg;ª\Vof j[b\lw b/ slt x'G5, kTtf nufpg'xf];\ . -pTt/ M 5%)
2. 2062 ;fndf wflbª a]+;Lsf] hg;ª\Vof 20,000 lyof] . olb 2063 ;fndf Toxf“sf] hg;ª\Vof
21000 eP hg;ª\Vof j[b\lw b/ kTtf nufpg'xf];\ . -pTt/ M 5)
3. /Tggu/sf] 2062 ;fnsf] hg;ª\Vof 40000 lyof] . olb 2063 ;fndf Toxf“sf] hg;ª\Vof
416000 eP hg;ª\Vof j[b\lw b/ kTtf nufpg'xf];\ . -pTt/ M 4% )
gd'gf 3 :
59
Pp6f d]l;gsf] d"Nodf k|To]s jif{ 10 % x|f; s6\6f x'“b} hfG5 eg] ?= 24000 kg]{ Pp6f d]l;gsf] 2
jif{kl5sf] d"No kTtf nufpg'xf];\ .
;dfwfg M
oxf“, x|f; b/ (R) = 10%
;'?sf] d"No (P) = ?=24000
2 jif{kl5sf] d"No (P2) = ?
 R T
;"qcg';f/, T jif{kl5sf] d"No (P1) = P 1 – 100 E

 
A

 10  2
∴ 2 jif{kl5sf] d"No (P2) = 2400 1 – 100 E

 
A

81
= 24000 × 100 A

= 19440
ctM ;f] d]l;gsf] 2 jif{kl5sf] d"No = ?=19440

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ .
1. ? 10,000 kg]{ d]l;gsf] d"Nodf 10% x|f; s6\6f x'G5 eg] ;f] d]l;gsf] b'O{ jif{kl5 x'g] d"No
kTtf nufpg'xf];\ . -pTt/ M ?= 8100)
2.. Pp6f ufp“sf] hg;ª\Vof 64,000 5 . 5% k|lt jif{sf] b/n] hg;ª\Vof j[b\lw x'G5 . b'O{
jif{kl5sf] hg;ª\Vof slt x'g]5 < -pTt/ M 70560)
3.. ?= 12000 kg]{ d]l;gsf] d"Nodf k|ltjif{ 10 % x|f; s6\6f x'G5 eg] ;f] d]l;gsf] b'O{ jif{ kl5
x'g] d"No kTtf nufpg'xf];\ . -pTt/ M ?= 9720
gd'gf 4 :
k|ltjif{ 15 k|ltzt x|f; s6\6f u/L Pp6f :s'6/ Ps jif{kl5 ?= 72250 df a]lrof] eg] pSt :s'6/
sltdf lslgPsf] lyof] < kTtf nufpg'xf];\ .
;dfwfg M
x|f; s6\6f b/ (R) = 15%
;do (T) = 1 jif{
x|f; kl5sf] d"No (PT) = ?= 72250
;'?sf] d"No (P) = ?
;"qcg';f/,
PT = P
 5 
cyjf, 72250 = 1 – 100
 
A E

60
85
cyjf, 72250 = P × 100 A

100
cyjf, P = 72250 × 85 A

∴ P = 85000
ctM ;'?sf] d"No (P) = ?= 85000

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. k|ltjif{ 5 % x|f; s6\6f u/L Pp6f df]6/;fOsn Ps jif{kl5 ?= 57,000 df a]lrof] eg] pSt
df]6/;fOsn sltdf lslgPsf] lyof] < -pTt/ M ?= 60,000)
2. k|ltjif{ 12% x|f; s6\6f u/L Pp6f df]6/;fOsn Ps jif{kl5 ?= 30,976 df a]lrof] eg] pSt
df]6/;fOsn sltdf lslgPsf] lyof] < -pTt/ M ?= 35200)
3. k|ltjif{ 8% x|f; s6\6f u/L Pp6f df]6/;fOsn Ps jif{kl5 ?= 76176 df a]lrof] eg] pSt
df]6/;fOsn sltdf lslgPsf] lyof] < -pTt/ M ?= 82800)
gd'gf 5 :
?= 90000 kg]{ Pp6f df]6/;fOsnsf] a;]{lg 10% x|f; s6\6f ul/G5 eg] 2 jif{kl5sf] x|f; s6\6f
kTtf nufpg'xf];\ .
;dfwfg M
;'?sf] d"No (P) = ?= 90000
d"No x|f; b/ (R) = 10%
;do (T) = 2 jif{
x|f; s6\6f /sd = ?
;"qcg';f/,

 R T
x|f;s§f /sd = P 1 – 1 – 100 

 
A E

  10 2
= 90000 1 – 1 – 100 
  
A E

 81 
= 90000 1 – 100
 
A E

19
= 90000 × 100 A

= 17100
ctM x|f; s6\6f /sd = ?= 17100

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
61
1. ?= 5000 kg]{ Pp6f ;fOsnsf] a;]{lg 33% x|f; s§f ul/G5 eg] 2 jif{ kl5sf] x|f; s§f kTtf
nufpg'xf];\ . -pTt/ M ?= 2755.5)
2. ?= 75000 kg]{ Pp6f 6fOk/fO6/sf] a;]{lg 10% x|f; s§f ul/G5 eg] 2 jif{ kl5sf] x|f; s§f
kTtf nufpg'xf];\ . -pTt/ M ?= 14250)
3. ?= 80000 kg]{ Pp6f d]l;gsf] a;]{lg 20% x|f; s6\6f ul/G5 eg] 2 jif{kl5sf] x|f; s6\6f
kTtf nufpg'xf];\ . -pTt/ M ?= 28800)

gd'gf 6 :
Pp6f d]l;gsf] d"No 2 jif{df ?= 32000 af6 36]/ ?= 25920 sfod eP5 eg] jflif{s x|f; k|ltzt
kTtf nufpg'xf];\ .
;dfwfg M
;do (T) = 2 jif{
d]l;gsf] ;'?sf] d"No (P) = ?= 32000
2 jif{kl5sf] d"No (P2) = ?= 25920
x|f; b/ (R) = ?
;"qcg';f/,
 R T
PT = P 1 – 100 E

 
A

 R 2
cyjf, 25920 = 32000 1 – 100 E

 
A

25920  R 2
cyjf, 32000 = 1 – 100 E

 
A A A

 9 2  R 2
cyjf, 10 = 1 – 100
E
E

   
A A A

9 R
cyjf, 10 = 1 – 100
A

E
A A

R 9
cyjf, 100 = 1– 10
A

E
A A

R 1
cyjf, 100 = 10 A

E
A A

E
A

∴ R = 10%
ctM d"No x|f; b/ = 10% k|lt jif{
cEof;sf nflu k|Zg
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. ?= 450000 df lsg]sf] Pp6f sf/ Ps jif{kl5 ?= 405000 df a]lrof] eg] slt k|ltzt x|f;
s6\6f ul/Psf] lyof] < -pTt/ M 10%)

62
2. ?= 90000 df lsg]sf] Pp6f df]6/;fOsn Psjif{ kl5 ?= 81000 df a]lrPsf] lyof] eg]
To;df slt k|ltzt x|f; s6\6f ul/Psf] lyof] < -pTt/ M 10%)
3. ?=. 200000 df lslgPsf] Pp6f 6]Dk' 1 jif{kl5 ?= 170000 df a]lrPsf] lyof] eg] slt
k|ltzt x|f; s6\6f ul/Psf] lyof] < -pTt/ M 10%)

3.2 nfdf] pTt/ cfpg] k|Zgf]Tt/ / cEof;


gd'gf 1 :
Pp6f ufp“sf] hg;ª\Vof k|To]s jif{ 5% sf] b/n] a9\b} hfG5 . olb 2 jif{sf] cGTodf 1025 hgf
a;fO“ ;/]/ cGoq hf“bf ;f] ufp“sf] hg;ª\Vof 10000 eof] eg] ;'?df ;f] ufp“sf] hg;ª\Vof slt
lyof] <
;dfwfg M
oxf“, hg;ª\Vof j[b\lw b/ (R) = 5%
;do (T) = 2 jif{
2 jif{sf] cGTodf ufp“sf] hg;ª\Vof = 1025 + 10000
PT = 11025
 R T
;"qcg';f/, PT = P 1 + 100 
 
A E

 R 2 
cyjf, 11025 = P 1 + 100 
 
A E

441
cyjf, 11025 = P × 400 A

11025 × 400
cyjf, A

441 E
=P A

∴ P = 10000
ctM ;'?sf] hg;ª\Vof = 10,000 hgf pTt/

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. Pp6f ;x/sf] hg;ª\Vof k|To]s jif{ 10 k|ltzt a9\b} hfG5 . olb b'O{ jif{sf] cGTodf ;f] ;x/sf]
hDdf hg;ª\Vof 30000 k'u]sf] lyof] . olb ;f] ;ª\Vofdf 5800 hgf clGtddf a;fO“ ;/fOaf6
ylkPsf lyP eg] ;'?sf] hg;ª\Vof slt lyof] < -pTt/ M 20000 hgf_
2. /Tggu/sf] hg;ª\Vof k|To]s jif{ 5 % a9\b} hfG5 . olb b'O{ jif{sf] cGTodf ;f] ;x/sf] hDdf
hg;ª\Vof 15000 k'u]sf] lyof] . olb ;f] ;ª\Vofdf 3975 hgf clGtddf a;fO“ ;/fOsf]
ylkPsf lyP eg] ;'?sf] hg;ª\Vof slt lyof] < -pTt/ M 10000 hgf_

63
3. sf7df8f}“sf] hg;ª\Vof k|To]s jif{ 10% a9\b} hfG5 . olb b'O{ jif{sf] cGTodf ;f] ;x/sf] hDdf
hg;ª\Vof 700000 k'u]sf] lyof] . olb ;f] ;ª\Vofdf 95000 hgf clGtddf a;fO“ ;/fOsf]
ylkPsf lyP eg] ;'?sf] hg;ª\Vof slt lyof] < -pTt/ M 20000 hgf_

gd'gf 2 :
2057 ;fnsf] ;'?df sf7df8f}“ pkTosfsf] hg;ª\Vof 10,00,000 / hg;ª\Vof j[b\lw b/ 4.5%
lyof] . 2058 ;fnsf] ;'?df 25000 dflg;x¿ cGoqaf6 oxf“ a;fO“ ;/fO u/L oxf“ :yfoL a;f]af;
ug{ cfP eg] 2060 ;fnsf] ;'?sf] hg;ª\Vof slt xf]nf <
;dfwfgM
2057 ;fnsf] hg;ª\vof = 1000000
hg;ª\Vof j[b\lw b/ = 4.5%
2058 ;fndf ylkPsf] dflg;sf] ;ª\Vof = 25000
2060 ;fnsf] hg;ª\Vof = ?
2058 ;fnsf] hg;ª\Vof = 1000000 + 1000000 sf] 4.5 % + 25000
= 10,00000 + 45000 + 25000
= 10, 70, 000
2060 ;fnsf] hg;ª\Vof lgsfNgsf nflu
;'?sf] hg;ª\Vof (P) = 10 70000
;do (T) = 2060 – 2058 = 2 jif{
j[b\lw b/ (R) = 4.5%
;"qcg';f/
 R T
PT = P 1 + 100
 
A E

 4.5 2
= 107000 1 + 100
 
A E

209 T
= 1070000 × 200
E

 
A

= 107000 × 1.092025
= 1168467 nueu
ctM 2060 ;fnsf] hg;ª\Vof = 1168467 hgf

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. Pp6f ufp“sf] 2060 ;fnsf] hg;ª\Vof 10000 lyof] / hg;ª\Vofdf j[b\lw b/ 5 % lyof] .
2061 ;fnsf] ;'?df Tof] ufp“df 500 dflg; cGoqaf6 a;fO“ ;/fO u/L :yfoL a;f]af; ug{
cfP eg] 2063 ;fnsf] hg;ª\Vof kTtf nufpg'xf];\ . -pTt/ M 12127)

64
2. Pp6f ufp“sf] 2059 ;fnsf] hg;ª\Vof 20000 lyof] / hg;ª\Vofdf j[b\lw b/ 5 %
lyof] . 2060 ;fnsf] ;'?df Tof] ufp“df 9192 dflg; cGoqaf6 a;fO“ ;/fO u/L :yfoL
a;f]af; ug{ cfP eg] 2062 ;fnsf] hg;ª\Vof kTtf nufpg'xf];\ . -pTt/ M 31212)
3. Pp6f ;x/sf] hg;ª\Vof k|To]s jif{ 4% n] a9\5 . olb xfnsf] hg;ª\Vof 50000 eP,
(a) ltg jif{ klxn] ;f] ;x/sf] hg;ª\Vof slt lyof] xf]nf < -pTt/ M 44450 hgf_
(b) 1 jif{kl5 slt x'G5 xf]nf < -pTt/ M 52000 hgf_
4. Pp6f ;x/sf] hg;ª\Vof 1622400 5 . 2 jif{ klxn] ;f] ;x/sf] hg;ª\Vof 1500000 lyof] .
;f] ;x/sf] 1 jif{kl5sf] hg;ª\Vof ;f]xL j[b\lw b/cg';f/ kTtf nufpg'xf];\ .
-pTt/ M 1687296 hgf_
gd'gf 3 :
Ps hgf dflg;n] ?= 44100 lt/]/ lsg]sf] Pp6f sDKo'6/ 2 jif{sf] k|of]ukl5 ?= 40000 df laj|mL
u¥of] eg] pSt sDKo'6/sf] ld> x|f; b/ kTtf nufpg'xf];\ .
;dfwfg M
sDKo'6/sf] ;'?sf] d"No (P) = ?= 44100
;do (T) = 2 jif{
2 jif{ kl5sf] d"No (P2) = 40000
ld> x|f; b/ (R) = ?
;"qcg';f/
 R T
PT = P 1 – 100
E

 
A

R 2 
cyjf, P2 = 44100 1 – 100
E

 
A

 R 2
cyjf, 40000 = 44100 1 – 100
E

 
A

40000  R  2
cyjf, 44100 = 1 – 100
E

A A A

400  R 2
cyjf 441  100
=  1 –
E

A A A

202  R 2
cyjf, 21 = 1 – 100
E E

   
A A A

20 R
cyjf, 21 = 1 – 100
A A

E
A

R 20
cyjf, 100
A = 1 – 21
A

E
A

R 1
cyjf, =
100 21
A A

E
A

65
100
cyjf, R = 21
A

16
ctM ld> x|f; b/ (R) = 4 21%
A A

cEof;sf nflu k|Zg


ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf k|Zgx¿ xn ug]{ k|of; ug'{xf];\ M
1. ?= 5000 df lslgPsf] Pp6f d]l;g ?=2560 df 3 jif{kl5 laj|mL ul/of] eg] ldl>t x|f; b/
kTtf nufpg'xf];\ . -pTt/ M 5%)
2. ?= 5000 df lslgPsf] Pp6f :s'6/ 3 jif{sf] k|of]ukl5 ?= 36450 df laj|mL ul/of] eg] ;f]
:s'6/sf] d"Nodf ePsf] ldl>t x|f; b/ kTtf nufpg'xf];\ . -pTt/ M 10%)
3. ?= 9000 df lslgPsf] Pp6f df]6/;fOsn 3 jif{sf] k|of]ukl5 ?= 65610 df laj|mL ul/of] eg]
;f] df]6/;fOsnsf] d"Nodf ePsf] ldl>t x|f; b/ kTtf nufpg'xf];\ . -pTt/ M 10%)

yk cEof;sf nflu k|Zg


tnsf k|Zgx¿ ;dfwfg ug'{xf];\ M
1. ljb'/ gu/kflnsfsf] hg;ª\Vof 50000 5 . olb jflif{s hg;ª\Vof j[b\lw b/ 4 % eP 2
jif{kl5sf] hg;ª\Vof kTtf nufpg'xf];\ . -pTt/ M 54080 hgf_
2. ;Nofg6f/sf] hg;ª\Vof j|mdzM 12000 / 12240 eP hg;ª\Vof j[b\lw b/ kTtf nufpg'xf];\ .
-pTt/ M 2%)
3. ?= 2500 kg]{ 38Lsf] d"Nodf Ps jif{df 15 % x|f; s6\6f x'G5 eg] b'O{ jif{kl5 ;f] 38Lsf]
d"No kTtf nufpg'xf];\ . -pTt/ M ?= 1806.25)
4. k|ltjif{ 6% x|f; s6\6f u/L Pp6f df]6/;fOsn Ps jif{kl5 ?= 70688 df a]lrof] eg] pSt
df]6/;fOsn sltdf lslgPsf] lyof] < -pTt/ M ?= 75200)
5. ?= 500000 kg]{ Pp6f sf/sf] a;]{lg 10% x|f; s6\6f ul/G5 eg] 2 jif{kl5sf] x|f; s6\6f
kTtf nufpg'xf];\ . -pTt/ M ?= 95000)
6. xl/n] ?= 5500 kg]{ Pp6f ;fOsn Ps jif{kl5 ? 5060 df a]Rof] eg] To;df slt k|ltzt x|f;
s6\6f ul/Psf] lyof] < -pTt/ M 8%)
7. Pp6f ;x/sf] hg;ª\Vof k|To]s jif{ 8% a9\b} hfG5 . olb b'O{ jif{sf] cGTodf ;f] ;x/sf] hDdf
hg;ª\Vof 40000 k'u]sf] lyof] . olb ;f] ;ª\Vofdf 50080 hgf clGtddf a;fO“ ;/fOsf]
ylkPsf lyP eg] ;'?sf] hg;ª\Vof slt lyof] < -pTt/ M 30000 hgf_

66
8. Pp6f sDKo'6/sf] 2060 ;fnsf] d"No ?= 80000 lyof] . olb ;f] sDKo'6/ 2063 ;fndf vl/b
ubf{ ?= 58320 df kfOG5 eg] pSt sDKo'6/df ePsf] ldl>t x|f; b/ kTtf nufpg'xf];\ .
-pTt/ M 10%)
gd'gf 4 :
Pp6f b/fhdf df 15% 5'6 kfP/ ¿ 7650 df lslgof] eg] b/fhsf] cª\lst d"No kTtf nufpg'xf];\ .
;dfwfg M
oxF“,
b/fhdf 5'6 (D) = 15%
b/fhsf] ljj|mo d"No (SP) = ¿ 7650
xfdLnfO{ yfxf 5,
S.P = M=P – 5'6
cyjf, ?= 7650 = MP – M=P sf] 15%
cyjf, ?= 7650 = M=P – M=P
cyjf, ?= 7650 =
cyjf, M.P = ?= 9000
ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf ;"qx¿ xn ug]{ k|of; ug'{xf];\ .
1= ;'hgn] Pp6f SofNs'n]6/ 8 % 5'6 kfO{ ?= 888 df lsGof] eg] pSt SofNs'n]6/sf] cª\lst
d"No slt
lyof] <
2= Pp6f ;fdfgsf] ljj|mo d"No ?= 9680 5 . olb cª\lst d"Nodf 12% 5'6 lbP/ laj|mL ul/G5
eg] To; ;fdfgsf] cª\lst d"No kTtf nufpg'xf];\ .
3= s'g} j:t'sf] ljj|mo d"No ?= 320 5 . olb To;sf] cª\lst d"Nodf 29 % 5'6 lbP/ laj|mL
ul/Psf] eP cª\lst d"No slt lyof] xf]nf <
4= s]zjn] Pp6f sf]6 245 % 5'6 kfP/ ?= 5625 df lsg] eg] sf]6sf] cª\lst d"No
lgsfNg'xf];\ .
gd'gf 5 :
Pp6f d"lt{sf] cª\lst d"No ?= 8,500 5 . 10 % VAT ;lxt ;f] d"lt{sf] ljj|mo d"No kTtf
nufpg'xf];\ .
;dfwfg
oxf“
d"lt{sf] cª\lst d"No -M.P) ?= 8,500
VAT = 10%
ljj|mo d"No -S.P) = <
xfdLnfO{ yfxf 5,
SP = M=P + M=P sf] 10%

67
= ?= 8500 +?= 8500 x
= ?= 9350
ca,
1= Pp6f cfO/gsf] cª\lst d"No ? 4200 5 . olb 13% VAT hf]8]/ laj|mL ubf{ ;f] cfO/gsf]
d"No slt k5{ <
2. 15% VAT ;lxt cª\lst d"No ?= 17,500 ePsf] s'g} /]lk|mlh/]6/sf] ljj|mo d"No slt k5{
<
3= Pp6f lx6/ Uof;sf] cª\lst d""No ? 7,800 cª\lst ul/Psf] 5 / 10% VAT tf]lsPsf] 5
eg] j|m]tfn] pSt Uof;sf] d"No slt ltg'{k5{ <

gd'gf 6 :
olb lbksn] Pp6f df]afOn kmf]g 13 % VAT lt/L ?= 4,800 df lsGof] eg] df]afOn kmf]gsf] cª\lst
d"No slt
lyof] <
;dfwfg
oxf“,
df]afOn kmf]gsf] ljj|mo d"No (S=P) = ?= 4,800
VAT = 135
cª\lst d"No (M=P) = <
cª\lst d"No (M=P) = ?= x -dfgf+}_
k|Zgg';f/,
S.P = M=P + VAT
cyjf, ?= 4800 = x + x sf] 13%
cyjf, ?= 4800 = x + x x
cyjf, ?= 4800 =
cyjf, x = ?= 4247=79
ctM pSt df]afOn kmf]gsf] cª\lst d"No ?= 4247=78 /x]5 .

ca, dflysf] pbfx/0fsf] ;xfotfaf6 tnsf ;"qx¿ xn ug]{ k|of; ug'{xf];\ M


1= olb /ljgn] 6]lnlehg 10% VAT ;lxt ?= 9625 df lsg]/ NofP eg] 6]lnlehgsf] cª\lst
d"No slt xf]nf <
2. s'g} j:t'sf] ljj|mo d"No ?= 15255 5 . olb ;f] j:t'df 13% VAT nfU5 eg] j:t'sf] cªlst
d"No lgsfNg'xf];\ .
3. s'g} j:t'sf] d"Nodf 15 % VAT lt/L ?= 172.50 df laj|mL ul/of] eg] VAT afx]ssf] d"No
lgsfNg'xf];\ .
68
gd'gf 7 :
cd[tn] Pp6f SofNs'n]6/ 10 % gfkmf u/L ljsf;nfO{ a]Rof] ljsf;n] 10 % gf]S;fgdf k/L ;f]
SofNs'n]6/ rGb|nfO{ a]Rof] . olb rGb|n] ;f] SofNs'n]6/ 500 df lsg]sf] eP cd[tsf] j|mo d"No
lgsfNg'xf];\ .
;dfwfg
oxf“
cd[tsf] gfkmf = 1%
ljsf;sf] gf]S;fg = 10%
rGb|sf] j|m=d" (C=P) = ?= 500
cd[tsf] j|m=d" (C=P) = <
ca, cd[tsf] j|m=d" (C=P) = x dfgf+}
cd[tn] ljsf;nfO{ a]r]sf] x'“bf,
ljsf;sf] j|m=d" = cd[tsf] j|m=d" + gfkmf
= x + x sf] 10%
=x+xx

=
km]l/, ljsf;n] rGb|nfO{ a]r]sf] x'“bf,
rGb|sf]s j|m=d" = ljsf;sf] j|m=d" – gf]S;fg
cyjf, ?= 500 = – sf] 10%
cyjf, ?= 500 = –
cyjf, ?= 500
cyjf, 99x = ?= 50000
cyjf, x = ?= 505.05
ctM cd[tn] pSt SofNs'n]6/ / 505=05 df lsg]sf] /x]5 .
1. 'A' n] Pp6f ;fOsn 15% gfknf u/L 'B' nfO{ laj|mL u¥of] 'B' n] 10% gf]S;fgdf 'C' nfO{
laj|mL u¥of] . olb C n] ;f] ;fOsn ?= 7500 df lsg]sf] eP 'A' sf] j|mo d"No kTtf
nufpg'xf];\ .
2= chon] ljhonfO{ 20 % gfkmf u/L ljhon] uf]kfnnfO{ 20 % gf]S;fg u/L a]r]sf]
;fOsnnfO{ uf]kfnn] ?= 13,440 df lsg]sf] /x]5 eg] chon] ;f] ;fOsn sltdf lsg]sf]
/x]5 <
3= dLgfn] zfGtfnfO{ Pp6f ;f8L 10 % gf]S;fgdf a]lrg\ . zfGtfn] ;f]xL ;f8L /fwfnfO{ 210 %
gfkmf u/L a]lrg\ . olb /fwfn] ;f] ;f8L ?= 4556 df lslgg\ eg] ldgfn] sltdf lsg]sL
/lx5g\ < lgsfNg'xf];\ .
69
gd'gf 8 :
;'zLnfn] b'O{ cf]6f jf:s]6 an ?= 3200 df lslgg\ .
klxnf]nfO{ 10 % gfkmfdf / bf];|f]nfO{ 10 % gf]S;fgdf a]lrg\ . olb b'j}sf] ljj|mo d"No a/fa/ eP
k|To]ssf] j|mo d"No lgsfNg'xf];\ .
;dfwfg M
oxf“,
b'O{ cf]6f jf:s]6 ansf] j|m=d" (C=P) = ?= 3200
klxnf] af:s]6 ansf] gfkmf = 10%
bf];|f] af:s]6 ansf] gf]S;fg = 10%
klxnf] af:s]6 ansf] j|m=d" (C=P) = x dfgf}
bf];|f] af:s]6 ansf] j|m=d" =(C=P) = ¿ 3200 – x
k|Zgfg';f/,
klxnf] af:s]6 ansf] lj=d" = bf];|f] af:s]6 ansf] lj=d"
cyjf, x + x sf] 10% = (?= 3200 - x) – (?= 3200 – x) x
cyjf, =
cyjf, 20x = ?= 28800
cyjf, x = ?= 1440
ctM klxnf] af:s]6 ansf] j|m=d" = ?= 1440
/ bf];|f] af:s]6ansf] j|m=d" = ?= 3200 – ?= 1440
= ?= 1760
1= ;~hon] b'O{cf]6f ;fO{sn ¿ 14,000 df lsGof] . klxnf] ;fO{snnfO{ 15% gf]S;fgdf /
bf];|f] ;fO}snnfO{ 15% gfkmf u/L a]Rof] . olb b'j}sf] ljj|mo d"No a/fa/ eP k|To]s
;fO{snsf] j|mod"No lgsfNg'xf];\ .
2= lblnkn] b'Ocf]6f kfgL tfGg] kDk ?= 9000 df lsg]/ Pp6f 20% gfkmf / csf]{ 20%
gf]S;fgdf a]r]5 . olb b'j}sf] ljj|mo d"No Pp6} eP b'j}sf] j|mod"No lgsfNg'xf];\ . s'n
sf/f]af/df ePsf] gfkmf jf gf]S;fg k|ltzt klg kTtf nufpg'xf];\ .
3= e"jgn] b'O{cf]6f l6=le ¿ 30,000 df lsg]/ Pp6fnfO{ 10% gfkmf / csf{nfO{ 10%
gf]S;fgdf a]r]5 . olb b'j}sf] lj=d" a/fa/ eP s'n sf/f]af/df ePsf] gfkmf jf gf]S;fg
k|ltzt kTtf nufpg'xf];\ .
gd'gf 9 :
;ª\udn] b'O{ cf]6f HoldtLo afs; k|To]ssf] ?= 180 df a]Rof] . p;nfO{ klxnf] afs;df 20 % gfkmf
/ bf];|f]df 20 % gf]S;fg eP5 eg] p;nfO{ gfkmf jf gf]S;fg s] eP5 < k|ltztdf lgsfNg'xf];\ .
;dfwfg M
oxf“,
b'O{ cf]6f HofldtLo afs;sf] lj=d" (S=P) =?= 180 x 2 = ?= 360

70
klxnf] afs;sf] gfkmf = 20 %
bf];|f] afs;sf] gf]S;fg = 205
20 % gfkmf cg';f/,
klxnf] afs;sf] j|m=d" (C.P) =
=
= ?= 150
20% gf]S;fg cg';f/,
bf];|f] afs;sf] j|m=d" (C=P) =

= ?=

= ?= 225
b'O c{ f]6f afs;sf] hDdf j|m=d" (C=P) = ¿ 150 + ¿ 225
= ?= 375
ca, C.P>S=P
To;}n] gf]S;fg = S.P = ¿ 375 – ?= 360 = ?= 15
ctM
gf]S;fg % = jf:tljs gf]S;fg x 100%
j|m=d"
=
= 4%
1= xg'dfg ;fx'n] b'O{ cf]6f ;f8L k|To]ssf] ?= 7,500 df af]r]5 . o;af6 p;nfO{ klxnf]
;f8Ldf 15 % gfkmf / bf];|f]df 15 % gf]S;fg eP5 eg] o; sf/f]af/af6 p;nfO{ ePsf]
gfkmf jf gf]S;fg k|ltzt kTtf nufpg'xf];\ .
2= s'df/Lkf6L l6=eL= ;]G6/n] b'O{ cf]6f l6=eL= k|To]ssf] ?= 12,000 df a]r]5 . o;af6 p;nfO{
Pp6fdf 105 gfkmf / k|ltzt s] eP5 < lgsfNg'xf];\ .
3= jhfh ;f]¿dn] b'O{ cf]6f df]6/;fOsn k|To]ssf] ?= 1,25000 sf b/n] a]r]5 . o;/L laj|mL
ubf{ o;nfO{ klxnf]df ePsf] gfkmf jf gf]S;fg k|ltzt kTtf nufpg'xf];\ .
gd'gf 10 :
Pp6f ;'k/ dfs]{6df ePsf] k'm6andf / 5000 cª\lst ul/Psf] d"No slt x'G5 < kTtf nufpg'xf];\ .
;dfwfg M
oxfF,
k'm6ansf] cª\lst d"No (M=P) = ?= 5000
5'6 = 10 %
VAT = 135

71
lj=d" (S=P) = M=P – 5'6
= ?= 5000 – ?= 5000 sf] 10%
= ?= 5000 – ?= 5000 x
= ?= 4500
13% VAT cg';f/,
VAT ;lxtsf] lj=d" = 5'6kl5sf] lj=d" + VAT
= ?= 4500 + ?= 4500 sf] 13%
= ?= 4500 + ?= 4500 x
= ?= 5085
ctM pSt k"m6ansf] hDdf d"No ?= 5085 k5{ .
1. Ps hgf r:df k;n]n] ?= 1150 cª\lst u/]sf] Pp6f r:dfnfO{ 10 % 5'6 lbO{ 13 %
VAT hf]8]/ laj|mL ub{5 eg] ;f] r:dfsf] laj|mL d"No lgsfNg'xf];\ .
2= ?= 2100 cª\lst ul/Psf] :s'n emf]nfdf 20 % 5'6 lbO{ 15 % VAT hf]8]/ a]Rbf cfpg]
emf]nsf] laj|mL d"No kTtf nufpg'xf];\ .
3= ?= 6900 cª\lst ul/Psf] /]l8of]df 15 % 5'6 lbO{ 10 % d"No clej[b\lw s/ nufp“bf ;f]
/]l8of]sf] d"No slt knf{ <
gd'gf 11 :
c+=d" df 15 % 5'6 lbO{ 13 % d"No clej[b\lw s/ nup“bf s'g} ;fdfgsf] d"No ?= 2881.5 eof] eg]
;f] ;fdfgsf] d"No kTtf nufpg'xf];\ .
;dfwfg
oxfF,
;fdfgdf 5'6 = 15 %
;fdfgdf VAT = 13 %
;fdfgsf] lj=d" (S=P) =?=¿ 2881.5
;fdfgsf] c=d" (M=P) = <
15 % 5'6 cg';f/,
5'6kl5sf] ljd" (S=P) = M=P – 5'6
= x – x sf] 15 %
=x–

=
k]ml/,
13% VAT ;lxt lj=d" = 5'6kl5sf] lj=d" + VAT
cyjf, ?= 2881.5 = sf] 13%

72
cyjf, ?= 2882.5 =
cyjf, ?= 2881.5 =
cyjf, x = ?= 3000
ctM ;f] ;fdfgsf] cª\lst d"No ?= 3000 sfod ul/Psf] /x]5 .
1. Pp6f d"lt{sf] 20 % 5'l6;lxtsf] d"Nodf 10 % d"No clej[b\lw s/ hf]8]/ laj|mL ubf{ /
6336 k5{ eg] ;f] d"lt{sf] cª\lst d"No kTtf nufpg'xf];\ .
2. 15 % 5'6 u/L laj|mL u/]sf] Sofd/fdf 10 % VAT hf]8\bf Sofd/fsf] d"No kTtf
nufpg'xf];\ .
3= sdnfn] Pp6f knªnfO{ ?= 1,20,750 lt/L 3/df NofOg\ olb o;nfO{ 25 % 5'6kl5 15 %
VAT hf]8L a]lrPsf] eP knªsf] cª\lst d"No kTtf nufpg'xf];\ .
gd'gf 12 :
cª\lst d"Nodf 15 % 5'6 lbO{ 10 % VAT hf]8L laj|mL ubf{ Pp6f ;fOsnsf] d"No ?= 4207.5 x'g
cfp“5 eg]
(i) ;fOsnsf] 5'6 /sd kTtf nufpg'xf];\ .
(ii) ;fOsnsf] VAT /sd kTtf nufpg'xf]\ .

;dfwfg M
oxf,
;fOsnsf] lj=d" (S.P) = ?= 4207.5
5'6 = 15 %
VAT = 10 %
c+=d" (M.P) = x -dfgf+}_
15 % 5'6 cg';f/,
5'6kl5sf] lj=d" (S=P) = M=P – M=P sf] 15%
= x – x x sf]

VAT ;lxtsf] lj=d" = sf] 10%


cyjf, ?= 4207.5 =
cyjf, ?= 4207.5 =
cyjf, x = ?= 4500
ctM M=P = ?= 4500
(i) 5'6 /sd = M=P sf] 15%

73
= ?= 4500 sf] 15%
= ?= 4500 x
= ?= 675
-ii_ VAT /sd = sf] 10%
=
= -∴ x = ?= 4500_
= ?= 382.5
1= Pp6f /]l8of]df 20 % 5'6 lbO{ 15 % VAT nufp“bf pSt /]l8of]sf] d"No / 1428 x'G5 eg]
pSt /]l8of]sf] VAT /sd lgsfNg'xf];\ .
2= Pp6f 38Lsf] cª\lst d"Nodf 15 % 5'6 lbO{ 13 % d"=c=5'6 nufp“bf laj|m d"No / 9605
sd x'G5 eg] 38Lsf] 5'6 /sd kTtf nufpg'xf];\ .
3= Pp6f j:t'sf] cª\lst d"Nodf 18 % 5'6 lbO{ 10 % VAT nufp“bf ¿ 40, 590 x'g cfp“5 eg]
(i) 5'6 /sd
(ii) VAT /sd kTtf nufpg'xf];\ .

gd'gf 13 :
s'g} ;fdfgsf] cª\lst d"No j|mo d"NoeGbf 30 % a9fP/ /flvPsf] 5 . olb 205 5'6 lbg] xf] eg] ?=
500 gfkmf x'G5 . ;f] ;fdfgsf] cª\lst d"No / j|mo d"No kTtf nufpg'xf];\ .
;dfwfg
oxf“, j|mo d"No (C.P) = x -dfgf+“}_
ist Case,
M=P = C=P + C=P + sf] 30 %
=x+xx

=
S=P = M=p – 5'6
= – sf] 20%
= –

=

=
ca,

74
gfkmf = S=P – C=P
cyjf, ?= 500 = –
cyjf, ?= 12,500 = x
M=P = – = ?= 16250
ctM ;f] ;fdfgsf] cª\lst d"No ?= 16250 / j|mo d"No ?= 12,500 /x]5 .
1. Pp6f l6=eL=sf] cª\lst d"No j|mo d"NoeGbf 40 % a9L /flvPsf] 5 . olb 25 % 5'6 u/L
laj|mL ubf{ ?= 200 gfkmf x'G5 eg] ;f] l6=eL=sf] cª\lst d"No / j|mo d"No kTtf
nufpg'xf];\ .
2. Pp6f /]lk|mlh/6]/ cª\lst d"No j|mo d"NoeGbf 40 % a9L /flvPsf] 5 . olb 30 % 5'6 u/L
laj|mL ubf{ ?= 1000 3f6f x'G5 eg] ;f] /]lk|mlh/6]/sf] cª\lst d"No / j|mo d"No
lgsfNg'xf];\ .
3. Ps hgf k;n]n] s'g} j:t'sf] cª\lst d"No, j|mo d"NoeGbf 30 % a9fP/ /fv]5 . olb ;f]
j:t'df 25 % 5'6 lbg d"No / j|mo d"No lgsfNg'xf];\ .

gd'gf 14 :
Ps hgf Jokf/Ln] pp6f Nofk6ksf] cª\lst d"No ljj|mo d"NoeGbf 30 % a9fP/ /fv]5 . olb To;sf]
j|mo d"No ljj|mo d"NoeGbf 20 % sd eP 5'6 k|ltzt / gfkmf jf gf]S;fg k|ltzt kTtf
nufpg'xf];\ .
;dfwfg
oxfF,
Nofk6ksf] ljj|mo d"No (S.P) = x -dfgf}_
M=P = S.P + S.P sf] 30%
=x+xx

=
k]m/L, j|mod"No (C=P) = S=P – S=P sf] 20%
=x–xx

=
ca, 5'6 = M.P – S.P
= –x

=
75
5'6% = 5'6 x 100%
M.P
= 100%

= 23.08%
Gffkmf = S.P –C.P
=x–
=
Gfkmf% = gfkmf x 100%
C.P
= 100%

= 25%
ctM ;f] Nofk6kdf 23.08 % 5'6 lbOPsfn] 25 % gfkmf eP5 .
1. Pp6f 38Lsf] cª\lst d"No ljj|mo d"NoeGbf 40 % a9L / j|mo d"No ljj|mo d"NoeGbf 30 %
sd eP 5'6 k|ltzt / gfkmf jf gf]S;fg k|ltzt kTtf nufpg'xf];\ .
2= Pp6f emf]nfsf] cª\lst d"No ljj|mo d"NoeGbf 30 % a9fP/ / j|mo d"No ljj|mo d"NoeGbf
35 % sd eP 5'6 / gfkmf jf gf]S;fg k|ltzt lgsfNg'xf];\ .
3. Pp6f Sofd]/fssf] cª\lst d"No ljj|mo d"NoeGbf 20 % a9fP/ / j|mo d"No cª\lst
d"NoeGbf 20 % sd eP 5'6 / gfkmf k|ltzt lgsfNg'xf];\ .
gd'gf 15 :
Pp6f leTt] 38Lsf] cª\lst d"Nodf 20 % 5'6 lbPdf ?= 80 3f6f x'G5 . olb 10 % dfq 5'6 lbg] xf]
eg] ?= 10 gfkmf x'G5 eg] ;f] 38Lsf] cª\lst d"No / j|mo d"No kTtf nufpg'xf];\ .
;dfwfg
oxfF, cª\lst d"No (M.P) = x
/ j|mo d"No (C.P) = y (dfgf“)}
1st Case,
M=P – 5'6 = C.P – gf]S;fg
cyjf, x – x sf] 20% = y - 80
cyjf, x – x x = y – 80

cyjf, = y – 80
cyjf, 4x = 5y – 400

cyjf, x = ===== (i)
76
IInd case
M=P – 5'6 = C.P + gfkmf
cyjf, x – x x = y + 10

cyjf, = y + 10
cyjf, 9x = 10y + 100
cyjf, x = === (ii)

;dL g+ (i) / (ii) af6 =
cyjf, 45y – 3600 = 40y + 400
cyjf, 5y = 4000
cyjf, y = 800
;dL g+ (i) af6

x=

cyjf, x =
cyjf, x = 900
ctM ;f] 38Lsf] cª\lst d"No ?= 900 / j|mo d"No ?= 800 /x]5 .
1. Pp6f vf]nf}gfsf] cª\lst d"Nodf 25 % 5'6 lbg] xf] eg] ?= 150 gf]S;fg x'G5 t/ 105 dfq
5'6 lbPdf ?= 120 gfkmf x'G5 . ca pSt v]nf}gfsf] cª\lst d"No / j|mo d"No lgsfNg'xf];\ .
2. Pp6f Aof6«Lsf] cª\lst d"Nodf 25 % 5'6 lb“bf 10 % gf]S;fg x'G5 . t/ 10 % 5'6 lb“bf ?=
500 gfkmf x'G5 eg] Aof6«Lsf] cª\lst d"No / j|mo d"No kTtf nufpg'xf];\ .
3. Pp6f ;fOsnsf] cª\lst d"Nodf 15 % 5'6 lbg] xf] eg] 5 % gf]S;fg x'G5 . t/ 5% 5'6
lb“bf ?= 420 gfkmf x'G5 eg] ;fOsnsf] cª\lst d"No / j|mo d"No kTtf nufpg'xf];\ .
4. Pp6f l6=eL=sf] cª\lst d"Nodf 20 % 5'6 lb“bf ?= 400 gfkmf x'G5 . 10 % dfq x'g] lbg] xf]
eg] ?= 1400 gfkmf x'G5 . l6=eL=sf] cª\lst d"No / j|mo d"No lgsfNg'xf];\ .
gd'gf 16 :
Pp6f 38L cª\lst d"Nodf 255 5'6 lbO{ 15 % VAT hf]8]/ a]lrof] . olb VAT /sd ?= 450 lyof]
eg] 38Lsf] cª\lst d"No / 5'6 /sd kTtf nufpg'xf];\ .
;dfwfg
oxfF,
38Ldf 5'6 = 25%
38Ldf VAT = 15%
VAT /sd = ?= 450
cª\lst d"No (M.P) = <

77
5'6 /sd = <
cª\lst d"No (M.P) = x (dfgf“)}
5'6 /sd = M.P sf] 5'6 %
= x sf] 25 %
=x

=
5'6kl5sf] lj=d" = M.P – 5'6
=x–

VAT /sd = sf] 15%


cyjf, ?= 450 =
cyjf, x =?= 4000
5'6 /sd =
ctM ;f] 38Lsf] cª\lst d"No ?= 4000 / 5'6 /sd ?= 1000 /x]5 .
1. Pp6f kª\vfsf] cª\lst d"Nodf 20 % 5'6 lbO{ 10 % VAT hf]8]/ a]lrof] . olb VAT /sd
?= 200 lyof] eg] kª\vfsf] cª\lst d"No / 5'6 /sd kTtf nufpg'xf];\ .
2. Pp6f lk|mhsf] cª\lst d"Nodf 255 5'6 lbO{ 135 d"No clej[b\lw s/ hf]8]/ lslgof] . olb
d"No clej[b\lw s/ /sd ?= 780 eP cª\lst d"No / 5'6 /sd lgsfNg'xf];\ .
3. Pp6f ;fdfgsf] cª\lst d"Nodf 15 % 5'6 lbO{ 10 % VAT hf]8]/ a]lrof] . olb 5'6 /sd
?= 2025 eP cª\lst d"No / VAT /sd lgsfNg'xf];\ .

78
+If]q M# If]qldlt (Mensuration)
If]q kl/ro
If]qldltcGtu{t lqe'hfsf/ lk|Hd, uf]nf, cw{uf]nf a]ngf, ;f]nL, ;fy} a]ngf / cw{uf]nf, ;f]nL /
cw{uf]nf, a]ngf / ;f]nL, juf{sf/ lk/fld8, juf{sf/ lk/fld8 / if8d'vf s'g} b'O{ cf]6f 7f]; j:t'x¿sf]
;+o'St jj|m ;txsf] If]qkmn, k'/f ;txsf] If]qkmn / cfotg h:tf 7f]; j:t' ;DaGwL ;d:ofx¿ o;
If]qleq ;dfj]z ul/Psf] kfOG5 . o; If]qcGtu{t P;Pn;L k/LIffdf # cf]6f 5f]6f] pTt/ cfpg]
juf{sf/ / @ cf]6f nfdf] pTt/ cfpg] k|Zgx¿ clxn]sf] kf7\oj|mdn] lgwf{/0f u/]sf] kfOG5 .

kf7 #=! lqe'hfsf/ lk|Hd


!= kl/ro
o; kf7df lqe'hfsf/ lk|Hdsf] jj|m ;txsf] If]qkmn / cfotg h:tf ;d:ofx¿dWo] s'g} Pp6f ;d:of
5f]6f] k|Zgdf P;Pn;L k/LIffdf ;f]Wg] ul/G5 . h;sf] k"0ff{ª\s @ x'G5 . lqe'h cfwf/ ePsf] lk|Hd g}
lqe'hfsf/ lk|Hd xf] . h:t} M lrqdf ABC / A'B'C' p:t} / pq} lqe'hx¿ x'g\ . of] lrqsf] jqm ;tx -
j|m; ;]S;g_ sf] If]qkmn klg cfwf/sf] If]qkmn;Fu a/fa/ x'g] ePsfn] of] lk|Hd xf] .
A A'

B'
B

P C'

@= cfwf/e"t tYo tyf ;"qx¿


-s_ lqe'hfsf/ lk|Hdsf] cfotsf/ ;txsf] If]qkmn (L.S.A.)
= cfwf/sf] kl/ldlt × lk|Hdsf] prfO -nDafO_
lqe'hfsf/ lk|Hdsf] cfoftsf/ ;txsf] If]qkmn (L.S.A.) = ( a + b + c) × h
-v_ k'/f ;txsf] If]qkmn (T.S.A.) = 2 × cfwf/sf] If]qkmn + cfotsf/ ;txsf] If]qkmn
= 2 × lqe'hsf] If]qkmn + (a + b + c) h
lqe'hfsf/ lk|Hdsf] cfotg (Volume) (V) = cfwf/sf] If]qkmn × prfO
=A×h
C C'

b
a
A
A'
c
B B'
#= ljz]if Wofg lbg'kg]{ s'/fx¿
– cfwf/ - lqe'h _ s:tf] 5 < o;sf] kl/ldlt / If]qkmn lgsfNg] ;"q yfxf kfpg'k5{ .
– kl/ldlt ;a} e'hfx¿sf] of]ukmn (a+b+c) x'G5 .

79
– lqe'h ;dsf]0fL eP If]qkmn = × cfwf/ × prfO x'G5 .
– jj|m ;txsf] If]qkmn eP cfotsf/ efusf] dfq If]qkmn xf] eGg] yfxf kfpg'k5{ .
– k'/f ;txsf] If]qkmn eP cfwf/;lxtsf] If]qkmn eGg] yfxf kfpg'k5{ .
– cfotgsf k|Zg ;f]w]sfdf ;f]xLcg';f/sf] ;"q nufpg''kg]{ x'G5 .
$= gd'gf k|Zgf]Tt/ tyf cEof;
$=! 5f]6f] pTt/ cfpg] k|Zgf]Tt/
gd'gf ! M
lbOPsf] lrqaf6 jj|m ;txsf] If]qkmn k'/f ;txsf] If]qkmn / cfotg lgsfNg'xf];\ .
B 20 cm E

A
D

C
of] lqe'h ;dsf]0fL lqe'h xf] . ljGb' A sf] sf]0f 90o 5 .
oxf“, AB = 8 cm, AC = 6 cm
BC = - kfOyfuf]/; ;fWocg';f/ _
=
=
=
= 10 cm
lqe'h M cfwf/sf] kl/ldlt (P) = AB + AC + BC
= 8 + 6 + 10
= 24 cm
lk|Hdsf] prfO ( h ) = 20 cm
jj|m ;txsf] If]qkmn (L.S.A ) = ?
xfdLnfO{ yfxf 5, jj|m ;txsf] If]qkmn (L.S.A ) = cfwf/sf] kl/ldlt (P) × prfO (h)
= 27 × 20
= 480 cm2
km]/L, lk|Hdsf] k'/f ;txsf] If]qkmn (T.S.A.) x'gsf nflu,
cfwf/sf] If]qkmn (A) = × cfwf/ × prfO
= ×8×6
= 24 cm2 Ans
k'/f ;txsf] If]qkmn (T.S.A.) = 2A + P×h
= 2 × 24 + 24 × 20
= 48 + 480
= 528 cm2
lk|Hdsf] cfotgsf nflu (V) = cfwf/sf] If]qkmn × prfO
= 24 cm2 × 20 cm
= 480 cm3

80
cEof;sf nflu k|Zg
1= lbOPsf lk|Hdaf6 jj|m ;txsf] If]qkmn lgsfNg'xf];\ M
-s_ -v_ -u_
P M
5
C
Q M
N
R O

pTt/ M -s_ 120cm2 -v_ 900 cm2 -u_ 240 cm2


@= lbOPsf lrqx¿sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ M

A E’
5
D cm
5
cm
B
C 30cm 10cm 20c m

-s_ -v_ -u_

pTt/ M -s_1848 cm2 -v_132 cm2 -u_ 252 cm2

#= lbOPsf lk|Hdx¿sf] cfotg lgsfNg'xf];\ M


-s_ -v_ -u_

8cm 13
C
M

pTt/ M -s_ 480 cm3 -v_ 450cm3 -u_ 2880cm3

gd'gf k|Zg g+= @ M


lbOPsf] lrqaf6 cfotg lgsfNg'xf];\ M

4 3 cm
of] lrq ;dafx' lqe'h cfwf/ ePsf] lqe'hfsf/ lk|Hd xf] .
hxf“, e'hfsf] nDafO (a) = 6cm

81
;dafx' lqe'hsf] cfwf/sf] If]qkmn (A) = a2
= ×62 = 9 cm2
lk|Hdsf] cfotg (V) = A × h 3g PsfO
=9 cm3
= 36 × 3 cm3 = 108 cm3
cEof;sf nflu k|Zg
!= lbOPsf lrqaf6 cfotg lgsfNg'xf];\ .
-s_ -v_

10 3 cm

pTt/ M -s_ 270cm3 -v_ 180 cm3

yk cEof;
58\s] ;tx / k'/f ;txsf] M

!= tn lbOPsf lk|Hdsf] If]qkmn lgsfNg'xf];\ M

-s_ -v_

20 cm

pTt/ M -s_ 360cm2 / 391.176cm2, -v_1200cm2 / 1416cm2

82
@= lbOPsf] lk|Hdsf] cfotg lgsfNg'xf];\ M

pTt/ M -s_ 39.80cm3

#= Pp6f lqe'hsf e'hfx¿ 7 : 24 : 25 sf] cg'kftdf 5g\ . olb ;f] lqe'hsf] If]qkmn 84cm2 eP pSt
lqe'hsf] kl/ldlt lgsfNg'xf];\ .
pTt/ M 56 cm
$= olb Pp6f ;dafx' lqe'hsf] If]qkmn 25 ju{ ;]=ld= 5 eg] To;sf] kl/ldlt lgsfNg'xf];\ .
pTt/ M 30 cm
%= 30 lkm6, 36 lkm6 / 40 lkm6 e'hfx¿ ePsf] Pp6f lqe'hfsf/ d}bfgsf] If]qkmn lgsfNg'xf];\ .
pTt/ M 519 .04 ft2
^= 30 ld=, 30 ld=/ 32 ld= e'hfx¿ ePsf] lqe'hfsf/ d}bfgsf] If]qkmn lgsfNg'xf];\ .
pTt/M 406.03 m2
&= lbOPsf] lqe'hfsf/ lk|Hdsf] 58\s] ;txsf] If]qkmn kTtf nufpg'xf];\ .

12.5 cm

pTt/ M 840 cm2


*= lbOPsf] lqe'hfsf/ lk|Hdsf] 58\s] ;txsf] If]qkmn kTtf nufpg'xf];\ .

8 cm

pTt/ M 480cm2

83
(= lbOPsf] lqe'hfsf/ lk|Hdsf] 58\s] ;txsf] If]qkmn kTtf nufpg'xf];\ .

pTt/ M 378cm
!)= lrqdf lbOPsf] lk|Hdsf] cfotsf/ kf6fx¿sf] If]qkmn 144cm2 eP
lk|Hdsf] prfO kTtf nufpg'xf];\ .

pTt/ M 12 cm
!!= olb Pp6f lqe'hfsf/ lk|Hdsf] cfotsf/ ;txsf] If]qkmn / prfO j|mdz M 324 ju{ ;]=ld= / 18
;]=ld= eP o;sf] cfwf/sf] kl/ldlt kTtf nufpg'xf];\ .
pTt/ M 18 cm
!@= olb Pp6f lqe'hfsf/ lk|Hdsf] cfotsf/ ;txx¿sf] If]qkmn / prfO j|mdzM 1056 ju{ ;]=ld= /
24 ;]=ld= eP o;sf] cfsf/sf] kl/ldlt kTtf nufpg'xf];\ . pTt/ M 44 cm

84
kf7 #=@ a]ngf, uf]nf, cw{uf]nf / ;f]nL
(Cylinder, Sphere, Hemisphere and Cone)
!= kl/ro
o; kf7cGt/ut a]ngf, uf]nf, cw{uf]nf / ;f]nL h:tf 7f]; j:t'x¿sf] jj|m ;txsf] If]qkmn, k'/f
;txsf] If]qkmn / cfotg ;DaGwL ;d:ofx¿ ;dfj]z ul/Psf 5g\ . o; kf7af6 @ cf]6f 5f]6f]
pTt/ cfpg] k|Zg / csf]{ Pp6f nfdf] pTt/ cfpg] k|Zg @ cf]6f 7f]; j:t'sf] ;+o'St lrqsf] jj|m
;txsf] If]qkmn, k'/f ;txsf] If]qkmn / cfotg dWo] s'g} Ps P;Pn;L k/LIffdf ;f]Wg] ul/G5 .
@= cfwf/e"t tYo jf ;"qx¿
@=! a]ngf
of] a]ngfsf] lrq xf] . o;df cw{Jof; / prfO jf nDafO x'G5 . lrqdf r n] cw{Jof; / h («l) prfO
jf nDafOnfO{ hgfp“5 .
a]ngfsf] jj|m ;txsf] If]qkmn (C.S.A.) = 2 π r h,
a]ngfsf] k'/f ;txsf] If]qkmn (T.S.A.) = 2 π r (r + h)
/ a]ngfsf] cfotg (V) = π r2 h

@=@ uf]nf (Sphere)


uf]nfsf] k'/f ;txsf] If]qkmn (T.S.A.) = 4 πr2 = πd2
4
uf]nfsf] cfotg (V)= 3 π r3 = 16 A E A A E A π d3

@=# cw{uf]nf ( Hemisphere)


cw{uf]nfsf] jj|m ;txsf] If]qkmn (C.S.A.)= 2πr2 = πd2
cw{uf]nfsf] k'/f ;txsf] If]qkmn (T.S.A.)= 3 πr2 = πd2
2 1
cw{uf]nfsf] cfotg (V) E
3
3 π r =12 π d
A A
3
A E A

@=# ;f]nL (Cone)


;f]nLsf] jj|m ;txsf] If]qkmn (C.S.A.) = πrl
;f]nLsf] k'/f ;txsf] If]qkmn (T.S.A.) = πr( r + l)
;f]nLsf] cfotg (V)= πr2h
yk l= h2 + r2 A E

2 2
h= l - r
A E

2 2
r= l - h
A E

85
@=$ ldl>t 7f]; j:t' ;DaGwL ;"qx¿

a]ngf / ;f]nL ;+o'St 7f]; j:t'sf] jj|m ;txsf] If]qkmn(C.S.A.)= πrl + 2πrh
= πr (l + 2h) ju{ PsfO
k'/f ;txsf] If]qkmn (T.S.A.) = πrl + 2πrh + πr2
= πr (l + 2h + r) ju{ PsfO
1 2
cfotg (V) =3 πr h1+ πr2h
A A

1
= πr2 (3 h1 + h ) #g PsfO
A

E
A

a]ngf / cw{uf]nfsf] ;+o'St 7f]; a:t'sf] jj|m ;txsf] If]qkmn (T.S.A) = 2πr2 + 2πrh
= 2πr(r + h) ju{ PsfO
k'/f ;txsf] If]qkmn (T.S.A.) = 2πr2 +2πrh + πr2
= 3πr2 +2πrh
= πr(3r + 2h ) ju{ PsfO
cfotg (V) = πr3 + πr2h
= πr2( ) #g PsfO
@=% cw{uf]nf / ;f]nL

jj|m ;txsf] If]qkmn +(C.S A ) = 2πr2 +2πrl


= πr (2r + l ) ju{ PsfO

k'/f ;txsf] If]qkmn (T.S.A.) = 2πr2 + πrl


= πr (2r+l ) ju{ PsfO
2 2
cfotg (V) = 3 π r3 +3 πr2h
A E A A E A

86
1
= 3 πr2 (2r + h) #g PsfO
A E A

#= ljz]if Wofg lbg'kg]{ s'/fx¿


— 7f]; j:t' lrGg] / To;sf] ;"q klxrfg u/L k|of]u ug'{k5{ .
—;+o'St 7f]; j:t' s] s] ldn]/ ag]sf] 5 . To;nfO{ cnu cnu lrqsf] ¿kdf lrGg'k5{ .
—;"q n]vL To;nfO{ ;/nsf] lgod cg';f/ SofNs'n]6/ k|of]u u/L ;d:of ;dfwfg ug]{ .

$= gd"gf k|Zgf]Tt/ tyf cEof;


$=!= 5f]6f] pTt/ cfpg] k|Zg / ;dfwfg
$=!=! a]ngf
lbOPsf] 7f]; j:t'sf] jj|m ;txsf] If]qkmn lgsfNg'xf];\ .

;dfwfg
of] lrq a]ngf xf] .
oxf“ cw{Jof; (r) = 7cm
a]ngfsf] prfO (h) = 10 cm
jj|m ;txsf] If]qkmn (C.S.A ) = ?
xfdLnfO{ yfxf 5,
jj|m ;txsf] If]qkmn (C.S.A ) = 2πrh ju{ PsfO
2
=2× × 7 × 10 cm
= 44 × 10 cm2
= 440 cm2
o;} u/L k'/f ;txsf] If]qkmn jf cfotg h] ;f]w]sf] 5 eg] To;s} ;"q k|of]u u/L ;d:of
;dfwfg ug'{k5{ .

cEof;sf nflu k|Zg


-s_ lrqdf lbOPsf] a]ngfsf] jj|m ;txsf] If]qkmn
lgsfNg'xf];\ .

pTt/ M 3520 cm2


-v_ olb prfO / cw{Jof; a/fa/ ePsf] a]ngfsf/ sf7sf] jj|m ;txsf] If]qkmn 308 ju{ ;]=ld=
5 eg] pSt sf7sf] prfO lgsfNg'xf];\ . pTt/ M 7cm
-u_ a]ngfsf] jj|m ;txsf] If]qkmn / prfO j|mdzM 6\6 ju{ ;]=ld= / 14 ;]=ld= eP pSt a]ngfsf]
cw{Jof; lgsfNg'xf];\ . pTt/ M 7cm
87
-3_ lbOPsf] 7f]; j:t'sf] cfotg lgsfNg'xf];\ .

pTt/ M 57.75cm3
$=!=@ gd"gf @ uf]nf ;DaGwL
lbOPsf] uf]nfsf] cfotg lgsfNg'xf];\ .

;dfwfg
oxfF lbOPcg';f/,
Jof; (d) = 18cm
d 18
cw{Jof; (r) = 2
A E A = 2 = 9 cm
A E A

cfotg(V) = ?
xfdLnfO{ yfxf 5, V = r3 #g PsfO
= × 93
=

= 3054.86 cm 3
cEof;sf nflu k|Zg
-s_ 36π cm3 cfotg ePsf] uf]nfsf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ . pTt/ M 36π cm2
-v_ 7 ;]=ld= cw{Jof; ePsf] uf]nfsf] cfotg lgsfNg'xf];\ . pTt/ M 1437.33 cm3
-u_ 14 ;]=ld= Jof; ePsf] Pp6f uf]nfsf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ . pTt/ M 616 cm2
-3_ 288π cm cfotg ePsf] uf]nfsf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ .
3
pTt/ M 144π cm2
-ª_ Pp6f uf]nfsf] k'/f ;txsf] If]qkmn 22176 ju{ ;]=ld= 5 eg] pSt uf]nfsf] Jof; kTtf
nufpg'xf];\ . pTt/ M 84cm
$=!=# gd"gf # cw{uf]nf ;DaGwL
k|Zgf]Tt/ / cEof;
lbOPsf] cw{uf]nfsf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ .
35 cm

88
;dfwfg
oxfF lbPcg';f/,
cw{uf]nfsf] cw{Jof; (r) = 3.5 cm
cw{uf]nfsf] k'/f ;txsf] If]qkmn (T.S.A.) = ?
xfdLnfO{ yfxf 5 M
cw{uf]nfsf] k'/f ;txsf] If]qkmn (T.S.A.) = 3πr2
= 3× 22/7 × (3.5)2
= 66 × 12.25
= 808.5 cm2
cEof;sf nflu k|Zg
-s_ tn lbOPsf] cw{uf]nfsf] jj|m ;txsf] If]qkmn, k'/f ;txsf] If]qkmn / cfotg lgsfNg'xf];\ .
-c_ cf_ -O_
21 cm

17.5 cm 3.5 cm

pTt/ M 693 cm2 ,1039.5 cm2 , 11229.16 cm3;


pTt/ 77cm2 ,115.5cm2 , 89.83cm3
pTt/ M M 693 cm2, 1039.5 cm2 / 2425.5 cm3
-v_ Pp6f cw{uf]nfsf] k'/f ;txsf] If]qkmn 108π ju{ ;]=ld= 5 eg] pSt cw{uf]nfsf] cw{Jof;
lgsfNg'xf];\ . pTt/ M 12 cm
-u_ k'/f ;txsf] If]qkmn 27π cm2 ePsf] cw{uf]nfsf] cfotg kTtf nufpg'xf];\ . pTt/ M 56.57cm3
-3_ Pp6f cw{uf]nfsf] k'/f ;txsf] If]qkmn 108π ju{ ;]=ld= eP pSt cw{uf]nfsf] 7'nf] j[Ttsf]
If]qkmn lgsfNg'xf];\ . pTt/ M 113.14 cm2
-ª_ 14 ;]=ld= Jof; ePsf] Pp6f cw{uf]nfsf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ . pTt/ M 462cm2

$=!=$ ;f]nL (Cone)


lbOPsf] ;f]nLsf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ .

;f]nLsf] l;wf prfO (h ) = 24 cm


;f]nLsf] cw{Jof; (r) = 7 cm
;f]nLsf] k'/f ;txsf] If]qkmn (T.S.A.) = ?

89
xfdLnfO{ yfxf 5,
l = h2 + r 2 = 242 + 7 2
A E A A E A = A 576 +49 = 625 = 25
E A A E A

;f]nLsf] k'/f ;txsf] If]qkmn (T.S.A.) = πr (r + l)


= 22/7 × 7(7 + 25)
= 22 × 32
= 704 cm2
cEof;sf nflu k|Zgx¿
-s_ tn lbOPsf] ;f]nLsf] cfotg lgsfNg'xf];\ .

-c_ -cf_ -O_


pTt/ M -c_ 1232 cm -cf_ 314.28 cm3
3
-O_ 37.71 cm3
-v_ cfwf/sf] cw{Jof; 4 ;]=ld= / 58\s] prfO 5 ;]=ld= ePsf] ;f]nLsf] cfotg lgsfNg'xf];\ .
pTt/ M 50.28cm3
-u_ Pp6f ;f]nLsf] prfO 15 ;]=ld= / 58\s] prfO 25 ;]=ld= eP ;f] ;f]nLsf] cfotg lgsfNg'xf];\ .
pTt/ M 6285.71cm3
-3_ ;uF } lbOPsf] ;f]nLsf] jj|m ;txsf] If]qk,mn kTtf nufpg'xf];\ .

pTt/ M 550cm2
-ª_ cfwf/sf] cw{Jof; 6 ;]=ld= / 58\s] prfO 8 ;]=ld= ePsf] ;f]nLsf] k'/f ;txsf] If]qkmn kTtf
nufpg'xf];\ . pTt/ M 264 cm2
$=!=% yk cEof;
!= Pp6f a]ngfsf/ j:t'sf] cfwf/sf] If]qkmn cfwf/sf] kl/lw / prfO j|mdz M 38.5 cm2, 22cm /
15cm 5 . cj kTtf nufpg'xf];\ M
-s_ jj|m ;txsf] If]qkmn
-v_ k'/f ;txsf] If]qkmn
-u_ cfotg
pTt/ M 330cm2, 407cm2, 5775cm3
@= Pp6f a]ngfsf/ j:t'sf] cfwf/sf] If]qkmn, cfwf/sf] kl/lw / prfO j|mdz M 1386cm2, 132cm
/ 18cm 5 eg] cj kTtf nufpg'xf];\ M
-s_ jj|m ;txsf] If]qkmn,
-v_ k'/f ;txsf] If]qkmn,

90
-u_ cfotg
pTt/ M 2376 cm2, 5148 cm2, 24948 cm3
#= Pp6f a]ngfsf/ j:t'sf] cfwf/sf] Jof; / prfO j|mdz M 14cm / 12cm eP kTtf
nufpg'xf];\ .
-s_ jj|m ;txsf] If]qkmn
-v_ k'/f ;txsf] If]qkmn
-u_ cfotg
pTt/ M 528cm2, 836cm2, 1848cm3
$= Pp6f a]ngfsf/ j:t'sf] cfwf/sf] Jof; / prfO j|mdzM7cm / 30cm eP kTtf nufpg'xf];\ .
-s_ jj|m ;txsf] If]qkmn
-v_ k'/f ;txsf] If]qkmn
-u_ cfotg
pTt/ M 660cm2,737cm2, 1155cm3
%= Pp6f a]ngfsf/ j:t'sf] cfwf/sf] Jof; / prfO j|mdz M 56cm / 8cm eP kTtf
nufpg'xf];\ .
-s_ jj|m ;txsf] If]qkmn
-v_ k'/f ;txsf] If]qkmn
-u_ cfotg
pTt/ M 1408 cm2, 6336 cm2, 197122 cm3)
^= Pp6f a]ngfsf/ j6\6fsf] cfotg 1.10 ln6/ 5 . olb cfwf/sf] If]qkmn 550cm2 5 eg] o;sf]
prfO lgsfNg'xf];\ . (Ans 2cm )
&= Pp6f a]ngfsf/ j6\6fsf] cfotg 2.60 ln6/ 5 . olb cfwf/sf] If]qkmn 130 cm2 5 o;sf]
prfO lgsfNg'xf];\ .
pTt/ M 20cm
*= prfO / cfotg j|mdz M 9cm / 1848 3g ;]=ld= ePsf] ;f]nL cfsf/sf] 7f];sf] k'/f ;txsf]
If]qkmn kTtf nufpg'xf];\ .
pTt/ M 1348.305 cm2
(= lbPsf] ;f]nLsf] jj|m ;txsf] If]qkmn kTtf nufpg'xf];\ .

pTt/ M 305.63cm2

91
!)= lbPsf] ;f]nLsf] jj|m ;txsf] If]qkmn kTtf nufpg'xf];\ .

pTt/ M 487cm2
!!= olb lbPsf] ;f]nLsf] cfwf/sf] cw{Jof; / prfO j|mdzM 3.5 ;]=ld= / 12 ;]=ld= 5g\ eg] ;f]nLsf]
cfotg kTtf nufpg'xf];\ .

pTt/ M 154 cm3


!@= olb lbPsf] ;f]nLsf] cfwf/sf] cw{Jof; prfO j|mdzM 1.4 ;]=ld= / 9 ;]=ld= 5g\ eg] ;f]nLsf]
cfotg kTtf nufpg'xf];\ .

pTt/ M 18.48cm3
!#= olb lbOPsf] ;f]nLsf] cfwf/sf] cw{Jof; / prfO j|mdz M 2.1 cm / 9
;]=ld= 5g\ eg] ;f]nLsf] cfotg kTtf nufpg'xf];\ .

pTt/ M 41.58cm3
!$= olb lbOPsf] ;f]nLsf] cfotg 2200 3g ;]=ld= / o;sf] cw{Jof; 10cm eP o;sf] prfO slt
xf]nf <

pTt/ M 21cm
92
!%= olb lbOPsf] ;f]nLsf] cfotg 1584 3g ;]=ld= / o;sf] cw{Jof; 6 ;]=ld= eP o;sf] prfO slt
xf]nf <

pTt/ M 14cm
!^= k'/f ;txsf] If]qkmn 48π cm2 ePsf] cw{uf]nfsf] cfotg kTtf nufpg'xf];\ . ( π = 3.14)
pTt/ M 133.97cm3
!&= k'/f ;txsf] If]qkmn 108π cm2 ePsf] cw{uf]nfsf] cfotg kTtf nufpg'xf];\ . (π = 3.14)
pTt/ M 452.16 cm3
!*= Pp6f uf]nfsf] ;txsf] If]qkmn 2456 ;]=ld= eP o;sf] cw{Jof; kTtf nufpg'xf];\ .
pTt/ M 14cm
!(= cfwf/sf] cw{Jof; 7cm ePsf] Pp6f ;f]nLsf] k'/f ;txsf] If]qkmn 704 ju{ ;]=ld= eP ;f]nLsf]
prfO kTtf nufpg'xf];\ . pTt/ M 2.4 cm
@)= 7 cm Jof; ePsf] Pp6f cw{uf]nfsf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ . pTt/ M 1155 cm2
@!= 21 cm Jof; ePsf] cw{uf]nfsf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ . pTt/ M 1039.5 cm2
@@= 972πcm3 cfotg ePsf] uf]nfsf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ . pTt/ M 324 π cm2
@#= Pp6f uf]nfsf/ j:t'sf] cfotg 1047816 cm3 5 eg] o;sf] cw{Jof; slt x'G5 . kTtf
nufpg'xf];\ .
pTt/ M 63 cm
@$= uf]nfsf] 7'nf] j[Ttsf] kl/lw 8.8 cm eP o;sf] ;txsf] If]qkmn kTtf nufpg'xf];\ .
pTt/ M 55.44 cm2
@%= uf]nfsf] 7'nf] j[Ttsf] kl/lw 39.6cm eP o;sf] ;txsf] If]qkmn kTtf nufpg'xf];\ .
pTt/ M 498.96cm2
@^= tLg cf]6f uf]nfx¿ h;sf] cfwf/sf] cw{Jof; j|mdz M 12 cm 16 cm / 20 cm 5g\ . pSt
uf]nfx¿nfO{ kufn]/ Pp6} uf]nf agfpFbf ;f] uf]nfsf] cw{Jof; slt x'G5 < kTtf nufpg'xf];\ .
pTt/ M 24cm
@&= lbOPsf] ;f]nLdf OA=7cm / OB =24 cm 5 . ;f] ;f]nLsf] jj|m ;txsf] If]qkmn kTtf nufpg'xf];\ .

pTt/ M 550cm2

93
@*= cfotg 6600 3g ;]=ld= / cw{Jof; 10 cm ePsf] ;f]nLsf] prfO kTtf nufpg'xf];\ . pTt/ M 63cm
@(= Pp6f ;f]nL jj|m ;txsf] If]qkmn 44 π ju{ ;]=ld= 5 . olb o;sf] cfwf/sf] cw{Jof; 4cm eP
;f]nLsf] prfO kTtf nufpg'xf];\ . pTt/ M 11cm
#)= Pp6f ;f]nLsf] jj|m ;txsf] If]qkmn 20 π ju{ ;]=ld= 5 . olb o;sf] cw{Jof; 4 cm eP ;f]nLsf]
prfO kTtf nufpg'xf];\ . pTt/ M 3cm
#!= Pp6f ;f]nLsf] 58\s] prfO 1.5 ld= / cw{Jof; 0.9 ld= eP pSt ;f]nLsf] cfotg lgsfNg'xf];\ .
pTt/ M 1.01m3
#@= Pp6f ;f]nLsf] cfwf/sf] kl/lw 66 ;]=ld= / jf:tljs prfO 5 ;]= ld= eP pSt ;f]nLsf] cfotg
lgsfNg'xf];\ . pTt/ M 5775cm3
##= Pp6f ;f]nLsf] cfwf/sf] Jof; 24 ;]=ld= / 58\s] prfO 15 ;]=ld= eP pSt ;f]nLsf] cfotg
lgsfNg'xf];\ . pTt/ M 1357.71cm3
#$= Pp6f ;f]nLsf] prfO 7 ;]=ld= / cw{Jof; 24 ;]= ld= eP pSt ;f]nLsf] jj|m ;txsf] If]qkmn
cfotg lgsfNg'xf];\ . pTt/ M 1885.71cm2 , 4224cm3
#%= Pp6f ;f]nLsf] cfwf/sf] kl/ldlt 44 cm / 58\s] prfO{ 10cm ;f]nLsf] cfotg / k'/f ;txsf]
If]qkmn lgsfNg'xf];\ . pTt/ M 36652cm3, 374cm2
#^= Pp6f ;f]nLsf] l;wf prfO / 58\s] prfOsf] cg'kft 3:5 / cfotg 2816/7 3g ;]=ld= eP
pSt ;f]nLsf] 58\s] prfO kTtf nufpg'xf];\ . pTt/ M 10 cm
#&= Pp6f ;f]nLsf] cw{Jof; / 58\s] prfO 7: 25 sf] cg'kftdf 5g\ . olb o;sf] jj|m ;txsf]
If]qkmn 2200 ju{ ;]= ld= eP cw{Jof; kTtf nufpg'xf];\ . pTt/ M 14 cm

#=@ nfdf] pTt/fTds k|Zgf]Tt/


gd'gf ! M
lbOPsf] ;+o'St 7f]; j:t'sf] cfotg lgsfNg'xf];\ .

;dfwfg M
;f]nLsf] 58\s] prfO (l)=13 mm
cw{Jof; (r) = 10/2 mm = 5 mm
;f]nLsf] vf; prfO (h1) =
=
=
=
= 12 mm
a]ngfsf] prfO (h) = 140 mm - 12 mm
=128 mm

94
;+o'St 7f]; j:t'sf] cfotg (V) = a]ngfsf] cfotg (V1) + ;f]nLsf] cfotg (V2)
= πr2h + 1/3 πr2h1
= πr2(h + h1/3 )
= )
=
=
= 10371.43 mm3
cEof;sf nflu k|Zg

!= tn lbOPsf] ;+o'St 7f]; j:t'sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ .


-s_ -v_ u_

pTt/ M -s_ 1606cm2 -v_ 1339.48cm2 -u_ 4697.47cm2

gd'gf @ M
lbOPsf] ;+o'St 7f]; j:t'sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ .
;dfwfg M
;f]]nLsf] 58\s] prfO (l) =13cm+
;f]nLsf] vf; prfO (h) = 12cm
;+o'St 7f]; j:t'sf] k'/f ;txsf] If]qkmn (T.S.A.) = ?
xfdLnfO{ yfxf 5, ;f]nLsf] cw{Jof; (r) =

=
=
=
= 5cm
;+o'St 7f]; j:t'sf] k'/f ;txsf] If]qkmn (T.S.A.) = πrl + 2 πr2 = πr(l +2 r) ju{ PsfO
22
= 7 × 5( 13+ 5×2) cm2
A E A

110×23
= 7
A cm2 E A

= 2530 cm2
cEof;sf nflu k|Zg
lbOPsf] ;+o'St 7f]; j:t'sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ .

95
-s_ -v_ -u_ -3_ -ª_
14 cm 7cm
14 cm
31 cm 31 cm 15.5 cm
3.5 cm

pTt/ M -s_ 858 cm2, -v_ 831.72 cm2, -u_ 858 cm2, -3_ 858 cm2,-ª_ 214.50 cm2

gd"gf # M
;+o'St 7f]; j:t'sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ .
25 cm

39 cm
;dfwfg M
a]ngfsf] prfO (h) = 25cm
cw{Jof; (r ) =(39cm- 25cm)
= 14cm
;+o'St 7f]; j:t'sf] k'/f ;txsf] If]qkmn (T.S.A.) = ?
xfdLnfO{ yfxf 5,
;+o'St 7f]; j:t'sf] k'/f ;txsf] If]qkmn (T.S.A.) = πr(2h + 3r) ju{ PsfO
= 22/7 × 14 (2×25+3×14 )
= 44 (50+42)
= 44×92
= 4048cm2
#= tn lbOPsf ;+o'St 7f]; j:t'sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ .

-s_ -v_ -u_


10 cm 49 cm

17 cm 140 cm 140 cm
-s_ 902 cm 2
-v_ 2618 cm
2
) -u_ 19866 cm2

cEof;sf nflu k|Zg

!= lbOPsf] lrq cw{uf]nf / ;f]nLåf/f ag]sf] 7f]; j:t' xf] . hxfF cw{uf]nfsf] Jof; 14cm 5.
;f]nLsf] 58\s] prfO 25cm 5 . eg] pSt 7f]; j:t'sf] cfotg kTtf nufpg'xf];\ .
96
pTt/ M 1950.66cm3

@= lbOPsf] lrq cw{uf]nf / ;f]nLåfjf/f ag]sf] 7f]; j:t' xf] . hxfF cw{uf]nfsf] Jof; 18 cm 5 . /
;f]nLsf] 58\s] 15 cm 5 eg] pSt j:t'sf] cfotg kTtf nufpg'xf];\ .

pTt/ M 2545.71cm3

#= lbOPsf] lrqsf] cw{uf]nf / ;f]nLåf/f ag]sf] 7f]; j:t' xf] hxfF cw{uf]nf Jof; 42cm 5 /
;f]nLsf] 58\s] prfO 75cm 5 eg] pSt j:t'sf] cfotg kTtf nufpg'xf];\ .

pTt/ M 52668c

$= lbOPsf] ;+o'St 7f]; j:t'sf] cfotg kTtf nufpg'xf];\ . hxfF ;f]nLsf] 58\s] prfO 10 cm /
prfO 8cm 5 .

8 cm

pTt/ M 754.28cm3
%= lbOPsf] ;+o'St 7f]; j:t'sf] cfotg kTtf nufpg'xf];\ hxfF ;f]nLsf] 58\s] prfO 13cm / prfO
12cm 5 .
pTt/ M 576.19cm3

97
^= Pp6f 7f]; j:t' a]ngf / cw{uf]nf ldnL ag]sf] 5 . k'/f 7f];sf] prfO cfwf/sf] Jof;;Fu a/fa/ 5 .
k'/f 7f];sf] cfotg 360πcm3 5 eg] 7f];sf] prfO kTtf nufpg'xf];\ . pTt/ M 12cm
&= Pp6f 7f]; j:t' a]ngf / cw{uf]nf ldnL ag]sf] 5 . k'/f 7f];sf] prfO cfwf/sf] Jof;;Fu
a/fa/ 5 . k'/f 7f];sf] cfotg 360π cm3 5 eg] 7f];sf] prfO kTtf nufpg'xf];\ .
pTt/ M 21 cm
*= Pp6f 7f]; j:t' a]ngf / cw{uf]nf ldnL ag]sf] 5 . k'/f 7f];sf] prfO cfwf/sf] Jof;;uF
a/fa/ 5 / k"/f 7f]; j:t'sf] cfotg 4608π cm3 5 eg] 7f];sf] prfO kTtf nufpg'xf];\ .
pTt/ M 28.07cm
(= lbOPsf] lrq Pp6f a]ngf / pxL cw{Jof; ePsf] Pp6f cw{uf]nf ldnL 30cm

ag]sf] Pp6f ;+o'St j:t' xf] . olb 7f]; j:t'sf] k'/f nDafO 35cm /
a]ngfsf] nDafO 28cm eP ;f] j:t'sf] k'/f ;txsf] If]qkmn kTtf 44cm
nufpg'xf];\ .
pTt/ M 1694cm2
!)= lbOPsf] lrq Pp6f a]ngf / pxL cw{Jof; ePsf] Pp6f cw{uf]nf ldnL ag]sf] Pp6f ;+o'St j:t'
xf] . olb 7f]; j:t'sf] k'/f nDafO 44cm / a]ngfsf] nDafO 30cm eP ;f] 7f]; j:t'sf] k'/f
;txsf] If]qkmn kTtf nufpg'xf];\ .
30 cm

44 cm
pTt/ M 4488cm 2

!!= lbOPsf] lrqdf Pp6f v]nf}gf cw{uf]nf / ;f]nL ldnL ag]sf] 5 . cw{uf]nfsf] Jof; 28cm /
v]nf}gfsf] k'/f prfO 62cm eP v]nf}gf]sf] cfotg / k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ .

pTt/ M 10266.66 cm3 ,3432cm2


!@= lbOPsf] lrqdf Pp6f v]nf}gf cw{uf]nf / ;f]nL ldnL ag]sf] 5 . cw{uf]nf Jof; 6cm /
v]nf}gfsf] k'/f prfO 7cm eP v]nf}gfsf] cfotg / k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ .

- pTt/ M 94.28 cm3 103.71cm2 _


98
!#= ;Fu} lbOPsf] 7f]; a]ngf / ;f]nL ldnL ag]sf] 5 . pSt 7f];sf] jj|m ;txsf] If]qkmn kTtf
nufpg'xf];\ . (π = 3.14)
24 cm

48 cm
pTt/ M 1604.54cm2
!$= ;“u} lbOPsf] 7f]; a]ngf / ;f]nL ldnL ag]sf] 5 . pSt 7f];sf] jj|m ;txsf] If]qkmn kTtf
nufpg'xf];\ . (π = 3.14)
24 cm

36 cm
pTt/ M 957.70cm 2

!%= ;Fu}sf] lrqdf 7f];sf] k'/f nDafO 45cm / 7f];sf] cfotg 5390 3g ;]=ld= eP 7f];sf]
cw{Jof; lgsfNg'xf];\ .
15 cm

(pTt/ M 7cm )
!^= Pp6f 7f];sf] k'/f ;txsf] If]qkmn 175 ju{ ;]= ld= / a]ngfsf] nDafO 10cm eP pSt a]ngfsf]
cw{Jof; lgsfNg'xf];\ . (pTt/ M 5cm )
!&= h cm nDafO / 3cm cw{Jof; ePsf] Pp6f a]ngf / pxL cw{Jof; ePsf] Pp6f cw{uf]nf ldnL
ag]sf] 7f]; j:t'sf] cfotg 792 3g ;]=ld= eP h sf] dfg lgsfNg'xf];\ . pTt/ M 26 cm
!*= a]ngfsf] cfwf/sf] If]qkmn 100 ju{ ;]=ld= / a]ngfsf] prfO 3cm 5 . olb lbPsf] k'/f 7f];
j:t'sf] cfotg 500 3g ;]=ld= eP 7f]; j:t'sf] prfO kTtf nufpg'xf];\ . (pTt/ M 9cm )
!(= lbOPsf] lrqdf dfly cw{j[Ttfsf/ x'g] u/L Pp6f ;f]nLdf a/km 25 cm

el/Psf] 5 . olb ;f]nLsf] 58\s] prfO 25cm / cw{Jof; 7cm O


P
eP ;f] ;f]nLdf ePsf] a/kmsf] cfotg lgsfNg'xf];\ .
21 cm A
pTt/ M 1950.67cm3
@)= lbOPsf] 7f]; j:t'sf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ .
38 cm

O
P

27 cm A
(pTt/ M 471.42m2 )
99
@!= Pp6f a]ngfsf] jj|m ;txsf] If]qkmn 1232 ju{ ;]=ld= 5 / o;sf] cfwf/sf] cw{Jof; / prfO
a/fa/ 5g\ eg] a]ngfsf] cw{Jof; / a]ngfsf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ .
(pTt/ M 1956cm3, 28.01cm2)
@@= lrqdf lbOPsf] l;;fsndsf] cfotg / jj|m ;txsf] If]qkmn lgsfNg'xf];\ .

24 cm
(pTt/ M 1037.13cm2 )

@#= ;Fu}sf] lrqdf lbOPsf] 7f]; j:t'sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ .
28 cm

40 cm
(pTt/ M 753.50cm2
)

@$= b'O{cf]6f cfO;lj|mdsf] ;f]nLx¿ lrqdf b]vfpg'xf];\ . h:t} Ps cfk;df vlK6Psf 5g\ . olb
cfwf/sf] Jof;fw{ 3cm eP hDdf cfotg kTtf nufpg'xf];\ . olb 100 3g ;]=ld= cfO;lj|mdsf]
tf}n 20 u|fd eP cfO;lj|mdsf] tf}n kTtf nufpg'xf];\ .

(pTt/
M 94.28cm3 )
@%= cfotg / Jof;fw{ a/fa/ ePsf Pp6f uf]nf] / Pp6f a]ngf 5g\ . a]ngfsf] jj|m ;txsf]
If]qkmn / uf]nf]sf] ;txsf] If]qkmnsf] cg'kftdf 2:3 x'G5 egL l;b\w ug'{xf];\ .
(pTt/ M 18.85 gram )
@^= Pp6f a]ngfsf] prfO To;sf] cfwf/sf] Jof;sf] b'OltxfO{ 5 pSt a]ngfsf] cfotg 4cm
cw{Jof; ePsf] uf]nLsf] cfotg ;Fu} a/fa/ eP a]ngfsf] cw{Jof; kTtf nufpg'xf];\ .
(pTt/ M 4cm)

100
kf7 #=# lk/fld8 (Pyramid)

!= kl/ro
o; kf7cGtu{t ju{ cfwf/ ePsf] juf{sf/ lk/fld8 / ;dafx' lqe'h cfwf/ ePsf] ;dafx',
lqe'hfsf/ lk/fld8sf] jqm ;txsf] If]qkmn, k'/f ;txsf] If]qkmn / cfotg ;DaGwL ;d:of ;fy}
if9d'vf / lk/fld8sf] ;+o'Qm 7f]; j:t'sf] jqm;txsf] If]qkmn, k'/f ;txsf] If]qkmn / cfotg ;DaGwL
;d:of P;Pn;L k/LIffdf Pp6f nfdf] pTt/ cfpg] k|Zg cfp“5 .

@= cfwf/e"t tYo tyf ;"qx¿


58\s] prfO
prfO s
h
b

juf{sf/ cfwf/ ePsf] lk/fld8sf] jqm ;txsf] If]qkmn (LSA) =2bs


k'/f ;txsf] If]qkmn (TSL) = 2bs + b2 = b(2s+b)
cfotg (V) = 13 b2 × h = 13 b2h A E A A E A

b2 b2
s= A h2+ 4 , h =
A EA A s2 - 4 , b =
A EA A s 2 - h2
E

lqe'hfsf/ cfwf/ ePsf]


k'/f ;txsf] If]qkmn (T.S.A.) = rf/cf]6f lqe'hsf] If]qkmnsf] of]u
cfotg = 13 -cfwf/sf] If]qkmn_ × prfO
A E A

#= ljz]if Wofg lbg'kg]{ s'/fx¿


— s:tf] vfnsf] lk/fld8 xf] klxrfg u/L ;f]xL cg';f/ ;"q k|of]u ug]{ .
— ;xL ;"qsf] k}of]u u/L SofNs'n]6/sf] k|of]u u/L ;d:of ;dfwfg ug]{ .
$= gd"gf k|Zgf]Tt/ / cEof;
$=!= lbOPsf] juf{sf/ lk/fld8sf] cfotg lgsfNg'xf];\ .
10 cm

16 cm

101
juf{sf/ cfwf/ ePsf] lk/fld8sf] cfef/e"hf (b) = 16 cm
58\s] prfO (s) = 10 cm
juf{sf/ lk/fld8sf] vf; prfO (h) = ?
juf{sf/ lk/fld8sf] cfotg (V) = ?
b2 162
xfdLnfO{ yfxf 5, prfO (h) = A l2 - 4 =
A AE A 102 - 4 =
A AE A 100 -64 =E A A 36 = 6 cm
E A

1 1 1
cfotg (V) = 3 b2 h = 3 × 162 × 6 = 3 × 256 × 6 = 512 cm3
A E A A E A A E A

$=!=!= cEof;sf nflu k|Zg


-s_ tnlbOPsf] juf{sf/ lk/fld8sf] cfotg lgsfNg'xf]];\ .
s_ v_ u_

17 cm

8 cm
12 cm

10 cm
12 cm 10 cm 16 cm

( Ans 384cm3 ) (Ans 400cm3) (Ans 1280cm3 )


3_ ª_

5 cm

7 cm

(Ans 1568cm3 ) (Ans 960cm3 )

$=!=!= lbOPsf] juf{sf/ lk/fld8sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ . . lrq ldnfpg]]

3 cm

8 cm

juf{sf/ cfwf/ ePsf] lk/fld8sf] cfwf/sf] e"hfsf] nDafO (a) = 8 cm

102
juf{sf/ cfwf/ ePsf] lk/fld8sf] l;wf prfO (h) = 3 cm
juf{sf/ cfwf/ ePsf] lk/fld8sf] 58\s] prfO (s) = ?
juf{sf/ cfwf/ ePsf] k'/f ;txsf] If]qkmn (TSA) = ?
a2 82
xfdLnfO yfxf 5 , s = A h2 + 4 =
A EA 32 + 4 =
A A EA A 9 + 16 = 5 cm.
E A

TSA = 2as + a2 = 2. 8. 5 + 82 = 80 + 64 = 144 cm2

cEof;sf nflu k|Zg


!=tnsf lk/fld8x¿sf] cfotg kTtf nufpg'xf];\ .
s_ v_ u_

5 cm 8 cm

9 cm

24 cm 12 cm

3_ ª_
10 cm 12 cm

12 cm 18 cm

pTt/ M s_ 1200 cm3, v_ 384 cm3, u_ 1296cm3, 3_ 384 cm3,ª_ 756 cm3

%= ldl>t cEof;
!= Pp6f lrq juf{sf/ cfwf/ ePsf] 7f]; lk/fld8 xf] pSt lk/fld8sf] k'/f ;txsf] If]qkmn 189
ju{ ;]=ld= 5 . olb juf{sf/ cfwf/sf] e"hf 7 ;]=dL+ eP pSt lk/fld8sf] 58\s] prfO{ kTtf
nufpg'xf];\ . (Ans: 10. 5 cm )
@= Pp6f lrq juf{sf/ cfwf/ ePsf] 7f]; lk/fld8 xf] pSt lk/fld8sf] k'/f ;txsf] If]qkmn 675
ju{ ;]=ld= 5 . olb juf{sf/ cfwf/sf] e'hf 15 ;]=ld= eP pSt lk/fld8sf] 58\s] prfO kTtf
nufpg'xf];\ .(Ans 15 cm)
#= lbOPsf] lrq Pp6f juf{sf/ lk/fld8sf] xf] . h;sf] 7f8f] prfO 12 ;]=ld= / cfwf/sf] e'hfsf]
nDafO 10 ;]=ld=5g\ . eg] o;sf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ . (Ans 360 cm2)

103
A

12 cm
O

Q
10 cm E

$= lbOPsf] lrq Pp6f juf{sf/ lk/ld8 xf] h;sf] 7f8f] prfO 24 ;]=ld=/ cfwf/sf] e'hfsf] nDafO
14 ;]=ld= 5g\ eg] o;sf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ . (Ans 896 cm2)
A

24 cm
O
Q
14 cm E

%= lbOPsf] lrq Pp6f juf{sf/ lk/fld8 xf] . h;sf] 7f8f] prfO 7cm / cfwf/sf] e'hfsf] nDafO 5
3
cm 5g\ eg] o;sf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ . (99.33 cm )
A

7 cm
O

Q
5 cm E

^= ;“u}sf] lrqdf juf{sf/ cfwf/ ePsf] lk/fld8sf] k"/f ;txsf] If]qkmn 576 cm2 / juf{sf/
lsgf/fsf] nDafO 16 cm eP pSt lk/fld8sf] 58\s] prfO l;wf prfO / cfotg kTtf
nufpg'xf];\ . (10cm, 6 cm, 512 cm3)

16 cm

&= ;“u}sf] lrqdf juf{sf/ cfwf/ ePsf] lk/fld8sf] k'/f ;txsf] If]qkmn 800 cm2 / juf{sf/
lsgf/fsf] nDafO 16cm eP pSt lk/fld8sf] 58\s] prfO, l;wf prfO / cfotg kTtf
nufpg'xf];\ .
(17cm, 15 cm, 1280 cm3)
104
*= cfwf/ ju{ ePsf] Pp6f lk/ld8 lqe'hfsf/ ;txsf] lsgf/fsf] nDafO 17cm / cfwf/sf] e'hfsf]
nDafO 16cm eP pSt lk/fld8sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ . (736 cm2)
A

17 cm

16 cm

(= cfwf/ ju{ ePsf] Pp6f lk/fld8sf] lqe'hfsf/ ;txsf] lsgf/fsf] nDafO 20.8 cm / cfwf/sf]
e'hfsf] nDafO 16cm eP ;f] lk/fld8sf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ . (870.4 cm2)
20.8 cm

16 cm

!)= cfwf/ ju{ ePsf] Pp6f lk/fld8sf] lqe'hfsf/ ;txsf] lsgf/fsf] nDafO 20.4cm / cfwf/sf]
e'hfsf] nDafO 19.2cm eP ;f] lk/fld8sf] k'/f ;txsf] If]qkmn lgsfNg'xf];\ . (1059.84 cm2)
20.4 cm

19.2 cm

!!= lbOPsf] lrq cfwf/ ju{ ePsf] 7f]; lk/fld8 xf] olb OB =13cm / OP= 12cm eP pSt lk/fld8sf]
k'/f ;txsf] If]qkmn lgsfNg'xf];\ . (360 cm2)
O

D C

A B
P

!@= lbOPsf] lk/fld8sf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];] h;df AD prfO, AE 58\s] prfO /
2
24cm e'hf ePsf] juf{sf/ cfwf/ NMPQ 5 . (1390.56 cm )

105
A

M N
12 cm

O E
Q
24 cm P

!#= lbOPsf] lk/fld8sf] k'/f ;txsf] If]qkmn kTtf nufpg'xf];\ h;df AO prfO AE 58\s] prfO /
2
25cm e'hf ePsf] juf{sf/ cfwf/ NMPQ 5 . (2250 cm )
A

M N
30 cm

O E
Q
25 cm P

!$= lbOPsf] juf{sf/ cfwf/ ePsf] lk/fld8sf] cfotg 750 cm3 / cfwf/sf] e'hfsf] cfwf/ (OM)
2
=7.5cm eP lqe'hfsf/ ;txsf] If]qkmn kTtf nufpg'xf];\ . (375 cm )
P

D C

7.5 cm
M
O

Q
B

!%= lbOPsf] juf{sf/ cfwf/ ePsf] lk/fld8sf] cfotg 1053.696 cm3 / cfwf/sf] e'hfsf] cfwf/
2
OM=8.4cm eP lqe'hfsf/ ;txsf] If]qkmn kTtf nufpg'xf];\ . (752.64 cm )
P

D
C

O 8.4 cm M

A
9.6 cm B

106
If]q M 4 aLh ul0ft (Algebra)
If]q kl/ro
dfWolds lzIff kf7\oj|md 2064 / ljlzi6Ls/0f tflnsf 2065 n] sIff 10 sf] clgjfo{ ul0ft ljifodf
aLh ul0ftsf] lgDgfg';f/sf ljifo j:t', k/LIffsf nflu ;+1fgfTds If]qcg';f/sf k|Zg ;ª\Vof /
cª\sef/sf] Joj:yf u/]sf] 5 .
j|m; ljifoj:t'÷;+1fg If]q 1fg l;k hDdf l;k ;d:of hDdf s'n If]qut
/ cª\s ;dfwfg cª\s hDdf s'n
af]w cª\s hDdf
cª\s
4
5f]6f pTt/ nfdf] pTt/
cfpg] cfpg] k|Zg
4.1
n=;= (L.C.M.) / d=;= 1 4 4
(H.C.F.)
lahLo leGgx¿sf]
4.2 ;/nLs/0f 1 4 4
(implification of algebric
fraction)
4.3 3ftfª\s (indices) 1 2
1 4 10
4.4
d"n / ;8{ 1 1 4 24
(roots and surds)
o'ukt/]vLo ;dLs/0f
/ ju{ ;dLs/0f
;DaGwL zflAbs
4.5 1 2 1 4 6
;d:ofx¿ (verbal
problems of simultaneous
equation and quadratic
equation)
Total 1 3 8 1 3 16 24 24

kf7 : 4.1 dxTtd ;dfjt{s / n3'Ttd ;dfjt{s -d=;= / n=;=_


(Highest Common Factor and Lowest Common Multiple)

1= kl/ro
lbOPsf b'O{ jf b'O{eGbf a9L aLh ul0ftLo cleJo~hsx¿sf] ;femf u'0fg v08 jf ;femf u'0fg
v08x¿sf] u'0fgkmnnfO{ d=;= (H.C.F) elgG5 eg] b'O{ jf b'O{eGbf a9L aLh ul0ftLo
cleJo~hsx¿n] lgz]if efu hfg] ;a}eGbf ;fgf] cleJo~hsnfO{ n=;= (L.C.M.) elgG5 . o;
107
PsfOdf aLh ul0ftLo cleJo~hsx¿sf] u'0fg v08 ljlwaf6 d=;= / n=;= lgsfNg] tl/sfx¿sf
af/]df rrf{ ul/g] 5 .
o; kf7af6 nfdf] pTt/ cfpg] Pp6f ;d:of ;dfwfg txsf] k|Zg ;f]lwg] 5 . h;sf] cª\s ef/ 4
/xg] 5 .
2. o; kf7df k|of]u x'g] cfwf/e"t ;"qx¿
-s_ d=;= (H.C.F) = ;femf u'0fg v08x¿ (common factors)
-v_ n=;= (L.C.M) = ;femf u'0fg v08 × af“sL u'0fg v08x¿
(common factors × remaining factors)
-u_ n=;= × d=;= = klxnf] cleJo~hs × bf];|f] cleJo~hs
L.C.M × H.C.F = First Expression × Second Expression
-3_ aLh ul0ftLo ;"qx¿
-c_ (a + b)2 = a2 + 2ab + b2 or, (a + b)2 = (a – b)2 + 4ab
-cf_ (a – b)2 = a2 – 2ab + b2
or (a + b)2 – 4ab = (a – b)2
-O_ a2 – b2 = (a + b) (a – b)
-O{_ a2 + b2 = (a + b)2 – 2ab = (a – b)2 + 2ab
-p_ a3 + b3 = (a + b) (a2 – ab + b2) = (a + b)3 – 3ab (a+ b)
-pm_ a3 – b3 = (a – b) (a2 + ab + b2) = (a – b)3 + 3ab (a–b)
-P_ (a + b)3 = a3 + 3a2b + 3ab2 + b3
-P]_ (a – b)3 = a3 – 3a2b + 3ab2 – b3
-cf]_ (a + b + c)2 = a2 + b2 + c2+ 2ab + 2bc + 2ca
-cf}_ a3 + b3 + c3– 3abc =(a + b + c) (a2 + b2 + c2 – ab – bc – ca)

3. ljz]if Wofg lbg'kg{] s'/fx¿


o; PsfOdf
1. aLh ul0ftLo cleJo~hsx¿sf] u'0fg v08 ljlwaf6 d=;= lgsfNg'kg{] x'G5 .
2. aLh ul0ftLo cleJo~hsx¿sf] u'0fg v08 ljlwaf6 n=;= kTtf nufpg'kg{] x'G5 .
3. lbOPsf b'O{ jf ltg cf]6f dfq aLh ul0ftLo cleJo~hsx¿sf] d=;=/ n=;= lgsfNg'kg{]
x'G5 .
4. lbOPsf cleJo~hsx¿sf] d=;= eGgfn] ;a} cleJo~hsx¿sf] ;femf u'0fg v08 jf u'0fg
v08x¿sf] u'0fg kmn xf] .

5. d=;= lgsfNbf,
– ;a} cleJo~hsx¿sf] v08Ls/0f ug]{,
– tL cleJo~hsx¿sf] ;femf u'0fg v08x¿ lng]
– ;femf u'0fg v08x¿nfO{ u'0fgkmnsf] ¿k (product form) df n]Vg]

108
6. n=;= eGgfn] b'O{ jf b'O{eGbf a9L aLh ul0ftLo cleJo~hsx¿sf] ;femf u'0fg v08 × af“sL
u'0fg v08nfO{ a'emfp“5 .

4.gd'gf k|Zgf]Tt/ tyf cEof;


gd'gf 1 :
d=;= lgsfNg'xf];\ M (Find the H.C.F)
x 3 - 64y3, x 2 - 6x y + 8y2 and x 2 - 16y2
;dfwfg
oxfF, klxnf] cleJo~hs : x 3 - 64y3
= x 3 – (4y)3
= (x -4y){x2+ xx 4y+(4y)2}
= (x -4y)(x2+ 4xy+16y2)
bf];|f] cleJo~hs : x 2 - 6xy + 8y2
= x 2 – (4+2) xy + 8y2
= x 2 – 4xy - 2xy + 8y2
= x(x - 4y) – 2y(x – 4y)
= (x - 4y) (x – 2y)
t];|f] cleJo~hs : x 2 - 16y2
= x 2 – (4y)2
= (x – 4y)(x + 4y)
d=;= ( H.C.F) = ;femf u'0fg v08x¿ (common factors)
= (x - 4y)
1. cEof;sf nflu k|Zgx?
(a) 4x 2 - 9, 2x 2 + x - 3 and 8x 3 + 27
(b) 3p2 - 9pq - 12q2, 4p2 - 18pq + 8q2 & 3p2 - 18pq + 24q2
(c) x 3 - 9x y2, 2x 2 + 11x y + 15y2 &x 3 + 27y3
(d) 4x 4 + 16x 3 - 20x 2, 3x 3 + 14x 2 - 5x & x 4 +125x
(e) 16x3y - 4 x 2y2 - 30x y3, 32x 4 - 50x 2y2 & 4x 2y2 + 9x y3 + 5y4
(f) (a + 2b)2, (a -2b)2 + 8ab & a4 - 16b4
(g) 3t4 - 8t3 + 4t2, t5 - 8t2 & 4t3 - 10t2 + 4t
(h) 36 x 4 - 81x 2, 24x 3 - 72x 2 + 54x & 24x 6 - 81x 3
pTt/x¿
(a) (2x +3), (b) p - 4q, (c) x + 3y, (d) x (x + 5), (e) 4 x + 5y, (f) a + 2b
(g) t (t - 2), (h) 3 x (2 x - 3)

gd'gf 2 :
d=; lgsfNg'xf];\ M (Find the H.C.F)
x + x y + y , x 4 + x 3y + x2y2 and x4 - xy3
4 2 2 4

109
;dfwfg M
oxfF, klxnf] cleJo~hs M x 4 + x2y2 + y4
= (x 2)2 + (y2)2 + x 2y2
= (x 2 + y2)2 – 2x2y2+ x 2y2
= (x 2 + y2)2 – x2y2
= (x 2 + y2)2 – (xy)2
= (x 2 + y2 + xy) (x 2 + y2 - x y)
= (x 2 +xy+ y2 ) (x 2 - x y + y2 )
bf];|f] cleJo~hs M x 4 + x 3y + x 2y2
= x 2 (x 2 + x y + y2)

t];|f] cleJo~hs M x4 - xy3


= x (x3 – y3)
= x (x – y) (x 2+ xy+y2)
d=;= ( H.C.F) = ;femf u'0fg v08x¿ (common factors)
= (x 2 + x y + y2)

cEof;sf nflu k|Zgx?


(a) 8a3 + b3, 16a4 + 4a2b2 + b4
(b) x3 - 8y3, x4 + 4x 2y2 + 16y4
(c) a4 + 4a2 + 16, a3 + 8
(d) a4 + a2 + 1, a3 - 1
(e) x 4 + 4x2 + 16, x 3 - 8
(f) m4 + m2n2 + n4, m2n3 + m5
(g) 4x4 + 19x 2y2 + 49y4, 4x3 + 14x y2 - 6 x 2y
(h) x 3 - 1, x4 + x 2 + 1, x3 + 1 + 2x2 + 2x
(i) 4x 4 +16x 3 - 20x 2, 3x3 + 14x 2 - 5x and x 4 + 125x
pTt/x¿
(a) 4a2 - 2ab + b2, (b) x 2 + 2 x y + 4y2, (c) a2 - 2a + 4, (d) a2 + a + 1, (e) x 2 + 2 x + 4,
(f) m + mn +n2, (g) 2x 2 - 3xy +7y2, (h) x 2 + x +1, (i) x (x+5)
2

gd'gf 3 :
d=;= lgsfNg'xf];\ (Find the H.C.F)
x - 2x - x + 2, x 3 - 3x 2 + 2x and x 2 - x - 2
3 2

;dfwfg M
oxfF, klxnf] cleJo~hs M x3 - 2x 2 - x + 2
= x 2(x – 2) - 1(x – 2)
= (x – 2) (x 2 – 1)
= (x – 2) (x 2 – 12)
= (x – 2) (x + 1) (x – 1)

110
bf];|f] cleJo~hs M x 3 - 3 x 2 + 2x
2
= x (x - 3x + 2)
= x {x 2 - (2+1) x+2}
= x {x 2 – 2x – x +2}
= x { x (x – 2) – 1(x – 2)}
= x (x – 2) (x – 1)
t];|f] cleJo~hs M x2 - x - 2
= x 2 – (2-1) x - 2
= x2 – 2 x + x - 2
= x (x – 2) + 1(x – 2)
= (x – 2) (x + 1)
d=;= ( H.C.F) = ;femf u'0fg v08x¿ (common factors)
= (x – 2)
yk cEof;sf nflu k|Zgx?
d=;= lgsfNg'xf];\ M (Find the H.C.F)
(a) a3 - a2 + a - 1 / 2a3 - a2 + a - 2
(b) x 3 - x 2 + x - 1 / 2x 3 - x 2 + x - 2
(c) p3+1, p4+p2+1 / p3+1+2p2+2p
(d) 8a3 + 1 / 16a4 - 4a2 + 4a - 1
(e) 8x 3 - 1 / 16x 4 - 4x 2 - 4 x - 1
(f) 2x 3 - 16, x 2 - 4x + 4 / x 2 - 3x + 2

pTt/x?
(a) a - 1, (b) x – 1, (c) 1, (d) 4a2 - 2a + 1, (e) 4x 2 + 2x + 1, (f) x - 2

gd'gf 4 :
d=;= lgsfNg'xf];\ M(Find the H.C.F)
x - y + z + 2x z, x 2 + y2 - z2 + 2xy, z2 + y2 - x 2 + 2yz
2 2 2

;dfwfg M
oxfF, klxnf] cleJo~hs : x 2 - y2 + z2 + 2xz
= x 2 + 2x z+ z2 - y2
= (x + z)2 – y2
= (x + z + y) (x + z - y)
= (x + y + z) (x + z - y)
bf];|f] cleJo~hs : x 2 + y2 - z2 + 2 x y
= x 2 + 2xy + y2 - z2
= (x + y)2 – z2
= (x + y + z) (x + y - z)
t];|f] cleJo~hs : z2 + y2 - x2 + 2yz

111
= y2+ 2yz + z2 - x2
= (y + z)2 – x 2
= (y + z + x) (y + z - x)
= (x + y + z) (y + z - x)
d=;= ( H.C.F) = ;femf u'0fg v08x¿ (common factors)
= (x + y + z)
cEof;sf nflu k|Zgx?
d=; lgsfNg'xf];\ M (Find the H.C.F)
(a) a2 + 2ab + b2 - c2, b2 + c2 - a2 + 2bc, c2 + a2 + 2ca - b2
(b) e2 + f2 - g2 + 2ef, e2 - f2 + g2 + 2ge, g2 + f2 + 2fg - e2
(c) 9m2 - 4n2 - 4nr - r2, r2 - 4n2 - 9m2 - 12mn and 9m2 + 6mr + r2 - 4n2
pTt/x¿
(a) a + b+ c, (b) e + f + g, (c) 3m + 2n + r

gd'gf 5 :
n=;= lgsfNg'xf];\ (Find the L.C.M.)
a5 + a3b2 + ab4 and a4b + ab4

;dfwfg M
oxfF, klxnf] cleJo~hs : a5 + a3b2 + ab4
= a{(a2)2 + (b2)2+ a2b2}
=a{ (a2)2 + (b2)2+ a2b2}
= a{(a2 + b2)2 - 2a2b2 + a2b2}
= a{(a2 + b2)2 – (ab)2}
= a (a2 + b2 + ab) (a2 + b2 – ab)
bf];|f] cleJo~hs M a4b + ab4
= ab(a3 – b3)
= ab(a – b) (a2 + ab + b2)
n=;= (L.C.M.) = ;femf u'0fg v08 × af“sL u'0fg v08x¿
(common factors × remaining factors)
= ab (a – b) (a2 + ab + b2) (a2 + b2 – ab)

cEof;sf nflu k|Zgx?M


n=;= lgsfNg'xf];\ (Find the L.C.M.)
(a) x 4 + x 2y2 + y4 & x 4 - xy3
(b) 6x 2 - x - 1 & 54 x 4 + 2x
(c) (2x 2 - x - 1) & 24x4 + 3x
(d) x 3 - 3x 2 - x + 3 & x 3 - x 2 - 9x + 9
(e) x 3 + 2x 2 - x - 2 & x3 + x 2 - 4x - 4
(f) x 3 - 9x, x 4 - 2x3 - 3x 2 & x3 - 27
(g) a3 - 4a, a4 + a3 - 2a2 and a3 - 8

112
pTt/x¿
(a) x (x -y) (x 2 + x y + y2) (x 2 - x y + y2)
(b) 2x (3x +1) (2x -1) (9x 2-3x +1)
(c) 3x (x -1), (2x +1)(4x 2 - 2x + 1)
(d) (x + 3) (x + 1) (x - 1) (x - 3)
(e) (x - 1) (x - 2) (x +1) (x + 2)
(f) x 2 (x + 3) (x 3 - 27) (x + 1)
(g) a2(a2 - 4) ( a2 + 2a + 4)(a - 1)

gd'gfM 6 :
d=;= / n=;= lgsfNg'xf];\ (Find the H.C.F. and L.C.M.)
2(x 2 - y2), 4(x 3 - y3) / 6(x 4 - y4)
;dfwfg M
oxfF, klxnf] cleJo~hs : 2(x 2 - y2),
= 2(x + y) (x - y)
bf];|f] cleJo~hs M 4(x 3 - y3)
= 2×2(x - y) (x 2 + xy + y2)
t];|f] cleJo~hs M 6(x 4 - y4)
= 6{(x 2)2 – (y2)2}
= 6(x 2 + y2) (x 2 – y2)
= 2×3(x 2 + y2) (x + y)( x – y)
d=;. ( H.C.F) = ;femf u'0fg v08x¿ (common factors)
= 2(x – y)
n=;= (L.C.M.) = ;femf u'0fg v08 × af“sL u'0fg v08x¿
(common factors × remaining factors )
= 2(x – y)(x + y)2×3(x 2 + y2) (x 2 + x y + y2)
= 12(x – y)(x + y)(x 2 + y2) (x2 + xy + y2)
= 12(x 2– y2)(x 2 + y2) (x 2 + x y + y2)

cEof;sf nflu k|Zgx?


d=;= / n=;= lgsfNg'xf];\ (Find the H.C.F. and L.C.M.)
3 3 4 2
(a) x - 1, (x - 1) , x + x + 1
(b) x 3y + y4, x 4 + x 2y2 + y4, 2ax 3 - 2ax 2y + 2axy2
(c) 2 x 3 - x 2 - x, 4x 4 - 10x 3 - 6x 2, 8x 2 + 4x
(d) 8a6x - 8a3 x 4, 4a6 x 2 - 4a2x 6, 6x 3a3 + 24a2x 4 - 30ax 5
(e) 3a3b + a2b2 - 10ab3, 6a4b - a3b2 - 15a2b3, 6a3b - 19a2b2+15ab3
(f) x2 - 2xy + y2, 2x2 + xy - 3y2, x3 - 3x2y + 3xy2 - y3

113
pTt/x?
(a) H.C.F = 1, L.C.M. = (x - 1)3 ( x2 + x + 1) (x2 - x +1)
(b) H.C.F. = x2 - xy +y2, L.C.M = 2axy ( x+ y) (x2 - xy + y2) (x2 + xy + y2)
(c) H.C.F.= x(2x+1), L.C.M.= (4x2 (2x +1) ( x- 1) (x - 3)
(d) H.C.F. = 2ax ( a - x), L.C.M.= 24a3x3 ( a - x) (a + x) (a2 + x2) (a + 5x) (a2 + ax + x2)
(e) H.C.F. = ab(3a - 5b), L.C.M.= a2b(3a - 5b) (a + 2b) (2a + 3b) (2a - 3b)
(f) H.C.F.= x - y, L.C.M.= (x- y)3 ( 2x + 3y)

yk cEof;sf nflu k|Zgx? (Challenging Problems)


d=;= lgsfNg'xf];\ M (Find the H.C.F.)
(a) x4 + 2x2 + 9 & x3 - x + 6
(b) x3 - 3x - 2 & x3 - x2 - 4
(c) a4 - 6a2 - 7 + 8x - x2 & a3 - ax + a
(d) x4 - 10x2 + 24 + 6y - 9y2 & x3 + 3xy - 6x
Hints (d):
;dfwfg M
oxfF, klxnf] cleJo~hs : x 4 - 10 x 2 + 24 + 6y - 9y2
= (x 2)2 - 2. x 2.5 + 52 - 1 + 6y - 9y2
= (x 2 - 5)2 - [12-2.1.3y + (3y)2
= (x 2 - 5)2 - ( 1- 3y)2
= (x 2 + 3y-6) (x 2 - 3y - 4)
pTt/x¿
(a) x 2 - 2x + 3 (b) x - 2 (c) (a2 - x + 1)
2
(d) x + 3y - 6

yk cEof;sf nflu k|Zgx?


d=;= / n=;= lgsfNg'xf];\ (Find the H.C.F. and L.C.M.)
(a) x 2 + 2x - 3, x 3 + 3x 2 - x - 3
(b) x 2 - 4x + 3, x 3 - x 2 - 14x + 24
(c) 3x 2 + 16x - 35, x3 + 343, 2x 2 - 9x - 161
(d) x 3 - 3x + 2, x 3 + 4x 2 - 8x + 3
(e) 3x 2 - 22 x + 19, 2x 3 + 3x - 5
pTt/x?
(a) H.C.F. = (x - 1) (x + 3), L.C.M.= (x - 1) (x + 3) (x + 1)
(b) H.C.F.= x - 3, L.C.M.= (x - 1) (x - 2) (x - 3) (x + 4)
(c) H.C.F. = (x + 7), L.C.M = (x + 7) (3x - 5) (2x - 23) (x 2 - 7x + 49)
(d) H.C.F. = (x - 1), L.C.M.= (x - 1)2 (x + 2) (x2 + 5x - 3)
(e) H.C.F. = (x - 1), L.C.M.= (x - 1) (3x - 19) (2x 2 + 2x + 5)

114
kf7 : 4.2 aLhLo leGgx¿sf] ;/nLs/0f
(Simplification of Algebraic Fractions)

1. kl/ro
o; PsfOdf rf/ cf]6f;Dd lahLo leGgx¿ ;dfj]z ePsf ;d:ofx¿sf] ;/nLs/0f ug{] tl/sfx¿sf
af/]df rrf{ ul/Psf] 5 . o; PsfOaf6 nfdf] pTt/ cfpg] Ps cf]6f ;d:of ;dfwfg d"ns k|Zg
;f]lwg] ul/G5 . h;sf] cª\s ef/ 4 x'G5 .

2= Wofg lbg'kg{] s'/fx¿ M


a) lahLo leGg ;DaGwL o;eGbf cufl8 cWoog u/]sf s'/fx¿sf] k'g/fjnf]sg ug]{] .
b) aLh ul0ftLo ;"qx¿af/] k'g/fjnf]sg ug]{ .
c) ul0ft ;DalGwt cfwf/e"t lj|mofsf af/]df k'g/fjnf]sg ug]{] .
d) aLh ul0ftLo n=;= af/] k'g/fjnf]sg ug{] .
e) rf/ cf]6f;Dd aLhLo leGgx¿ ;dfj]z ePsf ;d:ofx¿sf] ;/nLs/0f ug]{] .
f) lahLo leGgx¿sf] ;/nLs/0f ubf{ cem ljz]if lgDg lnlvt s'/fx¿df Wofg lbg'kg]{M
• aLhLo leGgx¿sf x/nfO{ v08Ls/0f ug]{ .
• b'O{ b'O{ kbx¿sf] of]u÷cGt/ lgsfNg] .
• n3'Ttd kbdf n}hfg] .

3= gd'gf k|Zgf]Tt/ tyf cEof;


3.1 nfdf] pTt/ cfpg] k|Zgx¿

gd'gf 1 :
;/n ug'{xf];\ (Simplify)
1 1 2 4
A

x-1 - x+1 - x2 + 1 - x4 + 1
E A A E A A E A A E

;dfwfg M
1 1 2 4
oxfF, x-1 - x+1 - x2 + 1 - x4 + 1
A E A A E A A E A A E A

1(x+1) - 1(x-1) 2 4
= (x-1)(x+1)
A

E
- x2 + 1 - x4 + 1 E A A E A A E

x+1 - x+1 2 4
= x2-1
A - x2 + 1 - x4 + 1 E A A E A A E

2 2 4
= x2-1 - x2 + 1 - x4 + 1
A E A A E A A E

2(x2+1) -2(x2-1) 4
= (x2-1)(x2+1)
A

E
- x4 + 1 E A A E

2x2+2 -2x2+2 4
= A

x4-1 - x4 + 1 E A A E

4 4
= x4-1 - x4 + 1
A E A A E

115
4(x4+1) - 4(x4-1)
= (x4 + 1)(x4-1)
A

E
E

4x4+4 - 4x4+4
= x8-1 A E

8
= x8-1 A E

1.1 cEof;sf nflu k|Zgx¿ (Questions for Practice)


;/n ug'{xf];\ (Simplify)
1 1 2 4
1. a - 1 - a+1 - a2 + 1 - a4 + 1
A

E
E A

b b 2a 4a3b
2. a - b + a+b + a2 + b2 + a4 + b4
A

E
E

a a 2a 16a3
3. 1 - 2a + 1 + 2a + 1+4a2 + 16a4 - 1
A

E
E A

a a 6a2 8a4
4. a-b + a + b - a2 - b2 + a4 - b4
A

E
E A

a a 2a 16a3
5. 1-2a + 1+2a + 1+4a2 +16a4-1
A

E
E A A E

pTt/x¿
8 8a7b 4a
1.1 1. a8-1 A E A 2. a8-b8 A E A 3. 1+4a2A E A

4a2 4a
4. a2 + b2
A E A 5. 1+4a2 A E A

gd'gf 2 :
;/n ug'{xf];\ (Simplify)
1 - a 1 +a 4a 8a
A

1 + a - 1 - a - 1 + a2 - 1+ a4 E
E A

;dfwfg M
oxfF, 11 +- aa - 11 -+aa - 1 4a 8a
+ a2 -
1+ a4 A

E
E

(1 - a)2 - (1+a)2 4a 8a
= (1 + a)(1 - a) - 1 + a2 - 1+ a4
A

E
E

1 - 2a +a2 - 1-2a - a2 4a 8a
= A

1 - a2 - 1 + a2 - 1+ a4 E
E

- 4a 4a 8a
= 1 - a2 - 1 + a2 - 1+ a4
A

E
E

- 4a(1+ a2) - 4a(1 - a2) 8a


= A

(1 - a2)(1+ a2) - 1+ a4 E
E

- 4a - 4a3 - 4a + 4a3 8a
= A

1 - a4 - 1+ a4 E
E

116
- 8a 8a
= 1 - a4 - 1+ a4
A

E
E

- 8a(1+a4) - 8a(1 - a4 )
= A

(1 - a4 ) (1+ a4)
E
E

- 8a - 8a5 - 8a + 8a5
= 1 - a8
A
E

- 16a
= 1 - a8 A E

- 16a
= - ( a8 - 1)
A E

16a
= a8 - 1 A E

1.2cEof;sf nflu k|Zgx¿ (Questions for Practice)


;/n ug'{xf];\ (Simplify)
1-x 1+x 4x 8x
1. 1+x - 1-x - 1+x2 - 1+ x4
A E A A E A A E A

1+y 1-y 4y 8y3


2. - -
1-y 1+y 1+y
A 2+
1+y4 E
E A

b 2ab a 4a3b
3. 1 + a-b + a2 + b2 - a+b + a4 + b4
A

E
E A

1 2x x 4x3
4. 1 + x-1 + x2 + 1 - x + 1 + x4 + 1
A

E
E

1 1 1 1
5. y + x y - y2 - x2 y2
A E A

1+x y - x 1+x2 y2 - x2 E

1 1 1 1
6. b + a b - b2 - a2 b2
A E

1+a b - a 1+a2 b2 - a2 E

pTt/x¿
16x 16y3 8a7b
1.2 1. x8-1 A E A 2. 1-y8 A E A 3. a8 - b8 A E A

8x7 x2y2 a2b2


4. x8 - 1 A E A 5. x4 - y4
A E A 6. a4 - b4 A E A

gd'gf 2 :
;/n ug'{xf];\ (Simplify)
1 2x 4x3 8x7
A + 2 2+ 4 4- 8
x+y x + y x + y x - y8 E
E A

;dfwfg M
1 2x 4x3 8x7
oxfF, x+y + x2 + y2 + x4 + y4 - (x4)2 - (y4)2
A

E
E

1 2x 4x3 8x7
= x+y + x2 + y2 + x4 + y4 - (x4 - y4)(x4+y4)
A

E
E

117
1 2x 4x3(x4 - y4) - 8x7
= x+y + x2 + y2 + (x4 - y4)(x4+y4)
A

E
E

7 3 4 7
1 2x 4x - 4x y - 8x
= x+y + x2 + y2 + (x4 - y4)(x4+y4)
A

E
E

1 2x - 4x7- 4x3 y4
= x+y + x2 + y2 + (x4 - y4)(x4+y4)
A

E
E

1 2x - 4x3 (x4 + y4)


=x+y + x2 + y2 + (x4 - y4)(x4+y4)
A

E
E

1 2x - 4x3 (x4 + y4)


= x+y + x2 + y2 + (x4 - y4)(x4+y4)
A

E
E

1 2x 4x3
= x+y + x2 + y2 - x4 - y4
A

E
E

1 2x 4x3
= x+y + x2 + y2 - (x2)2- (y2)2
A

E
E

1 2x 4x3
=x+y + x2 + y2 - (x2- y2)(x2+y2)
A

E
E

1 2x(x2 - y2) - 4x3×1


= x+y + (x2 + y2)(x2- y2)
A

E
E

1 2x3 -2xy2 - 4x3


= x+y + (x2 + y2)(x2- y2)
A

E
E

1 -2x3 -2xy2
= x+y + (x2 + y2)(x2- y2)
A

E
E

1 -2x(x2 + y2 )
= x+y + (x2 + y2)(x2- y2)
A

E
E

1 2x
= x+y - x2- y2
A

E
E

1 2x
= x+y - (x- y)(x+y)
A

E
E

1(x-y) - 2x ×1
= (x- y)(x+y)
A

E
E

x-y - 2x
=(x- y)(x+y)
A E

-x-y
= (x- y)(x+y)
A E

-(x+y)
= (x- y)(x+y)
A

E
E

-1
= x- y
A E

-1
= -(-x+ y )
A E

1
= y-xA E

118
cEof;sf nflu k|Zgx¿ (Questions for Practice)
;/n ug'{xf];\ (Simplify)
1 2 4 8
1. x+1 + x2 + 1 + x4+1 + x8 - 1
A

E
E A

1 2a 4a3 8a7
2. a+b + a2+b2 + a4+b4 - a8-b8
A

E
E A

1 2b 4b3 8b7
3. a+b + a2 + b 2 + a4 + b4 - b8 - a8
A

E
E A

1 2a 4a3 8a7
4. a+x - a2+x2 - a4+x4 + a8-x8
A

E
E A

1 2y 8y7 4y3
5. y+p - y2+p2 + y8-p8 - y4+p4
A

E
E

pTt/x¿
1 1 1
1. x-1 A E A 2. b-a
A E A 3. a-b A E A

3a-x 3y-p
4. a2-x2 A E A 5. y2-p2 A E

gd'gf 3.1 :
;/n ug'{xf];\ (Simplify)
1 1 2x
1+ x + x2 - 1- x + x2 + 1 + x2 + x4
A

E
E A

;dfwfg M
oxfF, 1+ x1+ x2 - 1- x1+ x2 + 1 + x2x2 + x4
A

E
E A

2 2
1(1- x + x ) - 1(1+ x + x ) 2x
= ( 1+ x + x2)(1- x + x2) + 1 + x2 + x4
A

E
E

1- x + x2 - 1 - x - x2 2x
= 1+ x + x2 - x-x2-x3 + x2+x3+x4 + 1 + x2 + x4
A

E
E

- 2x 2x
= 1+ x2+x4 + 1 + x2 + x4
A

E
E

- 2x +2x
= 1+ x2+x4
A E

0
= 1+ x2+x4
A E

=0

3.1 cEof;sf nflu k|Zgx¿ (Questions for Practice)


;/n ug'{xf];\ (Simplify)
1 1 2a
1. 1+a+a2 - 1-a+a2 + 1+a2+a4
A

E
E A

1 1 2x
2. 1 - x + x2 - 1 + x + x2 + 1 + x2 + x4
A

E
E A

a+2 a-2 2a2


3. 1 + a+ a2 - 1 - a + a2 - 1 + a2 + a4
A

E
E

119
pTt/x¿
4x 4
3.1. 1. 0 2. 1 + x2 + x4
A E A 3. a4 +a2 +1
A E

gd'gf 3.2 M
;/n ug'{xf];\ (Simplify)
a-5 a+5 250
A

a2 - 5a + 25 + a2 + 5a + 25 - a4 + 25a2 + 625 E A A E A A E A

;dfwfg M
oxfF, a2 - a5a- 5+ 25 A E A
a+5
A
250
+ a2 + 5a + 25 - a4 + 25a2 + 625 E A A E

2 2
(a - 5) (a + 5a + 25)+(a+5)( a - 5a + 25) 250
= A

(a2 - 5a + 25)( a2 + 5a + 25) - a4 + 25a2 + 625


E
E A A E

a3 - 53+a3+53 250
= a4+5a3+25a2 - 5a3- 25a2 - 125a+25a2+125a+625 - a4 + 25a2 + 625
A E A A E

2a3 250
= a4+25a2+625 - a4 + 25a2 + 625
A E A A E

2a3 -250
= a4+25a2+625
A E

2(a3 -125)
= a4+25a2+625
A

E
E

2(a3 -53)
= a4+25a2+625
A

E
E

2(a -5)(a2+5a+25)
=( a2 - 5a + 25)( a2 + 5a + 25)
A

E
E

2(a -5)
= a2 - 5a + 25
A

E
E

3.2 cEof;sf nflu k|Zgx¿ (Questions for Practice)


;/n ug'{xf];\ (Simplify)
a-4 a+4 128
1. a2-4a+16 + a2+4a+16 - a4-16a2+256
A E A A E A A E A

a-2 a+2 16
2. a2-2a+4 + a2+2a+4 - a4+16+4a2
A E A A E A A E A

p +3 p-3 54
3. p2+3p+9 + p2- 3p+9 + p4+9p2+81
A E A A E A A E A

2x - y 2x + y 2y3
4. A 2
4x - 2xy + y 2 + 2 -
4x + 2xy + y 16x + 4x2y2 + y4
2 4 E A A E A A E A

3x-1 3x + 1 54x3
5. A - 2 +
9x - 3x + 1 9x +3x+1 81x4+9x2+1
2
E
E A

2a+b 2a-b 2b3


6. A 2+ 2 2-
4a +2ab+b 4a -2ab+b 16a +4a2b2+b4
2 4
E
E A

pTt/x¿
2(a - 4) 2(y-2) 2p-3
3:2. 1. (a2 - 4a + 16) 2. y2 - 2y+4 E
A E A A

E
E A 3. p4+9p2+81
A E

120
2(2x - y) 2(3x-1) 2(2a-b)
4. 4x2 - 2xy + y2
A

E
E A 5. 9x2-3x+1
A

E
E A 6. 4a2-2ab+b2
E
A E A

gd'gf 4 :
;/n ug'{xf];\ (Simplify)
1 2 1 2
A

x-a - 2x+a + x+a -2x-a E


E

;dfwfg M
1 1 2 2
oxfF, x-a + x+a- 2x+a -2x-a A

E
E

1 1 2 2
= [x-a + x+a]- [2x+a +2x-a ]
A

E
E A

x+a+x - a 2(2x - a)+2(2x+a)


=(x-a)(x+a) - (2x+a)(2x -a)
A

E
E

4x - 2a+4x+2a
2x
=x2-a2 -
A

4x2 - a2 E E

2x 8x
= x2-a2 - 4x2 - a2
A

E E

2x(4x2 - a2) - 8x(x2-a2)


= (x2-a2 ) (4x2 - a2)
A

E E

8x3 -2xa2 - 8x3+ 8xa2


= (x2-a2 ) (4x2 - a2)
A

6xa2
= (x2-a2 ) (4x2 - a2)
A

cEof;sf nflu k|Zgx? (Questions for Practice)


;/n ug'{xf];\ (Simplify)
1 2 1 2
1. x-1 - 2x+1 + x+1 - 2x-1
A

E
E

1 1 1 1
2. x-5 - x-3 + x+5 - x+3
A

E
E A

a3 a3 1 1
3 . a-1 + a+1 - a-1 + a+1
A

E
E

x3 x2 x 1
4. x-1 - x+1 - x-1 + x+1
A

E
E

2 m 1 3
5. m-1 - m2+1 - m+1 - m2-1
A

E
E A

4 2m 2 6
6. m-1 - m2+1 -m+1 + 1-m2
A

E
E

pTt/x¿
6x 32x
1. A

(x2 - 1) (4x2 - 1) E A 2. (x2 - 25) (x2 - 9) A E A 3. 2(a2 + 1)


2m 4m
4. x2 + 1 5. m4-1 A E A 6. m4-1
A E A

121
gd'gf 5 :
;/n ug'{xf];\ (Simplify)
(n-r)2 - m2 (m - n)2 - r2 (r-m)2 - n2
n2 - (r+ m)2 + m2 -(n+r)2 + r2 - (m+n)2
A

E
E A A

E E
A A

E
E A

;dfwfg M
2
- m2 (m - n)2 - r2 (r-m)2 - n2
oxfF, n(n-r)
2
- (r+ m)2 + m2 -(n+r)2 + r2 - (m+n)2
A

E
E A A

E E
A A

E
E A

(n-r+ m)(n-r-m) (m - n+ r)(m - n -r ) (r-m+ n)(r -m-n)


= (n + r+ m)(n-r-m) + (m +n+r)(m-n-r) + (r+m+n)(r - m-n.)
A

E
E A A

E E
A A

E
E A

n-r+ m m - n+ r r-m+ n
= n + r+ m + m +n+r + r+m+n
A E A A

E
A A E A

n-r+ m m - n+ r r-m+ n
= m + n+ r + m +n+r + m+n+r
A E A A

E
A A E A

n-r+ m+m-n+r+r-m+n
= m + n+ r
A E

m+n+r
= m + n+ r
A E

=1

cEof;sf nflu k|Zgx¿ (Questions for Practice)


;/n ug'{xf];\ (Simplify):
(a-b)2 -c2 (b-c)2 - a2 (c - a)2 - b2
1. a - (b+ c) b - (c +a)2 + c2 - (a+b)2
A

E
2 2+ 2 E

(x - y)2 - z2 (z - x)2 - y2 (y-z)2 - x2


2. x2 - (y+z)2 + z2 - (x + y)2 + y2 - (z +x)2
A

E
E

(g-e)2 - f2 (e-f)2 - g2 (f-g)2 - e2


3. E
2
g - (e+f)
A 2+ 2
e - (f+g) 2+ 2
f - (g+e)2 E A A

E
E A A

E
E A

9x2 -(y-z)2 y2 -(z-3x)2 z2 -(3x-y)2


4. (3x+z)2-y2 + (3x+y)2-z2 + (y+z)2-9x2
A

E
E A A

E
E A A

E
E

x2 -(2y-3m)2 4y2 -(3m-x)2 9m2-(x-2y)2


5. (3m+x)2-4y2 +(x+2y)2-9m2 +(2y+3m)2 - x2
A

E
E A A

E
E A A

E
E

pTt/x¿
1. 1 2. 1 3. 1 4. 1 5. 1

gd'gf 6 :
;/n ug'{xf];\ (Simplify)
a- 1 a-2 a-5
A

a2 - 3a + 2 + a2 - 5a+6 + a2 - 8a + 15 E
E A

;dfwfg M
oxfF, a2 -a-3a1+ 2 + a2 a- 5a+6
A
-2 a-5
+ a2 - 8a + 15 E
E

a- 1 a-2 a-5
= a2 - (2+1)a + 2 + a2 - (2+3)a+6 + a2 - (5+3)a + 15
A

E
E

a- 1 a-2 a-5
= a2 - 2a-1a + 2 + a2 - 2a-3a+6 + a2 - 5a-3a + 15
A

E
E

122
a- 1 a-2 a-5
= a(a - 2)-1(a - 2)+ a(a - 2) -3(a-2) + a(a - 5)-3(a-5)
A

E
E

a- 1 a-2 a-5
= (a - 2)(a-1)+ (a - 2)(a -3) + (a - 5)(a-3)
A

E
E

1 1 1
= a - 2+ a -3 + a-3
A

E
E

a-3+a-2+a-2
= (a - 2)(a -3)
A E

3a - 7
= (a - 2) (a - 3)
A E

cEof;sf nflu k|Zgx¿ (Questions for Practice)


;/n ug'{xf];\ (Simplify)
1 2 1
1. x2 - 5x + 6 - x2 - 4x + 3 + x2 - 3x + 2
A

E
E

1 2 1
2. a2-5a+6 - a2-4a+3 - a2-3a+2
A

E
E

2a-6 a-1 a-2


3. a2-9a+20 - a2-7a+12 - a2-8a+15
A E A A E A A E

2(a-3) a-1 a-2


4. (a-4) (a-5) +(3-a) (a-4) + (5-a) (a-3)
A

E
E

x-1 3 1
5. (2x-1)(x+2) + (x+2) (x-1) - (1-x) (1 - 2x)
A

E
E

pTt/x¿
2 5 5 x+4
1. 0 2. (1-a)(a-2) 3. (a-3)(a-4)(a-5) 4. (a-3) (a - 4) (a - 5) 5. (2x - 1) ( x+2)
A E A A E A A E A A E

gd'gf 7 :
;/n ug'{xf];\ (Simplify):
1 1 2 2
A

(a+1)2 (a+2)2 - (a+1)2 + a + 1 - a+2 E


E A

;dfwfg M
A
1
oxfF, (a+1)21(a+2)2 - (a+1) 2+
2 2
a + 1 - a+2 E
E A

2
1 - (a+2) 2(a+2) - 2(a+1)
= (a+1)2 (a+2)2 + (a + 1)(a+2)
A

E E

1 - a2 - 4a-4 2a+4 - 2a-2


= (a+1)2 (a+2)2 + (a + 1)(a+2)
A

E E

- a2 - 4a-3 2
= (a+1)2 (a+2)2 + (a + 1)(a+2)
A

E E

- a2- 4a-3+2(a+1)(a+2)
= A

(a+1)2 (a+2)2 E E

123
- a2 - 4a-3+2(a2+2a+a+2)
= A

(a+1)2 (a+2)2 E E

- a - 4a-3+2a2+4a+2a+4
2
= A

(a+1)2 (a+2)2 E

a2+2a+1
= (a+1)2 (a+2)2
A

(a+1)2
= (a+1)2 (a+2)2
A

E E

1
= (a+2)2
A

cEof;sf nflu k|Zgx¿ (Questions for Practice)


;/n ug'{xf];\ (Simplify)
1 1 2 2
1. (y+1)2 (y+2)2 - (y+1)2 + y + 1 - y+2
A

E
E

x(x+3) 1 2 2
2. (x+1)2 (x+2)2 + (x+1)2 + x + 2 - x+1
A

E
E

pTt/x¿
1 x
1. (y+2)2A E A 2. (x+1)2(x+2)2 A E

pRr bIftfsf nflu k|Zgx¿ (Higher Ability Questions)


cEof;sf nflu k|Zgx¿ (Questions for Practice)
;/n ug'{xf];\ (Simplify)
5x - 3x2 5x + 7 2
1. A

1 - x3 - x2 + x + 1 + x- 1 E
E A

2 2
2. A

x3 + x2 + x+1 - x3 + x2 - x -1 E
E

1 1 1 ax bx cx
3. x+a + x+b + x+c + x3 + ax2 + x3 + bx2 + x3 + cx2
A

E
E A

1 ax 1 bx 1 cx
[Hints: x+a +x2(x+a) +x+b +x2(x+b)+x+c +x2(x+c) ]
A E A A E A A E A A A

E
A E A A E A

1 1 1 a b c
4. m - a + m -b + m -c - m(m-a) - m(m-b) - m(m-c)
A

E
E

1 a 1 b 1 c
[Hints m-a -m(m-a) +m-b -m(m-b) +m-c -m(m-c)
A E A A E A A E A A E A A E A A E A

m-a m-b m-c 1 1 1 3


= m(m-a) +m(m-b) +m(m-c) = m + m + m = m ]
A E A A E A A E A A E A A E A A E A A E A

(a+b) (a + b -c) (b+c) (b + c -a) (c+a) (c + a - b)


5. A

2ab + E 2bc + 2ca E

6. 1 + 1 ( a+ b -c) + 1 + 1 (b + c -a) + 1 + 1 (c + a -b)


a b
A

b c
E c a E

x+ 2 x- 2
7. -
2 2 (x2 + 2x + 2) 2 2(x2 - 2x + 2)
A E

124
4 1 1 2(x-1)
8. x2 - x+ 1 + x+ x + 1 + x - x + 1 - x2 + x +1
A E

x 2  x a2
9. 
a+x x2
- - - +
 A

x a+x  a x a(x+a) E A A E A A E

2 2
10.  +  -2 2 - 2 +  - 
x y 4 x y 2 x y 4
y x y x  y x
A E A A E A A E

[Hints y+x -y - x  ]


x y 2 x y 2 2
A E A

pTt/x¿ M
9-5x 4 3 3
1. x3 - 1
A A

E
2. (1+x)(1-x4) 3. x
A 4. m E A A E A A E A 5. 3
2 8x2 + 8
6. 6 7. x4 + 2x2 + 4 8. x4 + x2 + 1 9. 1
A E A A E A 10. 16

125
4.3 3ftfª\s (Indices)

1= kl/ro
a df a nfO{ cfwf/ / n nfO{ 3ftfª\s elgG5 . o; kf7df xfdL oxL 3ftfª\ssf lgodx¿ k|of]u u/L
n

aLhLo cleJo~hsx¿sf] ;/nLs/0f ug{ tyf 3ftfª\s o''St ;dLs/0fx¿sf] xn ug]{ tl/sfx¿sf
af/]df rrf{ ul/Psf] 5 .
o; kf7af6 k/LIffdf 5f]6f] pTt/ cfpg] Pp6f 1fg, af]w tyf l;k ;DaGwL b'O{ 2 cª\s ef/sf]] k|Zg
/ nfdf] pTt/ cfpg] Pp6f l;k ;DaGwL 2 cª\sf] k|Zg ;f]lwg] 5 .
2= 3ftfª\ssf lgodx¿ (Laws of Indices)
jf:tljs ;ª\Vofx¿ a, b, m / n sf nflu (For any real numbers a, b, m and n)
1. am × an = am + n
xa
2. am ÷ an = am-n or xb = xa-b
A E A

3. (am)n = amn
4. (ab)n = anbn
5. (xy)ab = xab yab
6.
n
a an
  = n
b b
0 0
7. x =y =1
8. olb xm = xn eP m = n x'G5, hxfF x ≠ 0
9. olb xm = ym eP x = y x'G5 .

3= 3ftfª\s ;lDdlnt ;dLs/0fx? (Equation involving indices)


1. olb a = ay eP x = y x'G5 (If a = ay then x = y)
x x

2. olb x
a =b
x
eP a = b x'G5 (If a = b then a = b)
x x

4= ljz]if Wofg lbg'kg{] s'/fx¿


o; kf7df,
• 3ftfª\s o''St ;dLs/0fsf] wf/0ff a'em\g] .
• 3ftfª\s o''St ;dLs/0f xn ug]{ tl/sfsf] lgodx¿sf] hfgsf/L lng] .
• k|sfzsf] ult 3×108 ld6/ k|lt ;]s]G8 x'G5 . o;nfO{ u'0fg u/]/ cEof; ug]{ . oL b'O{
tl/sfnfO{ bfh]/ x]bf{ 3ftfª\ssf] lgodåf/f 7'nf 7'nf cª\snfO{ ;/n ¿kdf JoSt ug{
;lsG5 . of] Pp6f j}1flgs ljlw xf] .
3ftfª\ssf] lgodaf6 cfg'kflts ;ª\Vofx¿ (irrational number) sf lj|mofx¿ klg ;lhn}l;t ug{
;lsG5 .

126
5. gd'gf k|Zgf]Tt/ tyf cEof;
5.1 5f]6f] pTt/ cfpg] k|Zg ;DaGwL cEof;
gd'gf 1 :
xn ug{'xf];\ M 3x+1 + 3x = 108
;dfwfg M
oxfF, 3x+1 + 3x = 108
x x
or, 3 . 31 + 3 = 108
x
or, 3 (3 + 1) = 108
x
or, 3 .4 = 108
x
or, 3 = 108/4
x
or, 3 = 27
x
or, 3 = 33
∴ x=3

cEof;sf nflu k|Zgx¿


x+3 x x+2 x+1 1
(a) 2 + 2 = 36 (b) 3 +3 = 13A E

x x-2
(c) 2 - 2 =6 (d) 2y - 2y-2 = 3
x+1 x+2 x+1
(e) 2 - 2x-1 = 12 (f) 4 = 22 + 14
2x+1 x+2 2x+3 x+1
(g) 3 =9 - 26 (h) 3 - 9 = 2.9 -6
pTt/x¿
1 1
(a) 2 b) -2 (c) 3 (d) 2 (e) 3 (f) 0 (g) - 2
A E A (h) - 2
A E

5.2 nfdf] pTt/ cfpg] k|Zg ;DaGwL cEof;


gd'gf 2 :
1 1
xn ug{'xf];\ (Solve) : 5a + 5 a = 25 25
A A

E
A E A

;dfwfg M
oxfF, dfgf“}
5a = x
1 626
∴x + x = 25 A A

E
A E A

x2+1 626
Or, x = 25
A

E
A A E

Or, 25x2 + 25 = 626x


Or, 25x2 - 626x + 25 = 0
Or, 25x2 - (625 + 1)x + 25 = 0
Or, 25x2 - 625x - x + 25 = 0

127
Or, 25x(x - 25) -1(x – 25) = 0
Or, (x - 25) (25x -1) = 0
x sf] dfg /fVbf,
(5a - 25) (25×5a -1) = 0
Either,
(5a - 25) = 0
Or, 5a = 25
Or, 5a = 52
∴a = 2
or, (25×5a -1) = 0
or, 25×5a = 1
1
or, 5a = 25 A E

1
or, 5a = 52
A E

or, 5a = 5 -2
∴ a= - 2
∴ a =2 or - 2

cEof;sf nflu k|Zgx¿


x 1
(a) 2 + = 22 A E A

x 16
(b) 2 + 2x = 10 A E A

x 9
(c) 3 + 3x = 10 A E A

x 64
(d) 4 + 4x = 20 A E A

1 1
(e) 4x + 4x = 1616
A E A A E A

x 1 1
(f) 3 + 3x = 99 A E A A E

x 1
(g) 5 -1 + 5-x = 15 A E

x x 26
(h) 51- + 5 -1 = 5 A E

(i) 5a+1 + 52-a = 126


(j) 2a-2 + 23-a = 3

pTt/x¿
(a) 1, -1 (b) 1,3 (c) 2,0 (d) 1, 2
(e) 2, -2 (f) 2, -2 (g) 1, 0 (h) 1,2
(i) -1, 2 (j) 3, 2

128
gd'gf 3 :
xn ug{'xf];\ (Solve) : 5.4x+1 – 16x = 64
;dfwfg M
oxfF, 5.4x+1 – 16x = 64
x x
or, 5. 4 4 – (42) = 64
x x
or, 20. 4 - (4 )2 = 64
dfgf}“ 4x = a
∴ 20a – a2 = 64
or, a2 – 20a + 64 = 0
or, a2 – 16a – 4a + 64 = 0
or, a(a – 16) – 4(a – 16) = 0
or, (a – 16)(a – 4) = 0
a sf] dfg /fVbf,
x x
(4 – 16)(4 – 4) = 0
Either,
x
(4 – 16) = 0
x
Or, 4 = 16
x
Or, 4 = 42
∴ x=2
Or,
x
4 –4=0
x
Or, 4 = 4
x
Or, 4 = 41
∴ x=1
∴ x =1 or 2
cEof;sf nflu k|Zgx¿
x x
(a) 4 - 6.2 +1 + 32 = 0
(b) 9a – 10×3a+9=0
1
(c) 3a+3 + 3 a = 28 A A

x+2
(d) 10.3 = 9 + 9x+2
x x
(e) 4 +1 - 9.2 +2 + 32 = 0
(f) 25x - 30.5x + 125 = 0
(g) 16v - 5.4v+1 + 64 = 0
(h) 4.3x+1 - 9x = 27
(i) 4x + 128 = 6.2x+2
(j) 4x + 128 = 3.2x+3

129
pTt/x¿
a) 2, 3 b) 0,2 c) 0, –3 d) 0, -2 e) 3, 0
f) 1, 2 g) 1, 2 h) 1, 2 i) 3, 4 j) 3, 4

gd'gf 4 :
;/n ug{'xf];\ (Simplify)
1 1 1
A

1 + ax-y + az- y +1 + ay-z + ax - z + 1 + az-x + ay - x


E A A

E
E

;dfwfg M
oxfF, 1 + ax-y1 + az- y +1 + ay-z1 + ax - z +
A E A A

E
1
1 + az-x + ay - x E

1 1 1
= ax az +
A

ay ax + az ayA A E

1 + ay + a y 1 + az + a z 1 + ax + a x
E
E

1 1 1
= ay + ax + az +az + ay+ ax + ax + az + ay
A A A E

ay az ax E E

ay az ax
= ay + ax + az + az + ay + az + ax + az + ay
A A

E
A

E
A A

ay az ax
= ay + az + ax + ay + az + ax + ay + az + ax
A A

E
A A

E
A

ay + az + ax
= ay + az + ax
A

E
A

=1

cEof;sf nflu k|Zgx¿


1 1 1
(a) A

1 + xb-a + xc -a + 1 + xc-b + xa-b + 1+xa-c + xb-c E A A

E
E

1 1 1
(b) 1+xl-m + xl-n + 1+xm-n + xm-l + 1+xn-l + xn-m
A

E
E

1 1 1
(c) 1+ax-y + ax-z + 1+ay-x + ay-z + 1+az-x + xz-y
A

E
E

1 1 1
(d) 1+ma-b + ma-c + 1+mb-c + mb-a + 1+mc-a + mc-b
A

E
E

1 1 1
(e) 1+mp-q + mr-q + 1+mq-r + mp-r + 1+mr-p + mq-p
A

E
E

1 1 1
(f) 1+xa-b+xc-b + 1+xb-c+xa-c + 1+xc-a+xb-a
A E A A E A A E

1 1 1
(g) 1+xp-q+xr-q + 1+xq-r+xp-r + 1+xr-p+xq-p
A E A A E A A E

1 1 1
(h) 1+xa-b+xa-c + 1+xb-c+xb-a + 1+xc-a+xc-b
A E A A E A A E

pTt/x¿
a) 1 b) 1 c) 1 d) 1 e)1 f) 1 g) 1 h) 1

130
gd'gf 5 :
a2 2a 1
(x-a)n + (x - a)n-1 + (x - a)n-2
A E A A E A A E A

a2 2a 1
= (x-a)n + (x - a)n + (x - a)n
A E A A E A A E A

(x-a)1 (x-a)2 E E

2
a 2a(x - a) (x-a)2
= (x-a)n + (x - a)n + (x - a)n
A E A A

E
E A A

E
E A

a2 + 2a(x - a) + (x-a)2
= A

(x - a)n E E

(a +x - a)2
= (x - a)n
A

E E

x2
= (x - a)n
A

4. cEof;sf nflu k|Zgx¿


p2 2p 1
a) A

(p-y)y - (p-y)y-1 +(p-y)y-2 E A A E A A E A

p2 2p 1
b) A

(y-p)y - (y-p)y-1 + (y - p)y-2 E


E

m2 2m 1
c) A

(n-m)n - (n-m)n-1 + (n - m)n-2 E


E

pTt/x¿
y2 (2p-y)2 (2m-n)2
a) A

(p-y)y E A b) (y-p)y A

E E
A c) (n-m)n
A

E E
A

gd'gf 6:
olb abc = 1 eP, k|dfl0ft ug{'xf];\ M
1 1 1
If abc = 1, prove that: 1+a + b-1 + 1+b+c-1 1 + c + a-1 = 1
A

E
E

;dfwfg M
oxfF, abc = 1
1 1
Or, bc = a and a = bc A

E
E A

1 1 1
L.H.S.= A

1 1+ 1 + 1 + c+ bc E

1+ bc + b 1+b + c E

bc c 1
= bc + 1 + c + c + bc + 1 + 1+c + bc
A

E
E A

bc+c+1
= bc+c+1 A E A

=1
= R.H.S.

131
∴ L.H.S. = R.H.S.

5. cEof;sf nflu k|Zgx¿


(a) olb pqr = 1 eP k|dfl0ft ug{'xf];\ .
1 1 1
If pqr = 1 show that 1+p+q-1 + 1+q+r -1 +1+r+p-1 = 1 A E A A E A A E A

(b) olb a + b + c = 0 eP k|dfl0ft ug{'xf];\ .


1 1 1
If a + b + c = 0 then prove that, 1+xa +x-b + 1+xb + x-c + 1+xc +x-a = 1 A

E
E A

(c) olb m + n + r = 0 eP k|dfl0ft ug{'xf];\ .


1 1 1
If m + n + r = 0 then prove that, 1+xm +x-n + 1+xn + x-r + 1+xr +x-m = 1 A

E
E A

(d) olb p+q+r= 0 eP k|dfl0ft ug{'xf];\ M If p+q+r= 0, then prove that:


1 1 1
A

1+xp+x-q +1+xq+x-r +1+xr+x-p = 1 E A A E A A E A

gd'gf 7:
a+b a-b b-c c-a
x  xb+c xc+a
;/n ug{'xf];\ (Simplify) : × x  × x 
 x 
A E A

  A E A

 A E

;dfwfg M
a+b a-b c-a b-c
xc+a xb+c
oxfF, xx 
A × x 
 E × x 
A

  A E A A E

(a+b)(a-b) (b+c)(b-c)
x(c+a)(c-a)
=  x(a-b) ×  x(b-c)  ×  x(c-a) 
x x

A

  E    E A A

E
E A A

E
E

2 2 2 2 2 2
xa -b  xb -c  xc -a 
=  xa - b  ×  xb - c  × xc - a 

A

  E    E A A

E
E A A

E
E

a2-b2+ b2-c2+ c2-a2


x
= A

xa - b + b - c +c - a
E
E

0
x
= x0
A E

=1

6. cEof;sf nflu k|Zgx¿


n-l l-m m-n
l+m
x l-m  xm+n xn+l
(a) ×  xm-n  ×  xn-l 
x 
A E A

  A E A

  A E

a +b b+c c +a
2 2 2 2 2 2
xa +b  xb +c  xc +a 
(b)  ab  ×  xbc  ×  xca 
 x 
A

E
E A

  A

E
E A

  A

E
E

2 2 a -b 2 2 b-c 2 2 c-a
xa +b  xb +c  xc +a 
(c)  -ab  ×  x-bc  ×  x-ca 
 x 
A

E
E A

  A

E
E A

  A

E
E

132
a+b b-c a-b c-a
x c  xb+c xc+a
(d) ×  xa  ×  xb 
x 
A

    E A A E A A E

2 2
a a +ab+b b +bc+c2
2
c2 +ca+a2
xb  xb  xc
(e) × xc × xa
 
A

x E A

 
A E A

 
A E

a+b c-a a-b b-c


x a-b  xb+c xc+a
(f) ×  xb-c  ×  xc-a 
x 
A E A


A

 E A


A

 E

b b+c-a c+a-b a+b-c


x c  xc xa
(g) × xa × xb
x 
A E A

 
A E A

 
A E A

a a-b b-c c-a


 x-b xb xc
(h) × x-c × x-a
x 
A E A

 
A E A

 
A E

x x+y y+z
ay ay
× az
x-z
(i) ÷ (ax × az)
a 
A E A

 
A E A A E A

2 2 2
(xa+b) .(xb+c) .(xc+a)
(j) A

4 E A

(xaxbxc) E

1 1 1

xb bc
 c ×  a ×  b xc ca xa ab
( k)
 x  x  x 
A E A A E A A E A

(l) (xa+byc)a-b (xb+cya)b-c (xc+ayb)c-a


A E

a-b b-c c-a


(m) (xa . xb ÷ xc)
A E .(xb ÷ x-c . xa)
A A E .(xa . x-b . xc)
A A E

pTt/x?
x 2 ( a +b + c )
3 3 3

a) 1 b) c) 1 d) 1 e) 1 f) 1 g) 1
h)1 i) 1 j) 1 k) 1 l) 1 m) 1

6:cEof;sf nflu yk k|Zgx?


pRr bIftfsf k|Zgx? (Challenging Problems)
;/n u/ M (Simplify)
x y−x a +b a +b
 2 1   1  1  1
 x − 2   x −   a +  b − 
 y   y  b  a
y x− y b a
 2 1   1   2 1   2 1 
y − 2  y+  b − 2   a − 2 
(a)  x   x (b)  a   b 
x+ y x+ y b a
 1  1  b  a −b  a  a −b
y+   x − y  1 −  1 + 
 x    a  b
x b a
 2 1  2 1
y

 x − 2   y − 2  a  a −b  b  a −b
 − 1  + 1
(c)  y   x  (d)  b  a 

133
p q
x y
 p  p−q  q  p−q
 x
1 + 
x−y
 y x−y 1 +  1 − 
1 −  q  p
 y  x 
y
p q
x
 y x−y  x x−y  q  p −q  p  p −q
 + 1  − 1  + 1  − 1
(e)  x  y (f)   q 
 p

pTt/x¿
x x+y a a-b y x-y
(a) y (b) b (c) x
 
A E A

 
A E A

 
A E A

a x p
(d) b A E A (e) y
A E A (f) q A E A

4.4 d"n / ;8{x? (Root and Surds)


1= kl/ro
;8{x¿ ljleGg k|sf/sf x'G5g\ . cGo cg'kflts ;ª\Vofx¿ u'0fg v08sf ¿kdf gePsf] ;8{nfO{
z'4 ;8{ (pure surd) elgG5 . o:t} rational ;ª\Vof / surd sf] ;+o'St ¿kdf ePsf] ;ª\VofnfO{ ldl>t
;8{ elgG5 .
o; kf7df cg'kflts ;ª\Vofsf ;fy;fy} cfg'kflts ;ª\Vof (irrational number) ;“u ;DalGwt ;d:of
;dfwfg ug]{ ljlw k|of]u ul/G5 . o; kf7leq cg'kflts ;ª\Vofsf] hf]8, u'0fgsf ;fy} ;fwf/0f d"n
;dLs/0fsf ;d:ofx¿ /flvPsf 5g\ . ;fwf/0f jf rational ;ª\Vofsf] ;d:of ;dfwfg ug]{ tl/sf
irrational sf] lx;fa xn ug]{ tl/sfaLr tfnd]n Nofpg vf]lhPsf] 5 .
o; kf7af6 k/LIffdf 5f]6f] pTt/ cfpg] 1fg, af]w / l;kd"ns Ps Ps cf]6f 2 – 2 cª\sf] k|Zg
;f]Wg] ul/G5 .
2= ;8{x? (Surds) sf ;"qx?
1. x sf] ju{d"n + x x'G5 . (The square root of x is +
A E A A x .)
E A

2. olb x = 0 eP x = 0 x'G5 (If x = o then x = 0).


A E A A E A

n
3. A a = a1/n
E A

ju{ ;dLs/0fsf] ;fwf/0f ?k (General form of Quadratic Equation) ax2 + bx + c = 0


-b+ b2 - 4ac
ju{ ;dLs/0fsf] d"nx¿ (Roots of Quadratic Equations) x= A

2a E
E

3. ljz]if Wofg lbg'kg{] s'/fx?


3.1 cg'kflts tyf cfg'kflts ;ª\Voflarsf] cGt/ ;DaGw :ki6 ug{] .
3.2 cfg'kflts ;ª\Vof (irrational number) sf] juL{s/0f ug{] .
3.3 ;8{;“u ;DalGwt ;ª\Vofsf ;fwf/0f d"n ;dLs/0f xn ug{] .
3.4 lbPsf] cleJo~hsnfO{ x/ tyf c+zdf x/sf] cg'ab\w (conjugate) n] u'0fg u/]/
x/nfO{ cg'kflts ;ª\Vof (rational) agfpg ;lsG5 .

134
3.5 olb lbPsf] leGg ;8{ xf] eg] ToxL leGgx¿sf] x/df ePsf] ;8{ jf To;sf]
cg'ab\wn] To; leGgsf] x/ / c+znfO{ u'0fg u/]/ x/sf] ;8{ x6fpg] k|lj|mofnfO{
cg'kflts ug]{ elgG5 .
3.6 ;dLs/0f n]lvPsf rf6{x¿ k|bz{g u/L rn /flzsf] dfg kTtf nufpg ;lsG5 .
3.7 cg'kflts / cgfg'kflts ;ª\Vofx¿larsf] cGt/ ;DaGw kTtf nufO{ cg'kflts /
cgfg'kflts ;ª\Vofx¿sf] wf/0ff :ki6 agfpg]{ .
gf]6 M cgfg'kflts ;ª\VofnfO{ ;8{ (surd) klg elgG5 . an df n nfO{ ;8{sf] l8u|L (order)
klg elgG5 eg] a nfO{ d'ns (radicand) elgG5 hxf“ a wgfTds cg'kflts ;ª\Vof xf] .

4= gd'gf k|Zgf]Tt/ tyf cEof;


4.1 5f]6f] pTt/ cfpg] k|Zg ;DaGwL cEof;
gd'gf 1 :
;/n ug'{xf];\ (Simplify)
3 2 + 4 2500 + 4 64 + 6 8

;dfwfg M
oxfF,
3 2 + 4 2500 + 4 64 + 6 8
= 3 2 + 4 2× 2×5×5×5×5 + 4 2× 2× 2× 2× 2× 2 + 6 2× 2× 2
= 3 2 + 5× 2× 2 + 2 2× 2 + 6× 2
4 4
2
= (3 + 12) 2 + (5 + 2) × 4 2 × 2

= 15 2 + 7 4 2 × 2
1

= 15 2 + 7 × (2) 4

= 15 2 + 7 × (2) 2

= 15 2 + 7 2
= 22 2
1. cEof;sf nflu k|Zgx?
;/n ug'{xf];\ (Simplify)
1. 27 + 75 − 8 3
2. 50 + 18 − 8 2
3. 200 + 3 32 + 2 72
135
4.
3
128 + 23 54 − 23 250
5. 16a + 154a − 250a
3 3 3 3 3 3

6. 16 + 3 54 + 3 192 − 3 375 − 3 128 + 3 3


3

pTt/x¿
3
1. 0 2. 0 3. 34 2 4. 0 5. 0 6. 2
gd'gf 2 :
;/n ug'{xf];\ (Simplify) : 4 12 xy 4 × 4 2 x 3 y 9 z 7
= 4
12 xy 4 × 2 x 3 y 9 z 7
= 4
2 × 2 × 2 × 3x 1+3 y 4+9 z 7
= 4
24 x 4 y 13 z 7
= 4
24 x 4 y 4 y 4 y 4 yz 4 z 3
3
= xyyyz 4 24 yz
3 3
= xy z 4 24 yz

2. cEof;sf nflu k|Zgx¿M


;/n ug'{xf]; (Simplify) :
1. 5 × 10 × 2
2. 5 2 x × 8 x 3 × 2 3x 5
3. 30ab 5 × 3a 2 b
4. 2 6 x 5 × 3x × 5 20 x 3
5. 3
4 xy 2 × 3 4 xy 4
pTt/x¿
1. 10 2. 40 x 4 3x 2. 3ab 3 10a 4. 60 x 4 10 x 5. 2 y 2 3 2x 2
gd'gf 3:
5 54 − 24 + 7 216
;/n ug'{xf];\ (Simplify) :
53 24
;dfwfg M

136
5 54 − 24 + 7 216
oxfF,
53 24
5 2 × 3× 3× 3 − 2 × 2 × 2 × 3 + 7 2 × 2 × 2 × 2 × 3× 3× 3
=
53 2 × 2 × 2 × 3
5×3 2×3 − 2 2×3 + 7× 2× 2×3 2×3
=
53 × 2 2 × 3
15 6 − 2 6 + 84 6
=
106 6
(15 − 2 + 84) 6
=
106 6
97
=
106

3. cEof;sf nflu k|Zgx?


;/n ug'{xf];\ (Simplify)
3
128 − 3 16
1.
23 2
5 18 − 32 + 7 50
2.
23 8
5 27 − 12 + 7 75
3.
8 108
1
4. 4 2a − + 32a 2
2

8a 2
45 x 4 − 80 x 4 + 6 x 2 5
5.
5 5x 4
x 8 x 3 a + 18 x 5 a − x 2 32 xa
6.
x 2 2ax
23 192 − 43 81 + 33 24
7. 3
648 − 3 375
pTt/x¿
2 (32a 2 − 1)
1. 1 2. 2 3. 3 4. 5. 1 6. 1 7. 2
4a
137
gd'gf 4:
3 5+ 3
;/n ug{'xf];\ (Simplify) :
5− 3
;dfwfg M
3 5+ 3
oxfF,
5− 3
3 5+ 3 5+ 3
= ×
5− 3 5+ 3
3 × 5 + 3 15 + 15 + 3
=
( 5) 2 − ( 3) 2
15 + 4 15 + 3
=
5−3
18 + 4 15
=
2
2(9 + 2 15 )
=
2
= Error! Bookmark not defined. 9 + 2
A A
15

4. cEof;sf nflu k|Zgx?


2 2+ 3
1.
2− 3
2 7 +3 5
2.
7 −2 5
pTt/x¿
16 + 35
1. 6 −1 2. 3

138
4.2= nfdf] pTt/ cfpg] k|Zg ;DaGwL cEof;
gd'gf 1:
1/ab x1/a 1/bc x1/b 1/ca x1/c
;/n ug{'xf];\ (Simplify) : A

x 1/b ×
x1/c × x1/a
E A A E A A E

;dfwfg M
1/ab x1/a 1/bc x1/b 1/ca x1/c
oxfF, x 1/b ×
A E A A

x1/c × x1/a
E A A E

1/a ab
(x ) (x1/b)bc 1/c ca
(x )
= E
1/b ab ×
(x )
A

(x1/c)bc × E A A

E
E A

(x1/a)ca
A

E
E

(xb) (xc) (xa)


= a ×
(x )
A

E (x )b × (xc)
E A

E
A E A A

E
E

b c a
x x x
= xa × xb × xc
A E A A E A A E A

xb+c+a
= xa+b+c A E

= 1
1. cEof;sf nflu k|Zgx?
a b c
b c a
x x x
(a) ab
b
× bc
c
× ca
a
a b c
x x x
x y
z
y
xy
a a z
ax
(b) × yz × zx
y z x
x y
a a az

xy
a yz a zx a z
x y
(c) . .
ay az ax
2
/ y2
ay
2
/ z2
az
2
/ x2 2 2 ax
(d) y2z2 ×z x 2 2 ×x y 2
/ x2
az
2
/ y2
ax
2
/ z2
ay
2
/ c2 2
/ a2 2
/ b2
mb mc ma
(e) b 2 c 2 2
× c2a2 × a 2b 2
/ b2 2
/ c2 2
/ a2
mc ma mb

1
a a + b a 1− b a b + c b 1− c a c + a
(f) c − a × ×
a a −b ab −c ac−a
2 2 2
xb xc xa
(g) b + c 2
× c+a 2
× a +b 2
xc xa xb
139
1 1
1 y 1

(h)
1
a × x
yz
a × 1 az
xy zx
1 1 1

ay az ax
1
ab
xa/b 1
bc
xb / c 1
ca
xc / a
(i) × ×
xb / a xc /b xa/c

mn
xm/ n np
xn/ p pm
x p/m
(j) × ×
xn/ m x p/n xm/ p
pTt/x¿
a) 1 b) 1 c) 1 d) 1 e) 1 f) 1 g) 1 h) 1 i) 1 j) 1

gd'gf 2:
5x - 4 5x - 3
xn ug{'xf];\ (Solve) : A

5x +2
=4- 2E A A

E
E A

;dfwfg M
5x - 4 5x - 3
oxfF, A

5x +2
=4- 2 E A A

E
E

(5x)2 - 22 8 -( 5x - 3)
or, A = 2 E A A E

E 5x +2 E

( 5x + 2) ( 5x - 2) 8 - 5x + 3
or, A = 2 E A A E

5x +2 E
E

( 5x - 2) 5 - 5x
or, A

1 = 2 E
E A A

E
E

or, 2 5x - 4 = 5 - 5x
A E A A E

or, 2 5x + 5x = 5 + 4
A E A

or, 3 5x = 9 A E A

or, 5x = 3 A E A

or, ( 5x)2= (3)2 A E A

or, 5x = 3
3
∴ x=5 A E

2. cEof;sf nflu k|Zgx?


5x - 4 5x + 2 7x - 36 5 7x-11
(a) A =2- 2 E A A E A (b) A =9- 3 E A A E A

5x + 2 E
6+ 7x E

6x-49 4 6x-3 5y-4 5y-3


(c) A =6- 3 E A A E A (d) A =2- 2 E A A E A

7+ 6x E
5y -2 E

5x - 9 5x -3 3x - 4 3x -2
(e) A =1+ 2 E A A E A ( f) A =2+ 2 E A A E A

3 + 5x E
3x +2 E

140
5y - 4 5y - 3 x-4 x-2
(g) A =2+ 2
E A A E A (h) A E=2+ 2
A A E A

5y + 2 E
2+ x E

pTt/x¿
4 1
(a) 5A E A (b) 7 (c) 6 (d) 5 A E A

(e) 5 (f) 12 (g) 5 (h) 36

kf7 : 4.5 o'ukt /]vLo ;dLs/0f / ju{ ;dLs/0f ;DaGwL zflAbs ;d:ofx¿
(Verbal Problems of Simultaneous Equation and Quadratic Equation)

1. kl/ro
xfd|f] b}lgs hLjgdf Pp6f kl/df0fnfO{ csf]{ kl/df0f;“u bfFh]/ x]g]{ ul/G5, h:t} M b'O{ hgf JolStsf]
pd]/ leGgtf, sfdbf/x¿sf] sfo{Ifdtfcg'¿k Hofnfb/ sfod ug]{ cflb 5g\ . o:tf vfnsf ;d:of
;dfwfg ug{ ;d:ofnfO{ ;dLs/0fdf JoSt ul/G5 . o:tf b'O{ rno'St o'ukt /]vLo ;dLs/0fnfO{
ljleGg tl/sf -x6fpg] jf k|lt:yfkg ljlw_ af6 ;dfwfg u/fpg] cEof; ul/G5 .
o; kf7af6 l;k ;DaGwL Pp6f 5f]6f] pTt/ cfpg] cª\s 2 sf] k|Zg / nfdf] pTt/ cfpg] 4 cª\ssf] Pp6f
;d:of ;dfwfg d'ns k|Zg ;f]lwg] ul/G5 .

2. ljz]if Wofg lbg'kg{] s'/fx?


– ;a}eGbf klxn] lbOPsf] k|ZgnfO{ /fd|f];Fu k9L gePsf] /flznfO{ x, y, z cflbn] hgfpg] .
– ;d:ofdf lbOPsf] egfOx¿nfO{ ul0ftLo jfSodf n]Vg] .
– k|fKt ;dLs/0fnfO{ x6fpg] ljlw, k|lt:yfkg ljlw / n]vflrq ljlwdWo] s'g} Ps ljlw k|of]u
u/L ;dfwfg ug]{ .
– b'O{ rno'St o'ukt /]vLo ;dLs/0fsf] ljleGg tl/sfaf6 xn u/L ;s]sf 5f“} . oxfF, b'O{
rno'St ;dLs/0fsf] k|of]u u/]/ Jofjfxfl/s ;d:ofsf] ;dfwfg ug{ ;lsG5 .

3= cfwf/e't hfgsf/L / ;'qx?


3.1 ;ª\Vofx?sf af/]df hfgsf/L
1. cg'atL{ ;ª\Vofx¿ -consecutive numbers_ M x, x+1, x+2 ………………..
2. cg'atL{ hf]/ ;ª\Vofx¿ -Consetiver even numbers_
3. cg'atL{ lahf]/ ;ª\Vofx¿ -Consetive odd numbers_
4. x sf] Jo'Tj|mdfg'kftL 1/x x'G5 -Reciporcal of x is 1/x_

4= b'O{ cª\ssf] ;ª\Vofx¿df


y / x j|mdzM Ps :yfg / b; :yfgdf ePsf] b'O{ cª\ssf] ;ª\VofnfO{ 10x+y n] hgfOG5 / To;sf]
ljk/Lt ;ª\VofnfO{ 10y+x n] hgfOG5 .
3.2 b'/L / j]u;Fu ;DalGwt ;d:ofx¿ ePdf

141
b''/L
– j]u jf ult (speed)= A

;do E

– b'/L Ö k|j]u jf ult × ;do


b''/L
– ;do Ö j]u A E

3.3 pd]/;Fu ;DalGwt k|Zgx? ePdf M


b'O{ hgf JolSt ePdf ltgLx¿sf] clxn]sf] pd]/ x jif{ / y jif{ lng] .
‘a’ jif{kl5sf] pd]/ -x+a_ jif{ / -y+a_ jif{ x'G5 . To;} u/L ‘a’jif{cl3sf] pd]/ -x-a_ jif{
/ -y-a_ jif{ lng'k5{ .
3.4 ju{ ;dLs/0f (Quadratic Equation) M
− b ± b 2 − 4ac
ju{ ;dLs/0f -ax +bx+c=0_
2
eP M x sf] dfg { x =
2a
4= gd'gf k|Zgf]Tt/ tyf cEof;
4.1 5f]6f] pTt/ cfpg] k|Zg ;DaGwL cEof;
gd'gf 1 :
olb Pp6f ;ª\Vofsf] ju{af6 3 36fp“bf 6 afFsL /xG5 eg] pSt ;ª\Vof kTtf nufpg'xf];\ .
;dfwfg M
oxfF, pSt ;ª\Vof x dfgf}F .
ta, k|Zgaf6,
x2-3 = 6
or,x2 = 6+3
or, x2= 9
2
or, x2= (±3)
x=±3
pSt ;ª\Vof ± 3

1. cEof;sf nflu k|Zgx¿


(a) olb Pp6f ;ª\Vofsf] ju{af6 5 36fpFbf 44 afFsL /xG5 eg] pSt ;ª\Vof kTtf nufpg'xf];\ .
(b) Pp6f ;ª\Vofsf] ju{af6 ToxL ;ª\Vofsf] 4 bf]Aa/ 36fpFbf 4 afFsL /xG5 eg] pSt ;ª\Vof kTtf
nufpg'xf];\ .
(c) Pp6f ;ª\Vofsf] 6 bf]Aa/af6 ToxL ;ª\Vofsf] ju{ 36fpFbf 9 x'G5 eg] pSt ;ª\Vof kTTff
nufpg'xf];\ .
(d) olb Pp6f k|fs[lts ;ª\Vofsf] ju{sf] t]Aa/af6 12 36fp“bf kl/0ffd 36L x'G5 eg] ;f] ;ª\Vof
kTtf nufpg'xf];\ .
(e) Pp6f ;ª\Vofsf] ju{ / 23 sf] km/s 2 5 eg] pSt ;ª\Vof kTtf nufpg'xf];\ .
(f) olb Pp6f wgfTds ;ª\Vofsf] ju{sf] bf]Aa/af6 17 36fpFbf kl/0ffd 111 x'G5 eg] ;f] ;ª\Vof
kTtf nufpg'xf];\ .
142
(g) Pp6f ;ª\Vofsf] ju{ / 81 sf] km/s z"Go 5 eg] pSt ;ª\Vof kTtf nufpg'xf];\ .

pTt/x¿
(a) ±7 (b) 2 (c) 3 (d) ±4 (e) ± 5 (f) 8 (g) ±9
gd'gf 2:
olb Pp6f ;ª\Vofsf] ju{;Fu 11 hf]8\bf 47 x'G5 eg] pSt ;ª\Vof kTtf nufpg'xf];\ .
;dfwfg M
oxfF, pSt ;ª\Vof x dfgf}F .
ta, k|Zgaf6,
x2+11 = 47
or, x2 = 47-11
or, x2= 36
2
or, x2 = (±6)
x=±6
pSt ;ª\Vof ± 6 /x]5 .
2. cEof;sf nflu k|Zgx¿
(a) olb Pp6f wgfTds ;ª\Vofsf] ju{df 7 hf]8\bf of]ukmn 71 x'G5 eg] ;f] ;ª\Vof
kTtf nufpg'xf];\ .
(b) olb Pp6f ;ª\Vofsf] ju{df 6 hf]8\bf 31 x'G5 eg] ;f] ;ª\Vof kTtf nufpg'xf];\ .
(c) Pp6f ;ª\Vofsf] ju{sf] b'O{ u'0ffdf 20 hf]8\bf 52 x'G5 eg] pSt ;ª\Vof kTtf nufpg'xf];\ .
(d) olb Pp6f ;ª\Vofsf] ju{df 3 hf]8\bf of]ukmn 28 x'G5 eg] pSt ;ª\Vof kTtf nufpg'x]f;\ .
(e) Pp6f To:tf] ;ª\Vof kTtf nufpg'xf];\ h;nfO{ To;}sf] ju{ ;ª\Vof;“u hf]8\bf 90 x'G5 <
(f) olb Pp6f wgfTds ;ª\Vofsf] ju{sf] 7 u'0ffdf 10 hf]8\bf of]ukmn 353 x'G5 eg] pSt ;ª\Vof
lgsfNg'xf];\ .
(g) olb Pp6f k|fs[lts ;ª\Vofsf] ju{sf] bf]Aa/df 5 hf]8\bf of]ukmn 23 x'G5 eg] ;f] ;ª\Vof kTtf
nufpg'xf];\ .
pTt/x?
(a) 8 (b) +5 (c) 4 (d) +5 (e) 9, -10 (f) 7 (g) 3
gd'gf 3 :
b'O{ ;ª\Vofx¿sf] of]u 17 / cGt/ 3 eP tL ;ª\Vofx¿ kTtf nufpg'xf];\ .
;dfwfg M
oxfF, b'O{ ;ª\Vofx¿ x / y dfgf}F .
ta, k|Zgaf6,
x+y = 17 ..................(i)
x-y = 3 ....................(ii)
;dLs/0f (i) / (ii) hf]8\bf,
x+y = 17
x-y = 3

143
2x = 20
x = 10
x sf] dfg ;dLs/0f (ii) df /fVbf,
10-y = 3
or, 10-3 = y
y=7
pSt ;ª\Vofx¿ 10 / 7 /x]5g\ .

3. cEof;sf nflu k|Zgx¿


(a) b'O{ cf]6f wgfTds ;ª\Vofx¿sf] of]ukmn / cGt/ j|mdzM 15 / 5 eP tL ;ª\Vofx¿ kTtf
nufpg'xf];\ .
(b) Pp6f lqe'hsf b'O{ cf]6f sf]0fx¿sf] of]ukmn 900 / km/s 600 5 eg] tL sf]0fx¿ kTtf
nufpg'xf];\ .
(c) Pp6f rt'e{'hsf ljk/Lt sf]0fx¿sf] of]ukmn 1800 / km/s 320 5 eg] tL sf]0fx¿ kTtf
nufpg'xf];\ .
(d) b'O{ cf]6f ;ª\Vofsf] of]ukmn 10 5 . ltgLx¿dWo] klxnf]sf] 2 u'0ff;Fu bf];|f]sf] 3 u'0ff a/fa/
x'G5 . tL ;ª\Vofx¿ kTtf nufpg'xf];\ .
(e) s'g} Pp6f ;ª\Vof csf{] ;ª\Vofsf] bf]Aa/ 5 . olb ltgLx¿sf] of]u 30 eP tL ;ª\Vof¿ kTtf
nufpg'xf];\ .
(f) A / B sf] pd]/sf] cGt/ 15 jif{ 5 . olb A sf] pd]/ B sf] pd]/sf] 4 u'0ff 5 eg] ltgLx¿sf]
pd]/ slt xf]nf kTtf nufpg'x]f;\ .
(g) cfdfsf] pd]/sf] 16 efu 5f]/Lsf] pd]/ 5 . olb ltgLx¿sf] pd]/sf] cGt/ 35 jif{ eP cfdfsf]
A E A

pd]/ kTtf nufpg'xf];\ .


pTt/x¿
a. 10, 5 b. 750, 150 c. 1060, 740 d. 6, 4 e. 20, 10 f. 20, 5 g. 42yrs

gd'gf 4:
of]ukmn 45 x'g] ltg cf]6f nuftf/ cfpg] wgfTds k"0ffª\sx¿ (integers) kTtf nufpg'xf];\ .
;dfwfg M
oxfF, nuftf/ cfpg] 3gfTds k"0ff{ª\sx¿ x, x+1 / x+2 dfgf}F .
ta, k|Zgaf6,
x +(x+1) + (x+2) = 45
or, 3x+3 = 45
or, 3x = 45-3
42
or, x = 3 A

x = 14
x+1 = 14+1 = 15
x+2 = 14+2 = 16
nuftf/ cfpg] 3gfTds ltg cf]6f k"0ff{ª\sx¿ 14, 15 / 16 /x]5g\ .
144
4. cEof;sf nflu k|Zgx¿
(a) s'g} b'O{ cf]6f j|mdfut ;ª\Vofx¿sf] u'0fgkmn 156 5 eg] tL ;ª\Vofx¿ kTtf nufpg'xf];\ .
(b) s'g} b'O{ cf]6f j|mdfut lahf]/ ;ª\Vofx¿sf] u'0fg kmn 255 5 eg] tL ;ª\Vofx¿ kTtf
nufpg'xf];\ .
(c) s'g} b'O{ cf]6f j|mdfut hf]/ ;ª\Vof¿sf] u'0fgkmn 288 5 eg] tL ;ª\Vofx¿ kTtf nufpg'xf];\ .
pTt/x¿
a. 12, 13 b.15, 17 c. 16, 18

gd'gf 5:
Pp6f wgfTds ;ª\Vof / To;sf] Jo'Tj|mdsf] 16 u'0ffsf] of]ukmn 8 x'G5 eg] pSt ;ª\Vof kTtf
nufpg'xf];\ .
;dfwfg M
oxfF, pSt ;ª\Vof x dfgf}F .
ta, k|Zgaf6,
1
x+ x×16 = 8 A A

2
x +16
or, x A =8 E
A

or, x2+16 = 8x
or, x2-8x+16 = 0
or, x2 -4x-4x+16 = 0
or, x(x-4) -4(x-4) = 0
or, (x-4) (x-4) = 0
or, (x-4)2 = 0
or, (x-4) = 0
x=4
pSt ;ª\Vof 4 /x]5 .
5 . cEof;sf nflu k|Zgx¿
(a) Pp6f ;ª\Vofsf] 25 u'0ff / ToxL ;ª\Vofsf] Jo'Tj|mdsf] cGt/ z"Go 5 eg] pSt ;ª\Vof kTtf
nufpg'xf];\ .
(b) 2 : 3 sf] cg'kftdf ePsf b'O{ cf]6f wgfTds ;ª\Vofx¿sf] u'0fgkmn 96 5 eg] tL ;ª\Vofx¿
kTtf nufpg'xf];\ .
(c) Pp6f ;ª\Vof To;}sf] Jo'Tj|md;Fu a/fa/ x'G5 eg] pSt ;ª\Vof kTtf nufpg'xf];\ .
(d) Pp6f ;ª\Vofsf] Jo'Tj|mdsf] 4 u'0ff ToxL ;ª\Vofsf] 9 u'0ff;Fu a/fa/ x'G5 eg] pSt ;ª\Vof kTtf
nufpg'xf];\ .
pTt/x¿
1 2
a. ±5
A E A b. 8, 12 c. ±1 d. ± 3
A E

145
nfdf] pTt/ cfpg] k|Zg ;DaGwL cEof;
4.6 o'ukt /]vLo ;dLs/0f (Simultaneous equation)
gd'gf 1 :
b'O{ cª\ssf] ;ª\Vofdf cª\sx¿sf] of]u 11 5 . pSt ;ª\Vofsf] cª\snfO{ :yfg dfg kl/jt{g
ubf{ aGg] ;ª\Vof ;'?sf] ;ª\VofeGbf 45 n] a9L x'G5 eg] ;'?sf] ;ª\Vof kTtf nufpg'xf];\ .
;dfwfg M
oxfF, b'O{ cª\s j|mdzM x / y dfgf}F .
b'O{ cª\sn] ag]sf] ;ª\Vof = 10x±y.
cª\sx¿sf] :yfgdfg kl/jt{g ubf{ aGg] ;ª\Vof = 10y±x.
ta, k|Zgsf] klxnf] ;t{cg';f/,
x+y = 11
or, y = 11- x ________(i)
k|Zgsf] bf];|f] ;t{cg';f/,
10y+x = (10x+y)+45
or, 10y+x-10x+y = 45
or, 9y - 9x = 45
or, 9(y-x) = 45
or, y-x =
or, y-x = 5
or, (11-x)-x = 5 [;dLs/0f (1) af6]
or, 11-x-x = 5
or, 11-5 = 2x
6
or, 2 = x
A E A

∴ x=3
x sf] dfg ;dLs/0f (1) df /fVbf,
y = 11- 3
∴y=8
pSt ;ª\Vof= 10x +y
= 10×3+8 = 38
pSt ;ª\Vof 38 /x]5 .

1. cEof;sf nflu k|Zgx¿


(a) b'O{ cª\sx¿ ldnL ag]sf] Pp6f ;ª\Vof 5 . tL cª\sx¿sf] of]u kmn 16 x'G5 . To; ;ª\Vofdf
18 hf]8\bf cª\sx¿sf] :yfg ablnG5 eg] ;f] ;ª\Vof kTtf nufpg'xf];\ .
(b) b'O{ cª\ssf] s'g} ;ª\Vof To;sf cª\sx¿sf] of]u kmnsf] ltg u'0ff 5 . olb ;f] ;ª\Vofdf 45
hf]8\g] xf] eg] cª\sx¿sf] :yfg ablnG5 eg] ;'?sf] ;ª\Vof kTtf nufpg'xf];\ .
(c) b'O{ cª\ssf] ;ª\Vof To;sf cª\sx¿sf] of]usf] 6 u'0ff 5 . Tof] ;ª\Vofaf6 9 36fof] eg] To;sf
cª\sx¿ plN6G5g\ . Tof] ;ª\Vof slt xf]nf <

146
(d) b'O{ cª\ssf] Pp6f ;ª\Vof To;sf cª\sx¿sf] of]usf] rf/ u'0ff 5 . olb Tof] ;ª\Vofdf 18
hf]8\of] eg] Tof] ;ª\Vofsf] ljk/Lt ;ª\Vof aG5, Tof] ;ª\Vof kTtf nufpg'xf];\ .
(e) b'O{ cª\ssf] s'g} ;ª\Vof o;sf cª\sx¿sf] of]u kmnsf] rf/ bf]Aa/eGbf 3 n] a9L 5 . Tof]
;ª\Vofdf 36 hf]8\of] eg] cª\sx¿sf] :yfg ablnG5 eg] Tof] ;ª\Vof kTtf nufpg'xf];\ .
(f) b'O{ cª\ssf] Pp6f ;ª\Vof tL cª\sx¿sf] of]usf] ltg bf]Aa/ 5 . tL cª\sx¿nfO{ pN6fP/
cfPsf] ;ª\Vofdf 9 hf]8\bf aGg] ;ª\Vof klxn]sf] ;ª\Vofsf] 3 bf]Aa/ x'G5 . Tof] ;ª\Vof kTtf
nufpg'xf];\ .
(g) Pp6f ;ª\Vof h'g 10 / 100 sf lardf k5{ . ;f] ;ª\Vof To;sf cª\sx¿sf] of]usf] 8 u'0ff 5 /
olb Tof] ;ª\Vofaf6 45 36fof] eg] Tof] ;ª\Vofsf] ljk/Lt ;ª\Vof aG5 eg] ;f] ;ª\Vof kTtf
nufpg'xf];\ .
pTt/x¿
a. 79 b. 27 c. 54 d. 24 e. 59 f. 27 g. 72
gd'gf 2:
s'g} ;ª\Vofsf] Pssf] :yfgdf /x]sf] cª\s b;sf] :yfgdf /x]sf] cª\ssf] eGbf 2 n] a9L 5 / tL
cª\sx¿sf] of]u kmnsf] t]Aa/ Tof] ;ª\Vof;Fu hf]l8of] eg] To; ;ª\Vofx¿sf] :yfg ablnG5 . ca
Tof] ;ª\Vof kTtf nufpg'xf];\ .
;dfwfg M
oxfF, Pssf] :yfgdf /x]sf] cª\s y / b;sf] :yfgdf /x]sf] cª\s x dfgf}F,
pSt cª\sn] ag]sf] ;ª\Vof=10x+y.
cª\sx¿sf] :yfg abNbf aGg] ;ª\Vof = 10y+x.
ta, k|Zgsf] klxnf] ;t{cg';f/,
y= x+2 ………………(i)
k|Zgsf] bf];|f] ;t{cg';f/,
3(x+y) + (10x+y) = 10y+x
or, 3x+3y+10x+y-10y-x = 0
or, 12x - 6y = 0
or, 6(2x-y) = 0
or, 2x-y = 0
or, y = 2x
or, x+2 = 2x [;dLs/0f (1) af6]
x=2
x sf] dfg ;dLs/0f (1) df /fVbf,
y = 2+2
y=4
pSt ;ª\Vof= 10x+y
= 10×2+4
= 24

147
2. cEof;sf nflu k|Zgx¿
(a) b'O{ cª\ssf] Pp6f ;ª\Vofdf klxnf] cª\s cf];|f] cª\seGbf 5 n] a9L 5 . olb cª\sx¿sf] :yfg
cbn abn ul/of] eg] gofF ;ª\Vof klxn]sf] ;ª\Vofsf] 83 efu;Fu a/fa/ x'G5 eg] ;'?sf] ;ª\Vof
A E A

kTtf nufpg'xf];\ .
(b) b'O{ cª\ssf] ;ª\Vofdf cª\sx¿sf] cGt/ 6 5 . olb o;sf] cª\sx¿sf :yfg abNof] eg] gofF
;ª\Vof klxn]sf] ;ª\Vofsf] 13
31 ;Fu a/fa/ x'G5 eg] ;'?sf] ;ª\Vof kTtf nufpg'xf];\ .
A E A

(c) b'O{ cf]6f ;ª\VofdWo] klxnf]nfO{ 36 ;Fu hf]8\of] eg] bf];|f] ;ª\Vofsf] 5 bf]Aa/ x'g cfpF5 . bf];|f]
;ª\VofnfO{ 36 af6 36fof] eg] klxnf] ;ª\Vofsf] 41 x'g cfpF5 . tL ;ª\Vofx¿ kTtf nufpg'xf];\ .
A E A

pTt/x¿
(a) 27 (b) 93 (c) 64, 20
gd'gf 3:
olb 5f]/fsf] pd]/sf] b'O{ u'0ff afa'sf] pd]/df hDdf ul/lbP pgLx¿sf] pd]/sf] hf]8 70 jif{ x'G5 . olb
afa'sf] pd]/sf] b'O{ u'0ff 5f]/fsf] pd]/df hf]l8lbP pgLx¿sf] pd]/sf] of]u 95 jif{ x'G5 eg] pgLx¿sf]
clxn]sf] pd]/ kTtf nufpg'xf];\ .
;dfwfg M
oxfF, afa' / 5f]/fsf] xfnsf] pd]/ x / y jif{ dfgf}F .
ta, k|Zgsf] klxnf] ;t{cg';f/,
2y+x = 70
∴ x = 70-2y .............................(i)
k|Zgsf] bf];|f] ;t{cg';f/,
2x+y = 95
or, 2 (70-2y) +y = 95 [;dLs/0f (i) af6]
or, 140-4y+y = 95
or, 140-95 = 3y
45
or, y = 3 A E A

∴ y = 15 jif{
y sf] dfg ;dLs/0f (i) df /fVbf,
2 ×15+x = 70
or, x = 70-30
∴ x = 40 jif{
∴afa' / 5f]/fsf] xfnsf] pd]/ 40 jif{ / 15 jif{ /x]5 .
3. cEof;sf nflu k|Zgx¿
(a) ltg jif{cl3 afa' / p;sf] 5f]/fsf] pd]/sf] of]u kmn 48 jif{ lyof], ltg jif{kl5 afa'sf] pd]/
5f]/fsf] pd]/sf] ltg u'0ff k'Ug] 5 eg] xfnsf] afa' / 5f]/fsf] pd]/ kTtf nufpg'xf];\ .
(b) 2 jif{cl3 afa'sf] pd]/ 5f]/fsf] pd]/sf] gf} u'0ff lyof] . t/ 3 jif{kl5 5 u'0ff dfq x'g] 5 eg] afa'
/ 5f]/fsf] xfnsf] pd]/ kTtf nufpg'xf]];\ .

148
(c) 6 jif{cl3 Pp6f dflg;sf] pd]/ 5f]/fsf] pd]/sf] 6 u'0ff a9L lyof] . ca 4 jif{kl5 p;sf] pd]/sf]
ltg u'0ff 5f]/fsf] pd]/sf] 8 u'0ff;FUf a/fa/ x'G5 . ca pgLx¿sf] xfnsf] pd]/ kTtf
nufpg'xf];\ .
(d) Ps jif{kl5 afa'sf] pd]/ 5f]/fsf] pd]/sf] 5 u'0ff x'g] 5 . b'O{ jif{cl3 afa'sf] pd]/ 5f]/fsf] ca 4
jif{kl5 x'g] pd]/sf] 3 bf]Aa/ lyof] . pgLx¿sf] clxn]sf] pd]/ kTtf nufpg'xf];\ .
(e) cfhsf] b'O{ jif{kl5 afa'sf] pd]/ 5f]/fsf] pd]/eGbf 6 u'0ff a9L 5 . ltg jif{ klxn] afa'sf] pd]/
5f]/fsf] b'O{ jif{kl5sf] pd]/eGbf kfFr u'0ff a9L lyof] eg] afa'sf] / 5f]/fsf] pd]/ lgsfNg'xf];\ .
(f) 14 jif{cl3 cfdfsf] pd]/ 5f]/Lsf] pd]/sf] 4 u'0ff lyof] . xfnsf] cfdfsf] pd]/ 5f]/Lsf] 4 jif{ kl5
x'g] pd]/sf] b'O{ u'0ff 5 eg] cfdf / 5f]/Lsf] slt slt pd]/ xf]nf < kTtf nufpg'xf];\ .

pTt/x¿
(a) 42 yrs, 12yrs (b) 47 yrs, 7 yrs (c) 36 yrs, 11 yrs,
(d) 29 yrs, 5 yrs (e) 28 yrs., 3 yrs. (f) 58yrs., 25 yrs.
gd'gf 4:
clxn] afa'sf] pd]/ 5f]/fsf] pd]/sf] b'O{ u'0ff 5 . olb 10 jif{kl5sf] 5f]/fsf] pd]/ / 15 jif{ cl3sf]
afa'sf] pd]/ a/fa/ eP afa' / 5f]/fsf] clxn]sf] pd]/ kTtf nufpg'xf];\ .
;dfwfg M
oxfF, afa' / 5f]/fsf] clxn]sf] pd]/ x jif{ / y jif{ dfgf}F,
ta, k|Zgsf] bf];|f] ;t{cg';f/,
x = 2y _______________(1)
k|Zgsf] bf];|f] ;t{cg';f/,
y+10 = x -15
or, y + 10 = 2y-15 [;dLs/0f (1) af6]
or, 10+15 = 2y-y
∴ y = 25 jif{
y sf] dfg ;dLs/0f (1) df /fVbf,
x =2×25
∴ x= 50 jif{
∴clxn]sf] afa' / 5f]/fsf] pd]/ j|mdzM 50 jif{ / 25 jif{ /x]5 .

4. cEof;sf nflu k|Zgx¿


(a) 8 jif{cl3 5f]/Lsf] pd]/ 5f]/fsf] t]Aa/ lyof] . clxn] 5f]/Lsf] pd]/ 5f]/fsf] eGbf 4 jif{n] a9L 5 .
eg] ltgLx¿sf] xfnsf] pd]/ lgsfNg'xf];\ .
(b) kfFr jif{cl3 afa'sf] pd]/ 5f]/fsf] pd]/sf] 4 u'0ff lyof] . clxn] afa' / 5f]/fsf] pd]/ hf]8\bf 45
jif{ 5 eg] afa' / 5f]/fsf] xfnsf] pd]/ kTtf nufpg'xf];\ .
(c) 5 jif{cl3 5f]/Lsf] pd]/ 5f]/fsf] eGbf 8 jif{n] a9L lyof] . clxn] 5f]/Lsf] pd]/ 5f]/fsf] pd]/sf] 2
u'0ff dfq 5 eg] ltgLx¿sf] xfnsf] pd]/ kTtf nufpg'xf];\ .
(d) 5 jif{cl3 Pp6f dflg;sf] pd]/ 5f]/Lsf] pd]/sf] 5 u'0ff lyof] . 3 jif{kl5 p;sf] pd]/sf] 2 u'0ff
5f]/Lsf] pd]/sf] 6 u'0ff;Fu a/fa/ x'G5 . pgLx¿sf] xfnsf] pd]/ slt slt xf]nf <
149
pTt/x¿
(a) 14 yrs, 10 yrs (b) 33 yrs, 12 yrs (c) 16 yrs, 8 yrs (d) 45 yrs, 13yrs
gd'gf 5:
s'g} leGgsf] c+z x/eGbf 1 n] sd 5 . olb pSt leGgsf] c+zdf 1 / x/df 5 hf]8\of] eg] gofF leGg
1
2 a5 eg] jf:tljs leGg kTtf nufpg'xf];\ .
A E A

;dfwfg M
oxfF, pSt jf:tljs leGg xy dfgf}F, hxfF c+z x / x/ y 5 . A E A

ta, k|Zgsf] klxnf] ;t{cg';f/,


x = y+1 ……………. (1)
k|Zgsf] bf];|f] ;t{cg';f/,
x+1 1
y+5 = 2 A E A A E

or, 2x+2 = y+5


or, 2(y+1)+2 = y+5 [;dLs/0f (1) af6]
or, 2y+2+2-y = 5
y = 5-4
∴y = 1
y sf] dfg ;dLs/0f (1) df /fVbf,
x = 1+1
∴x = 2
x 2
∴y =1 A E A A E

∴pSt jf:tljs leGg 12 /x]5 . A E A

5. cEof;sf nflu k|Zgx¿


(a) Pp6f leGgsf] c+znfO{ 4 n] u'0fg u/]/ x/af6 2 36fOof] eg] glthf 2 x'G5 . olb ;f] leGgsf]
c+zdf 15 hf]8L x/nfO{ bf]Aa/ u/L 2 36fp“bf 97 x'G5 eg] pSt leGg kTtf nufpg'x]f;\ .
A E A

(b) Pp6f leGgsf] c+znfO{ 4 n] u'0fg u/]/ x/af6 2 36fOof] eg] glthf 4 x'G5 . olb ;f] leGgsf]
c+zdf 10 hf]8L x/nfO{ bf]Aa/ u/L 2 36fpFbf 54 x'G5 eg] pSt leGg kTtf nufpg'xf];\ .
A E A

(c) b'O{ hgf s]6Lsf] pd]/sf] cg'kft 5.7 5 . cf7 jif{cl3 pgLx¿sf] pd]/sf] cg'kft 7:13 lyof] eg]
pgLx¿sf] xfnsf] pd]/ kTtf nufpg'xf];\ .
(d) A sf] pd]/sf] Ps ltxfO / B sf] pd]/sf] Ps rf}yfO hf]8\bf A sf] pd]/sf] b'O{ ltxfO x'G5 . olb
ltgLx¿sf] pd]/sf] of]u A sf] pd]/sf] b'O{ u'0ffeGbf klg 7 jif{n] a9L x'G5 eg] ltgLx¿sf] pd]/
slt xf]nf <
(e) ltg jif{ klxn] A / B sf] pd]/sf] cg'kft 4:3 lyof] . ltg jif{kl5 ltgLx¿sf] pd]/sf] cg'kft 11:
9 eP A / B sf] xfnsf] pd]/ kTtf nufpg'xf];\ .

150
pTt/x¿
3 5
(a) 8 A E A (b) 7
A E A (c) 15 yrs, 21 yrs (d) 21, 28 (e) 19yrs., 15yrs.

gd'gf: 6
Pp6f cfotsf/ rf}/sf] kl/ldlt 54 ld= 5 . o;sf] cfsf/ 36fpFbf nDafO / rf}8fO klxn]sf] nDafO
/ rf}8fOsf] j|mdzM 35 / 34 ;Fu a/fa/ x'G5 . 36]sf] cfotsf/ rf}/sf] kl/ldlt 36 ld= 5 . rp/sf]
A E A A E A

k|f/lDes nDafO / rf}8fO slt xf]nf <


;dfwfg M
cfotfsf/ rf}/sf] nDafO l / rf}8fO b dfgf}“,
k|Zgsf] klxnf] ;t{cg';f/,
2(l+b) = 54
or, l+b = 27
or, b = 27-l _________ (1)
gofF nDafO (L) = l×35 = 53 l A E A A E A

gof rf}8fO (B) = b × 43 = 34 b A E A A E A

k|Zgsf] bf];|f] ;t{cg';f/,


2(L+B) = 36
3 3 36
or, (5 l +4 b ) = 2
A E A A E A A E

3l×4+3b×5
or, A

20 = 18 E A

or, 3(4l+5b) = 360


or, 4l+5b= 120
or, 4l+5(27-l) = 120
or, 4l+135-5l = 120
or, 135-120 = l
∴ l = 15 m.
l sf] dfg ;dLs/0f (1) df /fVbf,
b = 27-l
= 27-15
= 12 m.
∴pSt rf}/sf] k|f/lDes nDafO / rf}8fO j|mdzM 15 m. / 12 m. /x]5 .

6. cEof;sf nflu k|Zgx¿


(a) Pp6f sf]7fsf] rf}8fOsf] rf/ u'0ff o;sf] nDafOsf] ltg u'0ff;“u a/fa/ 5 . olb rf}8fO 1 ld=n]
a9fO{ nDafO 1 ld=n] 36fof] eg] sf]7f juf{sf/ aGg] lyof] eg] sf]7fsf] nDafO / rf}8fO kTtf
nufpg'xf];\ .
(b) Pp6f cfotfsf/ sf]7fsf] If]qkmn 45 ju{ld6/ 5 . olb sf]7fsf] nDafO 3 ld6/ 36L / rf}8fO 1
ld6/ a9L eP sf]7f juf{sf/ x'g] lyof] eg] sf]7fsf] nDafO / rf}8fO kTtf nufpg'xf];\ .
151
pTt/x¿
(a) 8m, 6m (b) 9 m, 5m

gd'gf 7:
/fd;“u ePsf u'Rrfx¿dWo] Pp6f u'Rrf ;LtfnfO{ lb“bf b'j} hgf;“u a/fa/ ;ª\Vofdf u'Rrfx¿
x'G5 . olb ;Ltf;“u ePsf u'Rrfx¿dWo] Pp6f u'Rrf /fdnfO{ lb“bf, /fd;“u ;Ltfsf] eGbf bf]Aa/
u'Rrfx¿ x'G5 eg] ;'?df pgLx¿;“u ePsf] u'Rrfsf] ;ª\Vof kTtf nufpg'xf];\ .
;dfwfg M
;'¿df /fd;“u ePsf] u'R5f x / ;Ltf;“u ePsf] u'R5f y dfgf}“ .
ta, k|Zgsf] klxnf] ;t{cg';f/,
x-1 = Y+1
or, x= y+2 _________ (1)
k|Zgsf] bf];|f] ;t{cg';f/,
2(y-1) = (x+1)
or, x+1 = 2y-2
or, y+2+1 = 2y-2
or, 3+2 = 2y-y
∴y=5
y sf] dfg ;dLs/0f (1) df /fVbf,
x = 5+2
∴x=7
∴/fd / ;Ltf;“u ePsf u'R5fx¿ j|mdzM 7 cf]6f / 5 cf]6f /x]5g\ .

7. cEof;sf nflu k|Zgx¿


(a) Ps hgf sfdbf/n] sfd u/]sf] lbgdf ?= 30 Hofnf kfp“5 / cg'kl:yt ePsf] lbgdf ?= 6
hl/jfgf ltg{'k5{ . olb p;n] Ps dlxgfsf] cGt/df ?= 756 kfp“5 eg] ;f] dlxgf p;n] slt lbg
sfd u¥of] xf]nf <
(b) Ps hgf ;fx';“u b'O{ lsl;dsf] lrof 5 . klxnf] y/Lsf] lrof k|lt ls=u|f= ?= 100 / csf{] y/Lsf]
lrof k|lt ls=u|f= ?= 90 k5{ . b'j} y/Lsf] lrof slt slt ld;fp“bf 30 ls=u|f= ldl>t lrofsf]
d"No ?= 93 k|lt ls=u|f= knf{ <
(c) k/LIffdf /fdn] Zofdn] eGbf 12 gDa/ sd kfof] . olb p;n] hlt kfPsf] lyof] To;}sf] cfwf
c¿ a9L kfPsf] eP ZofdnfO{ 11 gDa/n] lhTg] lyof] . k|To]sn] slt slt gDa/ kfP5g\, kTtf
nufpg'xf];\ .
(d) /fdn] ZofdnfO{ eGof], ltdLn] dnfO{ ltdLl;t ePsf] bfdsf] cfwf lbof} eg] dl;t ?= 100 x'g]
5 . Zofdn] eGof], ltdLn] dnfO{ cfkm"l;t ePsf] bfdsf] Ps ltxfO dfTt lbof} eg] dl;t ?= 100
x'g] 5 . k|To]sl;t slt slt /x]5 <

pTt/x¿
(a) 26 (b) 9kg, 21kg (c) 46, 58 (d) Rs. 60, Rs. 80

152
s]xL pRr bIftf ljsf;sf nflu k|Zgx¿
(a) s]xL /sd s]xL s]6fnfO{ a/fa/ u/L af“l8of] . olb b'O{ hgf s]6f a9L ePsf] eP k|To]sn] ?= 10
sd kfp“y] / olb b'O{ s]6f sd ePsf] eP k|To]sn] ?= 15 a9L kfp“y] eg] s]6fx¿sf] ;ª\Vof /
k|To]sn] kfPsf] /sd kTtf nufpg'xf];\ .
[Hints: Let the sum of money be x & no. of boys be y.
x x
y+2 = y - 10
A E A A E 10y2 + 20y - 2x = 0 ..................... (i)
A

x x
y-2 = y + 15
A E A A 15y2 - 2x - 30y .............................(ii)
E A

x
Subtracted (i) & (ii) y = 10 & x = 600 ∴Each get = y = Rs. 60] A E A

(b) afa' / 5f]/fsf] clxn]sf] of]ukmn 82 jif{ 5 . ha afa' clxn]sf] 5f]/fsf] pd]/ hltsf lyP
ltgLx¿sf] pd]/sf] of]ukmn 46 jif{sf] lyof] eg] clxn]sf] afa' / 5f]/fsf] pd]/ kTtf
nufpg'xf];\ .
(c) afa' / 5f]/fsf] clxn]sf] pd]/sf] of]ukmn 73 jif{ 5 . b'j} hgf af“lr/x“bf 5f]/fsf] pd]/ clxn]
afa'sf] pd]/ hlTts} x'g] a]nf ltgLx¿sf] pd]/sf] of]ukmn 107 jif{ x'g] 5 eg] clxn]sf]
ltgLx¿sf] pd]/ kTtf nufpg'xf];\ .
[Hints Let the present age of father & son be x & y respectively.
x + y = 73 ......... (i) {x + (x - y)} + {y + (x - y)} = 107
∴ 3x - y = 107 ..................(ii) Solving (i) & (ii) x = 45 & y = 28]
pTt/x¿
(a) 10, Rs. 60 (b) 50 yrs, 32 yrs (c) 45 yrs, 28 yrs

153
4.7 ju{ ;dLs/0f (Quadratic Equations):

gd'gf 1 :
b'O{ cª\sx¿sf] ;ª\Vof df cª\sx¿sf] u'0fg kmn 18 / of]ukmn 9 5 eg] Tof] ;ª\Vof kTtf
nufpg'xf];\ . (If two digits number, the product of the digits is 18 and their sum is 9. Find the
number.)
;dfwfg
b'O{ cª\sx¿ x / y dfgf}F
b'O{ cª\sn] ag]sf] ;ª\Vof= 10x+y
ta, k|Zgsf] klxnf] ;t{cg';f/,
x ×y = 18
y= _________ (1)
k|Zgsf] bf];|f] ;t{cg';f/,
x+y = 9
18
or, x+ x = 9
A E [;dLs/0f (1) af6]
A

2
x +18
or, x = 9
A E A

or, x2+18 = 9x
or, x2-9x+18 = 0
or, x2-6x-3x+18 =0
or, x(x-6) -3 (x-6) =0
or, (x-6)-3(x-6) = 0
or, (x-6) (x-3) = 0
Either,
x-6 =0
∴ x= 6
or, x-3 = 0
∴x=3
x sf] dfg ;dLs/0f (1) df /fVbf,
18
x=6 x'“bf, y= 6 = 3 A E A

∴x=6/y=3
∴pSt ;ª\Vof= 10x+y = 10×6+3 = 63
k'g, x= 3 x'“bf, y =18
3 =6 A E A

∴x=3/ y=6
∴pSt ;ª\Vof=10x +y = 10×3+6 = 36
∴pSt ;ª\Vof= 63 jf 36 /x]5 .

154
1. cEof;sf nflu k|Zgx¿
(a) b'O{ ;ª\Vofsf] of]u kmn 7 / u'0fg kmn 12 5 eg] tL ;ª\Vofx¿ kTtf nufpg'xf];\ .
(b) b'O{ cª\ssf] Pp6f ;ª\Vof To;sf cª\sx¿sf] of]usf] rf/ u'0ff 5 . olb
cª\sx¿sf] u'0fg kmn 8 eP Tof] ;ª\Vof kTtf nufpg'xf];\ .
(c) b'O{ cf]6f wgfTds ;ª\Vofx¿dWo] 7'nf] ;ª\Vof ;fgf] ;ª\Vofsf] bf]Aa/eGbf 2 n] a9L 5 /
ltgLx¿sf] u'0fg kmn 12 5 eg] tL ;ª\Vofx¿ kTtf nufpg'xf];\ .
pTt/x¿
(a) 3, 4 (b) 24 (c) 2, 6

gd'gf 2:
b'O{ cf]6f ;ª\Vofx¿sf] of]u kmn 21 5 / tL ;ª\Vofx¿sf] ju{sf] of]u 261 5 eg] tL ;ª\Vofx¿
lgsfNg'x]f;\ .
;dfwfg
b'O{ cf]6f ;ª\Vof¿ j|mdzM x / y dfgf}F,
ta, k|Zgsf] klxnf] ;t{cg';f/,
x +y = 21
or, y = 21- x _________(1)
k|Zgsf] bf];|f] ;t{cg';f/,
+ = 261,
or, +(21- x)2 = 261
or, +(21)2-2×21 × x + 1
or, +441-42x + -261 = 0
or, 2 -42x +180 = 0
or, 2( -21x +90) = 0
or, -21x +90 = 0
or, -15x -6x +90 = 0
or, x (x -15)-6(x -15) = 0
or, (x -15_) (x -6) = 0
Either,
x -15 = 0
∴ x = 15
x = 15 /fVbf,
y = 21-15 = 6
∴ x = 15 / y = 6
or, x -6 = 0
x=6
x sf] dfg ;dLs/0f (1) df /fVbf,
x = 6 /fVbf, y = 21-6 = 15
∴ x = 6 / y = 15

155
∴pSt b'O{ ;ª\Vof¿ j|mdzM 15 / 6 jf 6 / 15 /x]5g\ .

2. cEof;sf nflu k|Zgx¿


(a) b'O{ ;ª\Vofx¿sf] of]u 16 5 / ltgLx¿sf] ju{sf] hf]8 130 5 eg] tL ;ªVofx¿ kTtf
nufpg'xf];\ .
The sum of two numbers is 16 and the sum of their sTtuares is 130. Find the numbers. [059A2]
(b) b'O{ cf]6f j|mdfut hf]/ ;ª\Vofx¿ kTtf nufpg'xf];\ h;sf ju{x¿sf] of]u kmn 340 5 .
Find two consecutive even numbers of which the sTtuares have the sum 340.
(c) b'O{ cf]6f nuftf/ cfpg] wgfTds k"0ff{ª\sx¿sf] u'0fg kmn 156 x'G5 eg] tL k"0ff{{ª\sx¿ s'g
s'g x'g\ <
The product of two consecutive positive integers is 156. Find the two numbers.
(d) nuftf/ cfpg] b'O{ cf]6f wgfTds lahf]/ ;ª\Vofx¿sf] u'0fg kmn 255 5 eg] tL ;ª\Vofx¿ kTtf
nufpg'xf];\ .
(The product of two consecutive positive odd numbers is 255. Find the two odd numbers.)
(e) Pskl5 csf{] cfpg] b'O{ cf]6f wgfTds hf]/ ;ª\Vofx¿sf] u'0fgkmn 288 5 eg] tL ;ª\Vofx¿
kTtf nufpg'xf];\ .
The product of two consecutive positive even numbers is 288. Find the number.
(f) b'O{ cf]6f wgfTds ;ª\Vofsf] cGt/ 3 5 . olb tL ;ª\Vofsf ju{x¿sf] of]u kmn 89 eP tL
;ª\Vofx¿ kTtf nufpg'xf];\ .
The difference between two positive numbers is 3. Find the numbers if the sum of their sttuares is
89.
pTt/x¿
(a) 7, 9 (b) 12, 14 (c)12, 13
(d) 15, 17 (e) 16, 18 (f) 5, 8
gd'gf 3:
b'O{ cª\ssf] ;ª\Vofdf cª\sx¿sf] u'0fg kmn 18 5 . pSt ;ª\Vofsf] cª\sx¿sf] :yfgdfg kl/jt{g
ubf{ aGg] ;ª\Vof ;'?sf] ;ª\VofeGbf 27 n] a9L x'G5 eg] ;'?sf] ;ª\Vof kTtf nufpg'xf];\ .
;dfwfg
b'O{ cª\sx¿ j|mdzM X / Y dfgf}+
b'O{ cª\sx¿n] ag]sf ;ª\Vof= 10x+y
:yfgdf kl/jt{g ubf{ aGg] ;ª\Vof= 10y+X
ta, k|Zgsf] klxnf] ;t{cg';f/,
x × y=18
or y = ………………(1)
ta, k|Zgsf] bf];|f] ;t{cg';f/
or, 10y+ x =(10 x +y)+27
or, 10y+ x -10-y=27
or, 9y-9 x =27

156
or, 9(y- x)=27
or, y- x =3
or,

or,
or, 18 - x 2= 3x
or,0 = x 2+3x -18
or, x 2+6x-2x -18=0
or, x (x +6)-3(x + 6)=0
or, (x +6) (x -3) =0
Either, x +6 =0 or x -3=0
x = -6( x'“b}g) x =3
x sf] dfg ;=s= (1) df /fVbf
y= =6

x = 3 / y=6
pSt ;ª\Vof =10x-y =10 × 3 +6 =36

3. cEof;sf nflu k|Zgx¿


(a) b'O{ cª\ssf] Pp6f ;ª\Vofdf cª\sx¿sf] u'0fg kmn 18 5 . pSt ;ª\Vofaf6 63 36fp“bf ;f]
;ª\Vofsf cª\sx¿ ablnG5g\ eg] ;ª\Vof kTtf nufpg'xf];\ .
(b) b'O{ cª\sx¿sf] ;ª\Vof df cª\sx¿sf] u'0fg kmn 24 5 . olb Tof] ;ª\Vofdf 45 hf]l8of] eg]
;ª\Vof¿sf] cª\sx¿sf] :yfg kl/jt{g x'G5 eg] Tof] ;ª\Vof kTTff nufpg'xf];\ .
(c) b'O{ cª\sx¿sf] Pp6f ;ª\Vofdf cª\sx¿sf] u'0fg kmn 8 5 . To; ;ª\Vofdf 18 yKbf ;f]
;ª\Vofsf cª\sxsf] :yfg ablnG5 eg] pSt ;ª\Vof kTtf nufpg'xf];\ .
(d) b'O{ cª\sx¿ ldnL ag]sf] Pp6f ;ª\Vof 5 . tL cª\sx¿sf] of]u kmn 16 x'G5 To; ;ª\Vofdf 18
36fp“bf cª\sx¿sf] :yfg ablnG5 eg] ;f] ;ª\Vof kTtf nufpg'xf];\ .
(e) Pp6f ;ª\Vof b'O{ cª\sn] ag]sf] 5 h;sf] of]u kmn 9 x'G5 olb ;f] ;ª\Vofsf] 3 u'0ff pSt
;ª\Vofsf] :yfg abNbf aGg] ;ª\Vofsf] 8 u'0ff;“u a/fa/ x'G5 eg] ;f] ;ª\Vof kTtf nufpg'xf];\ .

pTt/x¿
(a) 92 (b) 38 (c) 24 (d) 97 (e) 72

gd'gf 4:
(a) xfn afa' / 5f]/fsf] pd]/ j|mdzM 35 / 12 jif{ 5 . slt jif{cl3 ltgLx¿sf] pd]/sf] u'0fg kmn
210 lyof] kTtf nufpg'xf];\ .
;dfwfg M
pTt/, dfgf“}= x jif{cl3 afa' / 5f]/fsf] pd]/sf] u'0fg kmn 210 lyof] elg dfgf}+ .
ta, k|Zgsf] cg';f/,
157
(35- x) (12- x) =210
or, 420-35x -12x + x 2-210=0
or, x 2-47x +210=0
or, x 2 -(42+5)x +210=0
or, x 2 -42x -5x +210=0
or, x (x -42)-5(x -42)=0
or, (x -42) (x -5)=0
Either, x -42=0 or, x - 5=0
x =42 x =5
x=42 jif{ x'“b}g lsgsL 42 jif{cl3 afa' g} hGd]sf lyPgg\ .
5 jif{cl3 plgx¿sf] pd]/sf] u'0fg kmn 210 x'G5 .
4. cEof;sf nflu k|Zgx¿
(a) b'O{ lbbL alxgLsf] xfnsf] pd]/sf] u'0fg kmn 150 5 . 5 jif{cl3 lbbLsf] pd]/ alxgLsf] pd]/sf]
bf]Aa/ eP ltgLx¿sf] xfnsf] pd]/ kTtf nufpg'xf];\ .
(b) bfh' / efOsf] pd]/sf] cGt/ 4 jif{ 5 / ltgLx¿sf] pd]/sf] u'0fg kmn 221 x'G5 eg] tL b'O{
efOsf] pd/] kTtf nfupg'xf];\ .
(c) ;Ltfsf] 4 jif{ cufl8 / 8 jif{kl5sf pd]/x¿sf] u'0fg kmn 28 eP pgsf] clxn]sf] pd]/ kTtf
nufpg'xf];\ .
(d) b'O{ bfh' efOsf] xfnsf] pd]/sf] u'0fg kmn 160 5 . 4 jif{cl3 bfh'sf] pd]/ efOsf] pd]/sf] bf]Aa/
eP ltgLx¿sf] xfnsf] pd]/ kTtf nufpg'xf];\ .
(e) Ps jif{cl3 Pp6f dflg; cfkm\gf] 5f]/feGbf 8 u'0ffn] h]7f] lyof] . clxn] p;sf] pd]/ 5f]/fsf]
pd]/sf] ju{;“u a/fa/ 5 . ltgLx¿sf] xfnsf] pd]/ kTtf nufpg'xf];\ .
(f) afa' / 5f]/fsf] clxn]sf] pd]/ j|mdzM 37 / 8 slt jif{ klxn] ltgLx¿sf] pd]/sf] u'0fg kmn 96
lyof] xf]nf <
pTt/x¿
(a) 15 yrs., 10 yrs. (b) 16 yrs, 10 yrs. (c) 6 yrs,
(d) 16 yrs, 10 yrs. (e) 7 yrs, 49 yrs. (f) 5 yrs.
gd'gf 5:
Pp6f cfotfsf/ hUufsf] If]qkmn 660 ju{ ld6/ / o;sf] kl/ldlt 104 eP hUufsf] nDafO / rf}8fO
lgsfNg'xf];\ .
;dfwfg M
cfotsf/ hUufsf] nDafO l / rf}8fO b dfgf}“ .
ta, k|Zgsf] klxnf] ;t{cg';f/,
l × b =660
or, b = (1)
ta, k|Zgsf] bf];|f] ;t{cg';f/,

158
or

2 sf] dfg ;=s= (1) df /fVbf


/fVbf
or
k'gM /fVbf,
/
x'g ;Sb}g lsgls nDafOeGbf rf}8fO nfdf] x'g ;Sb}g .
pSt cfotsf/ hUufsf] nDafO / rf}8fO j|mdzM / /x]5 .

5. cEof;sf nflu k|Zgx¿


(a) olb Pp6f cfotsf/ rf}/sf] kl/ldlt 36 ld6/ / If]qkmn 77 ju{ ld6/ eP ;f] rf}/sf] nDafO /
rf}8fO kTtf nufpg'xf];\ .
(b) Pp6f sf]7fsf] nDafO To; sf]7fsf] rf}8fOeGbf 2 ld= nfdf] 5 . olb sf]7fsf] If]qkmn 63 ju{ ld=
5 eg] sf]7fsf] nDafO / rf}8fO kTtf nufpg'xf];\ .
(c) Pp6f cfotfsf/ hUufsf] rf}8fO nDafOeGbf 3 ld=eGbf sd 5 . olb pSt hUufsf] If]qkmn 88
ju{ ld= eP kl/ldlt kTtf nufpg'xf];\ .
(d) Pp6f sf]7fsf] If]qkmn 45 ju{ ld= 5 . olb nDafOdf 3 ld6/ sd / rf}8fOdf 1 ld6/ a9fp“bf
ju{ aG5 eg] pSt sf]7fsf] nDafO / rf}8fO kTtf nufpg'xf];\ .
(e) Pp6f sf]7fsf] If]qkmn 28 ju{ ld6/ 5 . olb nDafOdf 1 ld6/ sd / rf}8fOdf 2 ld6/ a9fp“bf
ju{ aG5 eg] pSt sf]7fsf] nDafO / rf}8fO kTtf nufpg'xf];\ .
(f) olb Pp6f cfotsf/ hUufsf] kl/ldlt 104 ld6/ / If]qkmn 640 ju{ ld6/ 5 eg] o;sf] nDafO
/ rf}8fO kTtf nufpg'xf];\ .
pTt/x¿
(a) 11m, 7m (b) 9m, 7 m (c) 38 m
(d) 9m, 5m (e) 7m, 4m (f) 32m, 20m

159
gd'gf 6:
Pp6f ;dsf]0f lqe'hsf] s0f{ e'hf 29 ;]=ld 5 / c¿ b'O{ e'hfx¿sf] km/s 1 ;]=ld= 5 eg] tL e'hfx¿
kTtf nufpg'xf];\ .
;dfwfg M
oxfF, ;dsf]0f lqe'hsf] s0f{ h / cGo b'O{ e'hfx¿ j|mdzM p / b 5g\ egL dfgf}F .
ta, h = 29 cm. / P-b = 1 cm.
or, p = (l+b) cm. ______________(1)
xfdLnfO{ yfxf 5,
+ = [kfOyfuf]/; ;fWocg';f/]
or, (l+b)2+b2=(29)2-840=0
or, 2b2 +2b - 840=0
or, 2(b2+b-420)=0
or, b2+b-420=0
or, b2 +21b-20b-420=0
or, b (b+21)-20(b+21)=0
or, (b+21) (b-20) =0
Either, or,
b+21=0 b-20=0
b = - 21cm x“'b}g b=20cm
dfg ;=s=(1) df /fVbf
p = 1+20 = 21cm
pSt b'O{ e'hfx¿ 21cm / 20cm /x]5g\ .
6. cEof;sf nflu k|Zgx?
(a) Pp6f ;dsf]0f lqe'hsf] s0f{ e'hf 5f]6f] e'hfsf] bf]Aa/eGbf klg 6 ld= nfdf] 5 . olb t];|f] e'hf
s0f{eGbf 2 ld6/ 5f]6f] 5 eg] lqe'hsf e'hfx¿ kTtf nufpg'xf];\ .
(b) Pp6f ;dsf]0fL lqe'hsf] s0f{ To;sf] cfwf/eGbf 2 cm a9L / prfOsf] bf]Aa/eGbf 1 cm a9L
5 eg] lqe'hsf k|To]s e'hf kTtf nufpg'xf];\ .
(c) Pp6f ;dsf]0fL lqe'hsf ;dsf]0f agfpg] e'hfx¿ To;sf] s0f{eGbf 5 cm /10 cm j|mdzM sd
5g\ eg] lqe'hsf e'hfx¿sf] nDafO kTtf nufpg'xf];\ .
pTt/x¿
(a) 10 cm, 24 cm, 26 cm (b) 8cm, 15cm, 17cm (c) 25cm, 20cm, 15cm

160
If]q M 5 Hofldlt (Geometry)
If]q kl/ro
dfWolds lzIff kf7\oj|md 2064 / ljlzi6Ls/0f tflnsf 2065 n] sIff 10 sf] clgjfo{ ul0ft
ljifosf] Hofldlt If]qdf lgDgfg';f/sf ljifo j:t', k/LIffsf nflu ;+1fgfTds If]qcg';f/sf k|Zg
;ª\Vof / cª\s ef/sf] Joj:yf u/]sf] 5 .
j|m ljifoj:t'÷;+1fg If]q 1fg l;k hDd l;k ;d:o hDd s'n If]qut
; / f f f hDdf s'n
af]w cª\ ;dfw cª\ cª\s hDdf
s fg s cª\s
5 5f]6f pTt/ nfdf] pTt/ 24
cfpg] cfpg] k|Zg
5. lqe'h / rt'e'{hsf] 1 2 1 4 6
1 If]qkmn
5. j[Tt / ;f];DaGwL 1 1 4 1 4 8
2 ;fWo / ltgsf] k|of]u
5. :kz{ /]vf 1 2
3
5. rt'e'{hsf] If]qkmn;Fu 1 4 4
4 a/fa/ x'g] lqe'hsf]
/rgf
5. k|of]ufTds k/LIf0f u/L 1 4 4
5 l;b\w ug]{

5.1 M lqe'h / rt'e'{hsf If]qkmn


!= kl/ro
o; kf7df Pp6} cfwf/df / pxL ;dfgfGt/ /]vfx¿ lar aGg] lqe'h tyf ;dfgfGt/ rt'e{'hx¿sf]
If]qkmnsf ;DaGwsf af/]df rrf{ ul/Psf] 5 . P;Pn;L k/LIffdf o; kf7af6 Pp6f 5f]6f] pTt/
cfpg] / Pp6f nfdf] pTt/ cfpg] u/L hDdf b'O{ cf]6f k|Zgx¿ ;f]lwg] s'/f ljlzi6Ls/0f tflnsfdf
pNn]v ul/Psf] 5 .
@= cfwf/e"t tYo tyf ;"qx?
!= lqe'hsf] If]qkmn = ½ × cfwf/ × prfO
@= ;dfgfGt/ rt'e'{hsf] If]qkmn = cfwf/ × prfO
#= ;dafx' rt'{e'hsf] If]qkmn = ½ ljs0f{x¿sf] u'0fg kmn
$= ju{sf] If]qkmn = -e'hf_2 = ½ -ljs0f{_2
161
%= cfotsf] If]qkmn = nDafO × rf}8fO
^= Pp6} jf a/fa/ cfwf/df / pxL ;dfgfGt/ /]vfx¿ lar ag]sf lqe'hx¿sf If]qkmn a/fa/
x'G5g\ .
&= Pp6} jf a/fa/ cfwf/df / pxL ;dfgfGt/ /]vfx¿ larsf ;dfgfGt/ rt'e{'hx¿sf
If]qkmnx¿ a/fa/ x'G5g\\ .
*= Pp6} jf a/fa/ cfwf/df / pxL ;dfgfGt/ /]vfx¿ lar ag]sf lqe'hsf] If]qkmn ;dfgfGt/
rt'e{'hsf] If]qkmnsf] cfwf x'G5 .
(= ;dfgfGt/ rt'e{'hsf] ljs0f{n] ;f] ;dfgfGt/ rt'e{'hnfO{ cfwf u5{ .
!)= lqe'hsf] dWo /]vfn] ;f] lqe'hnfO{ cfwf ub{5 .
!!= Pp6} cfwf/ / o;sf] Ps}lt/sf lqe'hx¿sf If]qkmn a/fa/ 5g\ eg] tL lqe'hx¿ pxL
;dfgfGt/ /]vfx¿ lar kb{5g\ .
!@= ;dnDa rt'e{'hsf] dWo /]vf cfwf/x¿;Fu ;dfgfGt/ x'G5g\ .
!#= ;dnDa rt'e'{hsf] dWo /]vfn] ljs0f{x¿nfO{ ;dlåefhg ub{5g\ .
!$= lqe'hsf] s'g} b'O{ e'hfx¿sf dWo ljGb'x¿ hf]8\g] /]vf v08 t];|f] e'hf;Fu ;dfgfGt/ eOsg
o;sf] cfwf klg x'G5 .
#= ljz]if Wofg lbg'kg{] s'/fx?
!= lqe'hsf] prfO eGgfn] s'g} zLif{ljGb'af6 To;sf] ;Dd'v e'hfdf lvlrPsf] nDa / ;Dd'v
e'hfnfO{ cfwf/ eg]/ a'‰g'k5{ .
h:t} M
A
A
A
b
F
Eb h

h
B D C
cfwf/ B C B
B
A A

h h

B b C D B b C
-oxfF lqe'h ABC sf] cfwf/ BC / prfO AD x'G5 ._
@= ;dfgfGt/ rt'e'{hsf] s'g} zLif{ ljGb'af6 ;Dd'v e'hfdf lvlrPsf] nDa -prfO_ / h'g e'hfdf
nDa lvlrPsf] xf] To;
e'hfnfO{ cfwf/ eg]/ a'‰g'k5{ .

162
A D
A D
oxfF,
h F
h
b
AE = prfO = h
h:t}M B b E C B C M
E
A D
h

A D
h b

B C E
b B C

prfO = DE
cfwf/ = AB
oxfF, ;dfgfgt/ rt'e'{h ABCD sf] prfO DE / cfwf/ BC xf] .

#= lqe'hsf] s'g} zLif{ ljGb' / To;sf] ;Dd'v e'hfsf] dWo ljGb' hf]8\g] /]vf v08nfO{ dWo /]vf
elgG5 . h:t} M
A A A

M
M

B M C B CB C

To;}n], ∆ABM = ∆ACM = ½ ∆ABC / ∆ABM = ∆BCM ;fy} CM dWo /]vf xf] .
∴ ∆ACM = ∆BCM x'G5 .

163
$= ju{, ;dafx' rt'e{'h / cfoft ;dfgfGt/ rt'e{'hsf] k|sf/x¿ x'g\ .
h:t} M

;dfgfgG
t/

cfoft ju{ ;dafx', rt[e{'h

%= ;dfgfGt/ /]vfx¿ ;dfg b'/Ldf x'G5g\ .


h:t} M AB..CD 5g\ eg] EF = GH = IJ x'G5g\ .
E G I
A B

C D
F H J
^= Pshf]8f ljkl/t e'hfx¿ ;dfgfGt/ ePsf] rt'e{'h ;dnDa rt'e{'h xf] . ;dfgfGt/ e'hfx¿
cfwf/x¿ / ;dfgfGt/ gePsf e'hfx¿nfO{ kfb elgG5 . To:t} kfbx¿sf hf]8\g] /]vf dWo/]vf
xf] . h:t} M kfbx¿sf dWo ljGb'x¿ hf]8\g] AB / CD cfwf/x¿ tyf AC / BD kfbx¿ x'g\ . To:t}
XY dWo/]vf xf] .
A cfwf/ B
kb kb
X Y
dWo /]vf
C D
cfwf/
$= 5f]6f] gd'gf k|Zgf]Tt/ / cEof;
A
gd'gf ! M F D
lbOPsf] lrqdf ABCD Pp6f ;dfgfGt/ E
rt'e{'h / AE ⊥ CD 5g\ . olb ∆FBC sf]
If]qkmn 24 ju{ ;]=ld= / CD = 8 ;]=ld= 5g\ B C
eg] ;dfgfGt/ rt'e'{hsf] prfO AE sf] dfg kTtf nufpg'xf];\ .
;dfwfg M
oxfF, ABCD = 2 × ∆FBC x'G5 . -Pp6} cfwf/ BC / pxL ;dfgfGt/ /]vfx¿ BC / FD
= 2× 24 lar /x]sf] lqe'h / ;dfgfGt/ rt'e'{hsf] If]qkmnsf] ;DaGw_
= 48 cm2
164
ca, ABCD = CD × AE ;dfgfGt/ rt'e'{h sf] If]qkmn = cfwf/ × prfO
or, 48 = 8 × AE
∴ AE = 6 cm.
cEof;sf nflu k|Zgx¿ M C
!= lbOPsf] lrqdf ABCD sf] e'hf D df E nDa 5 . olb AD = 5cm / D F

CE = 8cm 5 eg] ∆ABF sf] If]qkmn lgsfNg'xf];\ .


E

A B

A
@= lbOPsf] lrqdf TR // PQ, PS//QR / SU⊥QR F D
5g\ . olb ∆TPQ sf] If]qkmn 20cm2 / SU = 8cm eP QR sf] E
gfk kTtf nufpg'xf];\ .
B C
A E
D
#= lbOPsf] lrqdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] . olb BE =
F
12cm. / nDa CF = 6cm. eP ABCD sf] If]qkmn slt xf]nf < kTtf
nufpg'xf];\ . B C

gd'gf k|Zg @ M P S
lbOPsf] lrqdf PQRS Pp6f ;dafx' rt'e{'h xf] . olb PR=9cm. / QS=6cm.
5g\ eg] ∆PTS sf] If]qkmn lgsfNg'xf];\ .
T Q R
;dfwfg M
oxfF, ;dafx' rt'e{'h PQRS = ½ PR × QS
-;dafx' rt'e{'hsf] If]qkmn = ½ ljs0f{x¿sf] u'0fgkmn_
= 27cm2 -Pp6} cfwf/ PS / pxL ;dfgfGt/
ca, ∆PTS = ½× PQRS, /]vfx¿ PS / TR larsf] lqe'h /
= 13.5cm2 ;=r=sf] ;DaGwaf6 _

cEof;sf nflu k|Zgx¿ M


A D
E
!= lbOPsf] lrqdf ABCD Pp6f ju{ xf] . olb ljs0f{ AC = 10 2 cm
5 eg] ∆BCE sf] If]qkmn lgsfNg'xf];\ .

B C

165
A D
@= lbOPsf] lrqdf AD//BE / AB=BC=CD=DA 5g\ . AC = 6cm. / BD =
8cm. eP ∆ADE sf] If]qkmn kTtf nufpg'xf];\ .
B C E

U S
#= lrqdf PQRS Pp6f ju{ xf] / QRTU Pp6f ;dfgfgt/ rt'e'{h xf] . P T
olb ljs0f{ QS = 10cm. eP ;dfgfGt/ rt'e'{h QRTU sf] If]qkmn slt
xf]nf < kTtf nufpg'xf];\ .

Q R
gd'gf k|Zg # M
A
lbOPsf] lrqdf AB sf] dWo ljGb' D / DE⊥BC 5g\ . olb ∆ABC sf] If]qkmn
120cm2 / BC = 12cm. eP DE sf] nDafO lgsfNg'xf];\ .
;dfwfg M D
oxfF, DC hf]l8Psf] 5 .
ca, ∆BCD = ½ ∆ABC -dWo /]vf DC n] ∆ABC nfO{ cfwf ug{] ePsfn]_
= ½×120 B E C

= 60cm2
km]l/, ∆BCD = ½ BC × DE -lqe'hsf] If]qkmn = ½ cfwf/ ×× prfO]_
or, 60 = ½×12×DE
∴ DE = 10cm
.
P

cEof;sf nflu k|Zgx¿ M S

!= lbOPsf] lrqdf PS = SR / ST ⊥ QR 5g\ . olb QR = 15cm / ST = 5cm.eP


Q R
∆PQR sf] If]qkmn kTtf nufpg'xf];\ . T

@= lbOPsf] lrqdf BC sf] dWo ljGb' D af6 AB df nDa DE lvlrPsf] 5 . E


olb AB = 10cm. / ∆ABC sf] If]qkmn 40cm2 eP DE sf] gfk lgsfNg'xf];\ .
B D C
#= lbOPsf] lrqdf MNOP Pp6f ;dfgfGt/ rt'e'{h xf] / MN sf] dWo ljGb'
A xf] . olb ∆AON sf] If]qkmn 15cm2 5 eg] MNOP sf] If]qkmn
M P
lgsfNg'xf];\ .
A

N O

166
gd'gf k|Zg $ M
lbOPsf] lrqdf AC//DE / BC=CE 5g\ . olb ∆ACD sf] If]qkmn 20cm2 eP A D

rt'e{'h ABCD sf] If]qkmn lgsfNg'xf];\ .


;dfwfg M
oxfF, ∆ACE = ∆ACD (Pp6} cfwf/ AC / pxL ;dfgfGt/ /]vfx¿ AC / DE B C
E
larsf lqe'hx¿_]
∴ ∆ACE = 20cm2
km]l/, ∆ABC = ∆ACE -dWo/]vf AC n] ∆ABE nfO{ cfwf ug{] ePsf]n] ._
∴ ∆ABC = 20cm 2

To;}n], rt'e{'h ABCD sf] If]qkmn = ∆ABC + ∆ACD


= 20 + 20
= 40cm2

cEof;sf nflu k|Zgx¿ A D


!= lbOPsf] lrqdf AC//DE / BC=CE 5g\ .
olb ∆ABC = 25cm2 eP rt'e{'h ABCD sf] If]qkmn lgsfNg'xf];\ .
E
B C
P S
@= lbOPsf] lrqdf PT//SQ / TQ=QR 5g\ . olb ∆PQS sf] If]qkmn 40cm2
eP ∆RST sf] If]qkmn kTtf nufpg'xf];\ .
T Q R
E
#= lbOPsf] lrqdf ABCD Pp6f ;dfgfGt/ rt'e{'h xf] . EC sf] dWo ljGb' F
xf] . olb ∆BEF sf] If]qkmn 15cm2 eP ABCD sf] If]qkmn slt xf]nf A F D
< kTtf nufpg'xf];\ .

B C
yk cEof;sf nflu k|Zgx¿ M C E D
!= lbOPsf] lrqdf AB//CD / AE//BD 5g\ . olb ∆BDE sf] If]qkmn 16cm2
5 eg] ∆ABC sf] If]qkmn slt xf]nf < kTtf nufpg'xf];\ .
A B
@= lbOPsf] lrqdf, PQ//TR / PS//QR 5g\ . olb ∆PST sf] If]qkmn 25cm2
/ ;=n=r= PQRT sf] If]qkmn 105cm2 5 eg] ∆PQT sf] If]qkmn T S R
lgsfNg'xf];\ .

P Q

167
E D C

#= lbOPsf] lrqdf EC//AB, AD //BC / AB sf] dWo ljGb' M 5g\ . olb


ABCD sf] If]qkmn 80cm2 5 eg] ∆AME sf] If]qkmn kTtf nufpg'xf];\ .
A B
M
$= lrqdf ABCD Pp6f ju{ xf] . AD nfO{ E ;Dd nDJofOPsf] 5 . olb ∆BCE
sf] If]qkmn 25cm2 5eg] ljs0f{ AC sf] nDafO kTtf nufpg'xf];\ . A D E

%= lbOPsf] lrqdf ABCD sf] e'hf AD sf] dWo ljGb' M af6 CD df nDa
MN lvlrPsf] 5 . olb CD = 8cm. / N=4cm 5 eg] ∆BAM sf] If]qkmn B C
/ ABCD sf] If]qkmn kTtf nufpg'xf];\ .
A M D

N
nfdf] gd'gf k|Zgf]Tt/ / cEof;
C
gd'gf ! T
B
U S R
lbOPsf] lrqdf Pp6} cfwf/ PQ / pxL ;dfgfGt/ /]vfx¿ PQ / TR
lar ;dfgfGt/ rt'e{'hx¿ PQRS / PQUT 5g\ .
k|dfl0ft ug{'xf];\ M
i) ∆PST ≅ ∆QRU
P Q
ii) PQRS sf] If]qkmn = P QUT sf] If]qkmn
k|df0fM
tYox¿ sf/0fx¿
1. ∆PST / ∆QRU df 1.
i) PS = QR i) PQRS sf ;Ddv' e'hfx¿ ePsfn] .
ii) ∠PST = ∠QRU ii) ;dfgfGt/ /]vfx¿ PS / QR df ag]sf
;ª\ut sf]0fx¿ ePsfn] .
iii) ∠PTS = ∠QUR iii) ;ª\ut sf]0fx¿ M PT//QU ePsfn] .
2. ∆PST ≅ ∆QUR 2. e'=sf]=sf]= tYocg';f/ .
3. ∆PST = ∆QRU 3. cg'¿k lqe'hx¿sf If]qkmn a/fa/ x'g]
ePsfn] .
4. ;=n=r= PQRT-∆PST= 4. a/fa/ If]qkmn ePsf lqe'hx¿nfO{ pxL lrq
;=n=r= PQRT-∆QRU PQRT af6 36fpFbf
5. ∴ PQRS = PQUT 5. z]if tYo .
k|dfl0ft eof] . F E D C
cEof;sf nflu k|Zgx¿
!= lbOPsf] lrqdf Pp6} cfwf/ AB / pxL ;dfgfGt/ /]vfx¿ AB / FC lar
ag]sf ;dfgfGt/ rt'e{'hx¿ ABCD / ABEF 5g\ .
k|dfl0ft ug{'xf];\ M A B

168
i) ∆AFD ≅ ∆BEC
ii) ABCD sf] If]qkmn = ABEF sf] If]qkmn .
A P B S
@= lbOPsf] lrqdf cfot AQRB / ;dfgfGt/ rt'e'{h PQRS Pp6} cfwf/
QR / pxL ;dfgfGt/ /]vfx¿ QR / AS lar 5g\ . k|dfl0ft ug{'xf];\ M
cfot AQRB sf] If]qkmn = ;dfgfGt/ rt'e'{h PQRS sf] If]qkmn
Q R
#= Pp6} cfwf/ WX / pxL ;dfgfGt/ /]vfx¿ WX / VY lar /x]sf
;dfgfGt/ rt'e{'hx¿ UVWX / WXYZ sf If]qkmnx¿ a/fa/ x'G5 egL
k|dfl0ft ug{'xf];\ .
gd'gf @ M
Pp6} cfwf/ XY / pxL ;dfgfGt/ /]vfx¿ XY / AZ lar ag]sf lqe'h AXY
sf] If]qkmn ;dfgfGt/ rt'e{'h WXYZ sf] If]qkmnsf] cfwf x'G5 egL A B W Z
k|dfl0ft ug{'xf];\ .

;dfwfg M
oxfF, yfxf lbOPsf] M Pp6} cfwf/ XY / pxL ;dfgfGt/ /]vfx¿ XY / X Y
AZ lar ∆AXY / WXYZ 5g\ .
k|dfl0ft ug{'kg{] M ∆AXY = ½ WXYZ
h'lSt -/rgf_ M XA//YB lvrf}+ .
k|df0f M
tYox¿ sf/0fx¿
1. AXYB Pp6f ;dfgfGt/ rt'e'{h 1. AX //BY / AB//XY ePsfn] .
xf] .
2. AXYB = WXYZ 2. Pp6} cfwf/ / pxL ;dfgfGt/ /]vfx¿ lar
ag]sf ;dfgfGt/ rt'e'{hx¿ ePsfn] .
3. ∆AXY = ½ AXYB 3. ljs0f{ AY n] AXYB nfO{ cfwf ug{] ePsfn] .
4. ∴ ∆AXY = ½ WXYZ 4. tYo 2 / 3 cg';f/ .
k|dfl0ft eof] .
a}slNks tl/sf M A W Z
h'lSt M XY df nDa WB lvrf}+ .

k|df0f M X B Y

tYox¿ sf/0fx¿
1. WXYZ = XY.WB 1. ;dfgfGt/ rt'e'{hsf] If]qkmn = cfwf/ × prfO
ePsfn] .
2. ∆AXY = ½ XY.WB 2. lqe'hsf] If]qkmn = ½ cfwf/ × prfO ePsfn] .

169
3. ∴ ∆AXY = ½ WXYZ 3. tYo 1 / 2 cg';f/ .
k|dfl0ft eof] .
cEof;sf nflu k|Zgx¿ M A D E
!= lbOPsf] lrqdf ∆BCE / ABCD Pp6} cfwf/ BC / pxL ;dfgfGt/
/]vfx? BC / AE lar 5g\ eg] ∆BCE sf] If]qkmn ABCD sf] cfwf
x'G5, egL k|dfl0ft ug{'xf];\ . B C

@= Pp6} cfwf/ QR / pxL ;dfgfGt/ /]vfx¿ QR / PS lar ag]sf]


;dfgfGt/ rt'e'{h QRST sf] If]qkmn ∆PQR sf] If]qkmnsf] b'O{ u'0ff x'G5
egL l;b\w ug{'xf];\ .
M Q P
#= lbOPsf] lrqdf MNOP Pp6f ;dfgfGt/ rt'e{'h xf] . k|dfl0ft ug{'xf];\ M
∆QNO sf] If]qkmn = ½ MNOP sf] If]qkmnx¿ a/fa/ x'G5 egL
k|dfl0ft ug'{xf];\ .
N O

gd'gf k|Zg # M
Pp6} cfwf/ XY / pxL ;dfgfGt/ /]vfx¿ XY / WZ lar ag]sf lqe'hx¿
W
WXY / ZXY sf If]qkmnx¿ a/fa/ x'G5g\ egL l;b\w ug{'xf];\ . A Z

;dfwfg M
oxfF, yfxf lbOPsf] M Pp6} cfwf/ XY / pxL ;dfgfGt/ /]vfx¿ XY / WZ X Y
lar ∆WXY / ∆ZXY 5g\ .
l;b\w ug{'kg{] M ∆WXY = ∆ZXY
h'lSt M YZ//XA lvrf}+ .

k|df0f M
tYox¿ sf/0fx¿
1. AXYZ Pp6f ;dfgfGt/ rt'e'{h 1. AX ..ZY -h'lSt_ / XY..AZ -lbOPsf]_ ePsfn] .
xf] .
2. ∆ZXY= ½ AXYZ 2. ljs0f{ XZ n] AXYZ nfO{ cfwf ug{] ePsfn] .
3. ∆WXY = ½ AXYZ 3. Pp6} cfwf/ / pxL ;dfgfGt/ /]vfx¿ larsf
lqe'h / ;dfgfGt/ rt'e'{hsf] ;DaGw .
4. ∴ ∆ZXY = ∆WXY 4. tYo 2 / 3 cg';f/ . -a/fa/L tYo_
k|dfl0ft eof] . W Z
j}slNks tl/sf M
170
X Y
A
h'lSt M WA⊥XY lvrf}+ .
k|df0f M
tYox¿ sf/0fx¿
1. ∆WXY=½ XY.WA 1. lqe'hsf] If]qkmn =½ cfwf/ × prfO ePsfn]
2. ∆ZXY= ½ XY.WA 2. sf/0f 1 cg';f/
3. ∴ ∆WXY = ∆ZXY 3. tYo 1 / 2 cg';f/
k|dfl0ft eof] .
cEof;sf nflu k|Zgx¿
!= lbOPsf] lrqdf ∆ABC / ∆ABD Pp6} cfwf/ AB / pxL ;dfgfGt/ C D
/]vfx¿ AB / CD lar 5g\ .
k|dfl0ft ug{'xf];\ M
∆ABC sf] If]qkmn = ∆ABD sf] If]qkmn A B

@= Pp6} cfwf/ QR / pxL ;dfgfGt/ /]vfx¿ QR / PS lar ag]sf


P Q
lqe'hx¿ PQR / SQR sf If]qkmn a/fa/ x'G5g\ egL l;b\w ug{'xf];\ .

#= lbOPsf] lrqdf PQ//MN 5g\ eg] k|dfl0ft ug{'xf];\ M ∆PMN=∆QMN


N
gd'gf k|Zg $ M M
lbOPsf] lrqdf AD//BC//EF, AB//DE / BE//AF A
D
5g\eg] ABCD / BEFH sf] If]qkmn a/fa/
x'G5g\ egL k|dfl0ft ug{'xf];\ . B
H
C

;dfwfg M E F
oxfF, k|dfl0ft ug{'kg{] M ABCD = BEFH
k|df0f M
tYox¿ sf/0fx¿
1. ABCD= ABEG 1. Pp6} cfwf/ AB / pxL ;dfgfGt/ /]vfx¿ AB / DE
larsf ;dfgfGt/ rt'e'{hx¿ ePsfn] .
2. BEFH = ABEG 2. Pp6} cfwf/ BE / pxL ;dfgfGt/ /]vfx¿ BE / AF
larsf ;dfgfGt/ rt'e'{hx¿ ePsfn] .
3. ∴ ABCD= BEFH 3. tYo 1 / 2 cg';f/ .
k|dfl0ft eof] .
cEof;sf nflu k|Zgx¿ M U

!= lbOPsf] lrqdf PTT////VR//UT, QU//RT / PT//QR eP PQRS / V


RTUV sf If]qkmn a/fa/ x'G5g\ egL k|dfl0ft ug{'xf];\ . P
W S
T

Q R

A B
171
E C
D
F G
@= lbOPsf] lrqdf AB//EC//FG, AG//BC / BF//CG 5g\ eg] k|dfl0ft
ug{'xf];\ M ABCD = CEFG.

#_ lbOPsf] lrqdf AD//BC//FE, AB//DC, BF//CE / A D


AF//DE 5g\ eg] k|dfl0ft ug{'xf];\M
H G
B
ADEF= ABCD + BCEF.
C
F E

gd'gf k|Zg % M P
lbOPsf] lrqdfPA//FB, PB//DA / DF//AB 5g\eg] k|dfl0ft ug{'xf];\ M F
D
PAD = ∆PBF E C

A B
;dfwfg M
k|df0f M
tYox¿ sf/0fx¿
1. ∆PAD=½ ABCD 1. Pp6} cfwf/ AD / pxL ;dfgfGt/ /]vfx¿ AD / BP
larsf lqe'h / ;dfgfGt/ rt'e'{hsf] ;DaGw .
2. ∆PBF=½ ABFE 2. Pp6} cfwf BF / pxL ;dfgfGt/ /]vfx¿ BF / AP
larsf lqe'h / ;dfgfGt/ rt'e'{hsf] ;DaGw .
3. ABCD= ABFE 3. Pp6} cfwf/ AB / pxL ;dfgfGt/ /]vfx¿ AB / DF
lardf ;dfgfGt/ rt'e'{hx¿sf] ;DaGw .
4. ∴ ∆PAD=∆PBF 4. tYo 1 , 2 / 3 cg';f/ .
k|dfl0ft eof] .

cEof;sf nflu k|Zgx¿ P A S


!= lrqdf PQRS Pp6f ;dfgfGt/ rt'e{'h xf] eg] k|dfl0ft ug{'xf];\ M
∆AQR=∆BPQ. B
Q R

C
P S
@= lrqdf PQRS / AQBC b'O{ ;dfgfGt/ rt'e{'hx¿ x'g\ eg] ltgLx¿sf] A B
If]qkmn a/fa/ x'G5 egL l;b\w ug{'xf];\ .
R
Q
P Q

T S U 172
R
V
#_ lrqdf PTT//TR, PT//QV / PV//QR 5g\ eg] ∆PVT / ∆QVR sf
If]qkmn a/fa/ x'G5g\ egL k|dfl0ft ug{'xf];\ .

gd'gf k|Zg ^ M
E
lrqdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] eg] k|dfl0ft ug{'xf];\ M ∆AOE =
∆COD A O
D
B
;dfwfg M C
h'lSt M B / D hf]l8Psf] 5 .
k|df0f M
tYox¿ k|df0fx¿
1. ∆ABE=∆ABD 1 Pp6} cfwf/ AB / pxL ;dfgfGt/ /]vfx¿ AB /
EC larsf lqe'hx¿ ePsfn] .
2. ∆ABE-∆BAO=∆ABD-∆BAO 2 tYo 1 sf] b'j}tkm{af6 pxL ∆BAO 36fp“bf .
3. ∴ ∆AOE=∆BOD 3 z]if tYo
4. ∆COD=∆BOD 4 Pp6} cfwf/ OD / pxL ;dfgfGt/ /]vfx¿ OD /
BC larsf lqe'hx¿ ePsfn] .
5. ∴ ∆AOE=∆COD 5 tYo 3 / 4 cg';f/ .
E k|dfl0ft eof] .
A O
D
B
C

a}slNks tl/sf M

k|df0f M
tYox¿ k|df0fx¿
1. ∆BOC=½ ABCD 1. Pp6} cfwf/ BC / pxL ;dfgfGt/ /]vfx¿ BC /
AD larsf lqe'h / ;dfgfGt/ rt'e'{hsf]
;DaGw .
2. ∴ ∆AOB+∆COD=½ 2. ∆AOB+∆COD+∆BOC= ABCD / tYo 1
ABCD cg';f/ .
3. ∆ABE=½ ABCD 3. Pp6} cfwf/ AB / pxL ;dfgfGt/ /]vfx¿ AB /
EC larsf lqe'h / ;dfgfGt/ rt'e'{hsf]
;DaGw .

173
4. ∴ ∆AOB+∆AOE = ½ 4. l;ª\uf] 6'j|m] tYo .
ABCD
5. ∴ ∆AOB +∆COD=∆AOB 5. tYo 2 / 4 cg';f/ .
+∆AOE
6. ∴ ∆COD=∆AOE 6. tYo 5 sf] b'j}tkm{af6 ;femf ∆AOB x6fpFbf .
k|dfl0ft eof] . A D
cEof;sf nflu k|Zgx¿
!= lrqdf AD//BC 5g\ . O
B C
k|dfl0ft ug{'xf];\ M ∆AOB = ∆COD
P S
@= lrqdf PS//QR, QS//RM / SM//PR eP, k|dfl0ft ug{'xf];\ . O M
∆POQ=½ SORM Q
R

A X D
ABCD Pp6f
#= lbOPsf] lrqdf ;dfgfGt/ rt'e'{h xf] eg] k|dfl0ft ug{'xf];\ M
∆YAB=∆XAB+∆XDC Y
B C
$= lbOPsf] lrqdf PQRS Pp6f ;dfgfGt/ rt'e{'h xf] . P S
PQ nfO{ T ;Dd nDJofOPsf] 5 . olb TOS
Pp6f l;wf /]vf xf] eg] k|dfl0ft ug{'xf];\ M ∆POQ=∆ROT Q
O R

gd'gf k|Zg & M T


lrqdf ABCD Pp6f ;dnDa rt'e{'h xf] . A D
h:df AD‖BC, AC sf] dWo ljGb' Y / BD sf]
X Y
dWo ljGb' X 5g\ eg] k|dfl0ft ug{'xf];\ M
∆AXC=∆DYB, h'lSt M X / Y hf]8f}+ . C
k|df0f M
tYox¿ sf/0fx¿
1. AD//XY//BC 1 ;dnDa rt'e'{hsf] ljs0f{x¿sf dWo ljGb'x¿ dWo
/]vfdf kb{5g\ / dWo/]vf cfwf/x¿;Fu ;dfgfGt/ x'g]
ePsfn] .
2. ∆AXY=∆DXY 2 Pp6} cfwf/ XY / pxL ;dfgfGt/ /]vfx¿ XY / AD
larsf lqe'hx¿ .
3. ∆CXY=∆BXY 3 Pp6} cfwf/ XY / pxL ;dfgfGt/ /]vfx¿ XY / BC
larsf lqe'hx¿ .
4. ∆AXY+∆CXY = ∆DXY+∆BXY 4 tYo 2 / 3 hf]8\bf .
5. ∴ ∆AXC=∆DYB 5. l;ª\uf] 6'j|m] tYo .
k|dfl0ft eof] .

174
cEof;sf nflu k|Zgx¿ P S
!= lrqdf PS // QR / PR / QS sf dWo ljGb'x¿ j|mdzM A / B x'g\ .
∆PBR / ∆QAS sf A B
If]qkmnx¿ a/fa/ x'G5g\ egL k|dfl0ft ug{'xf];\ .

@= lbPsf] lrqdf ABCD Pp6f ;dnDa rt'e'{h xf] .h;df AD // BC 5g\ . A D


olb AB / DC sf dWo ljGb'x¿ j|mdz M M / N x'g\ eg] ∆ABN /
M N
∆CDM sf If]qkmnx¿ a/fa/ x'G5g\ egL k|dfl0ft ug{'xf];\ .

B C
gd'gf k|Zg * M A D
lrqdf AD // BG // EF / AB // DE // GF 5g\ olb ABCD /
CEFG sf If]qkmn a/fa/ 5g\ eg] k|dfl0ft ug{'xf];\ M BE // DG B C
G

;dfwfg M
E F
h'lSt M BD / EG hf]l8Psf 5g\ .
k|df0f M
tYox¿ k|df0fx¿
1. ∆BCD = ½ ABCD 1. ljs0f{ BD n] ABCD nfO{ cfwf ug{]
ePsfn] .
2. ∆CEG=½ CEFG 2. ljs0f{ EG n] CEFG nfO{ cfwf ug{] ePsfn]
3. ABCD= CEFG 3. lbOPsf]
4. ∴ ∆BCD=∆CEG 4. tYox¿ 1, 2 / 3 cg';f/ .
5. ∆BCD+∆BCE=∆CEG+∆BCE 5. of]u tYo .
6. ∆BDE=∆BGE 6. l;ª\uf] 6'j|m] tYo .
7. ∴ BE//DG 7. tYo 6 cg';f/ Pp6} cfwf/ BE / o;sf]
Ps}lt/sf lqe'hx¿sf] If]qkmn a/fa/
ePsfn] .
k|dfl0ft eof] .
A D
cEof;sf nflu k|Zgx¿ M
!= lbOPsf] lrqdf olb ∆AOB=∆COD 5g\ eg]
AD//BC x'G5 egL l;b\w ug{'xf];\ .
O
B C

175
A S
@= lbOPsf] lrqdf olb PQRS / PABC sf If]qkmnx¿ a/fa/ 5g\ P

eg] QA//BR x'[G5 egL k|dfl0ft ug{'xf];\ . Q


R

C B
#= lbOPsf] lrqdf PS//QA//CB , PQ//SC//AB / QC//SA 5g\ eg]
P S
PQRS / RABC sf If]qkmn a/fa/ x'G5g\ egL k|dfl0ft ug{'xf];\ .
Q A
R
gd'gf k|Zg ( M
lbOPsf] lrqdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] . olb ∆ABX=∆ADY C B

eP k|dfl0ft ug{'xf];\ : BD//XY


A D
;dfwfg M
/rgf M BY / XD hf]8f}+ . Y

B C
k|df0f M
tYox¿ sf/0fx¿
1. ∆ABX = ∆DBX 1. Pp6} cfwf/ BX / pxL ;dfgfGt/ /]vfx¿ BX / AD
larsf lqe'hx¿ ePsfn] .
2. ∆ADY=∆BDY 2. Pp6} cfwf/ DY / pxL ;dfgfGt/ /]vfx¿ DY / AB
larsf lqe'hx¿ ePsfn] .
3. ∆ABX=∆ADY 3. lbOPsf]
4. ∴ ∆DBX=∆DBY 4. tYox¿ 1, 2 / 3 cg';f/ .
5. ∴ BD//XY 5. tYo 4 cg';f/ Pp6} cfwf/ BD / o;sf] Ps}lt/ k/]sf
lqe'hx¿sf] If]qkmn a/fa/ ePsfn] .
k|dfl0ft eof] .
cEof;sf nflu k|Zgx¿ M
!= lbOPsf] lrqdf PS//QR 5g\ . olb ∆PQR=∆QST eP k|dfl0ft ug{'xf];\ M P S

QS //RT T
Q
R

A
@= lbOPsf] lrqdf AD//BC 5g\ . olb ∆ABX / D

∆BDY sf] If]qkmn a/fa/ 5g\ eg] BD//XY


x'G5 egL l;b\w ug{'xf];\ M Y
B C

#= lbOPsf] lrqdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] / BD//EF A D


5 eg] k|dfl0ft ug{'xf];\ . ∆ABE = ∆ADF
F

B E C

176
A
gd'gf k|Zg !) M
lbOPsf] lrqdf dWo/]vfx¿ BE / CD ljGb' O df k|ltR5]bg ePsf 5g\ D E
eg] k|dfl0ft ug{'xf];\ M rt'e'{h ADOE sf] If]qkmn = ∆BOC sf] If]qkmn
;dfwfg M O

k|df0f M B C

tYox¿ sf/0fx¿
1. ∆ABE =½ ∆ABC 1. dWo /]vf BE n] ∆ABC nfO{ cfwf u5{ .
2. ∆BCD=½∆ABC 2. dWo /]vf CD n] ∆ABC nfO{ cfwf u5{ .
3. ∴ ∆ABE=∆BCD 3. tYox¿ 1 / 2 cg';f/ .
4. ∆ABE-∆BOD=∆BCD-∆BOD 4. tYo 3 sf] b'j}tkm{af6 ∆BOC 36fpFbf .
5. ∴ rt'e{'h ADOE=∆BOC 5. z]if tYo .
k|dfl0ft eof] .
A
cEof;sf nflu k|Zgx¿ M
!= lbOPsf] ∆ABC df AB / AC sf dWo ljGb'x¿ j|mdzM X / Y 5g\ eg]
X
k|dfl0ft ug{'xf];\ M Y

i) ∆AXC sf] If]qkmn = ∆BYC sf] If]qkmn O


ii) rt'e{'h AXOY sf] If]qkmn = ∆BOC sf] If]qkmn
B C
A
@= lbOPsf] ∆ABC df BC sf] s'g} ljGb' D 5/ AD sf] dWo ljGb' 5 eg],
M
k|dfl0ft ug{'xf];\.
∆BMC = ½ ∆ABC306+52 B D C

#= lbOPsf] lrqdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] . olb ljs0f{x¿ AC / A D


BD ljGb' O df k|ltR5]bg ePsf 5g\ eg]k|dfl0ft ug{'xf];\ M ∆AOB =
∆BOC = ∆COD =∆ DOA O
B C
A

$= lbOPsf]∆ABC df olb BD = DE = CE 5g\ eg] k|dfl0ft ug{'xf];\ M ∆ADE =


⅓ ∆ABC

B D E C

gd'gf k|Zg !! M
lbOPsf] lrqdf PQRS Pp6f ;dfgfGt/ rt'e'{h xf] / ljs0f{ PR sf] s'g} P D
ljGb' T xf] . T
k|dfl0ft ug{'xf];\ M ∆PQT=∆PST
O
Q R
177
;dfwfg M
h'lSt M QS hf]8f}+ . h;n] PR nfO{ ljGb' O df k|ltR5]bg ul/Psf] 5 .
k|df0f M
tYox¿ sf/0fx¿
1. QS sf] dWo ljGb' O xf] . ;dfgfGt/ rt'e'{hsf ljs0f{x¿ k/:k/ ;dlåefhg
1.
x'G5g\ .
2. ∆POQ=∆POS 2. dWo/]vf PO n] ∆PQS nfO{ cfwf u5{ .
3. ∆TOQ=∆TOS 3. dWo/]vf TO n] ∆TQS nfO{ cfwf u5{ .
4. ∆POQ-∆TOQ=∆POS-∆TOS 4. tYo 2 af6 3 36fp“bf .
5. ∴ ∆PQT=∆PST 5. z]if tYo .
k|dfl0ft eof] . A
cEof;sf nflu k|Zgx¿
!= lbOPsf] lrqdf ∆ABC sf] dWo /]vf AD df s'g} ljGb' X 5 eg] ∆ABX /
∆ACX sf] If]qkmn a/fa/ x'G5g\ egL l;b\w ug{'xf];\ . X

B C
D
A D
@= lrqdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] . olb AC sf] s'g} ljGb' M
M
eP, k|dfl0ft ug{'xf];\ . ∆BMC = ∆DMC
B C

#= lrqdf PQRS Pp6f ;dfgfGt/ rt'e'{h xf] . QS sf] s'g} ljGb' A 5 . P S


k|dfl0ft ug{'xf];\ M ∆PAQ = ∆RAQ A

Q R
$= lbOPsf] lrqdf MNOP Pp6f ;dfgfGt/ rt'e'{h xf] . ljs0f{ OM nfO{ A
ljGb' A ;Dd nDAofOPsf] 5 . P
k|dfl0ft ug{'xf];\ M ∆AMN=∆AMP M
N O

A
gd'gf k|Zg !@=
lbOPsf] lrqdf∆ABC sf] e'hfx¿ AB / AC sf dWo ljGb'x¿ j|mdz M D
D E
/ E x'g\ . olb DG//EF 5g\ eg] k|dfl0ft ug{'xf];\ .
rt'e{'h DEFG sf] If]qkmn = ½∆ABC sf] If]qkmn C
B G F

178
;dfwfg M
h'lSt M BE hf]l8Psf] 5 .

k|df0f M
tYox¿ sf/0fx¿
1. ∆ADM / ∆CNM df 1.
i) DM = CM i) yfxf lbOPsf]af6 .
ii) ∠AMD =∠NMC ii) zLiff{led'v sf]0fx¿ .
iii)∠DAM =∠CNM iii) PsfGt/ sf]0fx¿ . AD//BN ePsfn] .
2. ∴ ∆ADM ≅ ∆CNM 2. e'=sf]=sf]=tYocg';f/ .
3. ∆ADM = ∆CNM 3. cg'¿k lqe'hx¿sf If]qkmnx¿ .
4. AM = NM 4. cg'¿k lqe'hx¿sf ;+ult e'hfx¿ .
5. ∆ADM + rt'e{'h ABCM = ∆CNM + 5. of]u tYo .
rt'e{'h ABCM
6. ;=n=r= ABCD = ∆ABN 6. l;ª\uf] 6'j|m] tYo .
7. ∆ABM = ½ ∆ABN 7. dWo/]vf BM n] ∆ABN nfO{ cfwf ug{]
ePsfn] .
8. ∴ ∆ABM = ½ ;dnDa rt'e'{h ABCD 8. tYo 6 / 7 cg';f/ .
k|dfl0ft eof] .
cEof;sf nflu k|Zgx¿ M P S
1= lbOPsf] lrqdf PQRS Pp6f ;dnDa rt'e'{h xf] . h;df PS//QR /
PA = QA 5g\ . olb SA / RQ nfO{ nSAofpFbf ljGb' B df e]6\5 eg]
A
k|dfl0ft ug'{xf];\ M
(i) ∆PAS ≅ ∆QAB
(ii) ∆BSR = ;dnDa rt'e'{h PQRS B Q R
1
(iii) ∆SAR = ;dnDa rt'e'{h PQRS
2

A D

2. lbOPsf] lrqdf
AD // BC / DX = CX 5g\ eg] k|dfl0ft ug'{xf];\ M X
∆ABX = ∆ADX + ∆BCX
B C

3. lbOPsf] lrqdf ABCD Pp6f ;dnDa rt'e'{h xf] . h;df AD // BC / DE = CE 5g\ . ljGb' E
af6 AB ;Fu ;dfgfGt/ x'g] u/L lvlrPsf] /]vfn] BC nfO{ F df / A D G
AD sf] nDAofOPsf] efunfO{ G df e]6]sf] 5 eg] k|dfl0ft ug{'xf];\ M
i) ∆DEG ≅ ∆CEF
B F C
179
ii) ABFG = ;dnDa rt'e'{h ABCD
iii) ∆ABE = ½ ;dnDa rt'e'{h ABCD

yk cEof;sf nflu k|Zgx¿ M A D

1. lbOPsf] lrqdf AC // DE 5g\ eg] k|dfl0ft ug{'xf];\ . rt'e{'hABCD sf] If]qkmn


= ∆ABE sf] If]qkmn B C E

A E D

2. lrqdf, AD // BC // HG, AH // EG // DC / BE // GC 5g\ eg] B


C
ABCD / AEGH sf If]qkmnx¿ a/fa/ x'G5g\ egL k|dfl0ft ug'{xf];\ .
H G

3. lrqdfPS //QR / QS // RT 5g\ . k|dfl0ft ug'{xf];\ . P S


T
∆PQR = ∆QST
Q R

P A S
4. lrqdf PS // QR / AB// PR 5g\ eg] lqe'hx¿ APQ / BPR sf If]qkmn
B
a/fa/ x'G5g\ egL l;b\w ug'{xf];\ .
Q R

A
5. lbOPsf] ∆ABC df BC sf] dWo ljGb' M xf] / DA //MN N
5g\ eg] k|dfl0ft ug'{xf];\ M∆ABC = 2∆DNC
B D M C

A D
6. lrqdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] . olb BC = CE eP
ABCD / ∆ABE sf] If]qkmn a/fa/ x'G5g\ egL k|dfl0ft ug'{xf];\ .
B C E

Z
7. lbOPsf] lqe'h ABC df AB / AC sf dWo ljGb'x¿ j|mdzM D / E x'g\ . olb
BX = XY = YC eP k|dfl0ft ug'{xf];\ M ∆ABC = 3∆XYZ B
X Y C

D E

180
8. lbOPsf] lrqdf AO, BO / CO sf dWo ljGb'x¿ j|mdz M D, E / F x'g\ eg], k|dfl0ft
ug'{xf];\ . A

∆ABC sf] If]qkmn = 4∆DEF sf] If]qkmn D

E O F

9. lbOPsf] lqe'h PQR sf] dWo /]vf QS xf] . olb QS, B C

RA / PB sf dWo ljGb'x¿ j|mdzM A, B / C x'g\ eg],


k|dfl0ft ug'{xf];\ M ∆ABC = 1 ∆PQR P

8
C C
A
10. lrqdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] . DC nfO{ E ;Dd B
R
nDAofOPsf] 5 eg] ΔADE / ;dnDa rt'e'{h ABED sf A D

If]qkmnx¿ a/fa/ x'G5g\ egL l;b\w ug'{xf];\ .

C
B
E

181
PsfO M 5
kf7 14. j[Tt (Circle)
1. kl/ro
o; kf7df j[Ttsf ljleGg efux¿ h:t} M s]Gb|Lo sf]0f, kl/lw sf]0f / rj|mLo rt'e'{h ;DaGwL
;fWox¿ / ltgsf] k|of]usf af/]df rrf{ ul/Psf] 5 . S.L.C . df o; kf7af6 b'O{ cf]6f 5f]6f]
pTt/ cfpg] / Pp6f nfdf] pTt/ cfpg] k|Zg ;f]lwg] 5 .
2. cfwf/e"t tYo tyf ;"qx¿
1. j[Ttsf] Pp6} rfkdf cfwfl/t s]Gb|Lo sf]0f kl/lw sf]0fsf] bf]Aa/ x'G5 .
2. j[Ttsf] Pp6} rfkdf cfwfl/t kl/lw sf]0fx¿ a/fa/ x'G5g\ . -Pp6} j[Tt v08sf
sf]0fx¿ a/fa/ x'G5g\ ._
3. cw{j[Ttsf] sf]0f Ps ;dsf]0f x'G5 .
4. rj|mLo rt'e'{tsf] ;Dd'v sf]0fx¿ kl/k'/s x'G5g\ .
5. rj|mLo rt'e'{hsf] afx\osf]0f To;sf] leqL ljkl/t sf]0f;Fu a/fa/ x'G5g\ .
6. j[Ttsf] s]Gb|Lo sf]0f To;sf] ;Dd'v rfk;Fu ;dk|efjL x'G5 .
7. j[Ttsf] kl/lwsf] sf]0f To;sf] ;Dd'v rfksf] cfwf;Fu ;dk|efjL x'G5 .
8. a/fa/ rfkx¿n] agfpg] s]Gb|Lo tyf kl/lw sf]0fx¿ a/fa/ x'G5g\ .
9. a/fa/ s]Gb|Lo sf]0fx¿ tyf kl/lw sf]0fx¿sf ;Dd'v rfkx¿ a/fa/ x'G5g\ .
10. a/fa/ hLjfx¿sf] ;ª\ut rfkx¿ a/fa/ x'G5g\ .
11. ;ª\ut rfkx¿ a/fa/ ePsf] hLjfx¿ a/fa/ x'G5g\ .
12. s'g} rt'e'{hsf] ;Dd'v sf]0fx¿ kl/k'/s 5g\ eg] Tof] rj|mLo rt'e'{h x'G5 .
13. s'g} rt'e{'hsf] afx\osf]0f leqL ljkl/t sf]0f;Fu a/fa/ 5g\ eg] Tof] rt'e{'h rj|mLo
x'G5 .
14. s'g} b'O{ ljGb'x¿ hf]8\g] /]vf v08n] Ps}lt/sf b'O{ ljGb'x¿df agfPsf sf]0fx¿
a/fa/ 5g\ eg] tL rf/ cf]6f ljGb'x¿ rj|mLo x'G5g\ .
#= Wofg lbg'kg]{ s'/fx¿
• Pp6} j[Ttsf cw{ Jof;x¿ a/fa/ x'G5g\ . h:t} M j[Tt ABC df
AO = BO = CO x'G5g\ .
B A
O

C
• s]Gb|Lo sf]0f M s]Gb|Lo sf]0fsf] zLif{ljGb' j[Ttsf] s]Gb| x'G5 / b'O{ cf]6f e'hfx¿ cw{ Jof;x¿
x'G5g\ . h:t} M ∠BOC / a[xt\ sf]0f ∠BOC s]Gb|Lo sf]0fx¿ x'g\ . kl/lw ABC sf c+zx¿
BC / BAC nfO{ rfkx¿ elgG5 . o;nfO{ BC / BAC n]lvG5 . ;fy} cfwf/e"t tYo 6 cg';f/
182
∴ ∠BOC ≡ BC / a[xt\ ∠BOC ≡ BAC
A

B C

• kl/lwsf]0f M j[Ttsf] s'g} b'O{ cf]6f hLjfx¿ kl/lwsf] s'g} Pp6f ljGb'df ldn]/ kl/lw sf]0f
aG5 . h:t} M ∠BAC Pp6f kl/lw sf]0f xf] . cfwf/e"t tYo 7 cg';f/∴ ∠BAC ≡ 1 BC.
2
• Jof;df plePsf] kl/lwsf] sf]0f cw{ j[Ttsf] sf]0f x'G5, h:t} M ∠ACB cw{ j[Tt -j[Ttf{w_ sf]
sf]0f xf] . To;}n] ∠ACB = 900 x'G5 .

O
O
A B A B

C
• rf/} cf]6f zLif{ ljGb'x¿ Pp6f j[Ttsf] kl/lwdf k/]sf] rt'e'{h
rj|mLo rt'e'{h xf] / zLif{ ljGb'x¿ rj|mLo ljGb'x¿ x'G5 .
h:t} M ABCD Pp6f rj|mLo rt'e'{h xf] .
A, B, C / D rj|mLo ljGb'x¿ x'g\ . ;fy} tYo 4 cg';f/
∴ ∠A + ∠C = 180 0 / ∴ ∠B + ∠D = 180 0
A
D

• rj|mLo rt'e'{hsf] afx\osf]0f eGgfn] o;sf] s'g} Pp6f e'hfnfO{ nDAofpFbf aGg] aflx/L sf]0f
xf] . h:t} M ∠BAF, ∠CBG, ∠DCE / ∠ADH afx\o sf]0fx¿ x'g\ .
cfwf/e"t tYo 5 cg';f/ ∠DEC = ∠BAD, ∠ADH =∠ABC, ∠BAF=∠BCD / ∠GBC =
∠ADC

183
H
A
F D

B
E
C

• ;dfgfGt/ hLjfx¿n] sf6]sf rfkx¿ a/fa/ x'G5g\ . ;fy} a/fa/ rfkx¿ sf6\g] hLjfx¿
;dfgfGt/ x'G5g\ .
h:t} M olb AB // CD eP AC = BD x'G5 / olb AC = BD eP AB // CD x'G5 .

A B

C D

• cfwf/e"t tYo 8 / 9 cg';f/ lrq 1 df olb AB = BC eP, ∠AOB = ∠BOC x'G5 / ∠AOB =
∠BOC eP AB = BC x'G5 .
B A

P
A C

B Q
lrq
(i) lrq (ii)
lrq (ii) df olb PQ = QR eP ∠A = ∠B x'G5 / ∠A = ∠B eP QR = PQ x'G5 .

• cfwf/e"t tYo 10 / 11 cg';f/ olb PQ = RS eP, PQ = RS


x'G5 . / PQ = RS eP PQ = RS x'G5 .
Q

P S

184
X

lqe'hsf] ltg cf]6f sf]0fx¿sf] of]u 1800 x'G5 . h:t} M ∠X +


∠Y + ∠Z =1800
Y
Z
• lqe'hsf] Pp6f e'hfnfO{ nDAofpFbf aGg] afx\osf]0f To;sf] leqL E

ljkl/t b'O{ sf]0fx¿sf] of]u;Fu a/fa/ x'G5 . h:t} M ∠ACD = A

∠ABC + ∠BAC,
∠BAE = ∠ABC + ∠ACB / B D

∠CBF = ∠BAC + ∠ACB F


C

• rt'e'{hsf] rf/ cf]6f sf]0fx¿sf] of]ukmn


A

3600 x'G5 .
∴ ∠A + ∠B +∠C +∠D = 3600 B
D

• Ps kl/lw = 3600 x'G5 . cyf{t\ s'g} ljGb'sf] jl/kl/sf] Ps rSs/sf] C

sf]0f 3600 x'G5 . h:t} M kl/lw ABC = 3600 / ∠AOB + a[xt\ ∠ AOB = 3600
A B

5f]6f] k|Zgf]Tt/ / cEof; M A


gd'gf k|Zg !M
lbOPsf] j[Ttdf O s]Gb| xf] . olb ∠ABO = 200 / ∠ACO = 300 eP
x0, y0 / z0 sf dfgx¿ lgsfNg'xf];\ . o
y 30
z
;dfwfg M B C
h'lSt M AO hf]8f}+ .
1. AO = BO = CO -Pp6} j[Ttsf cw{ Jof;x¿_
2. ∠BAO = ∠ABO = 200 -;dlåafx' ∆AOB sf cfwf/sf sf]0fx¿_
3. ∠CAO = ∠ACO = 300 -;dlåafx' ∆AOC sf cfwf/sf sf]0fx¿_
4. ∴ ∠BAC ( X ) = ∠BAO + ∠CAO
0

= 200 + 300
= 500
5. y 0 = 2 × x0 -Pp6} rfkdf cfwfl/t s]Gb|Lo sf]0f / kl/lwsf] sf]0flarsf] ;DaGw_
= 2 × 500
= 1000
185
6. km]l/,∠OBC = ∠OCB = z0 -;dlåafx' ∆BOC sf cfwf/sf sf]0fx¿_
0
7. ∠OBC + ∠OCB + ∠ BOC = 180 -∆BOC sf sf]0fx¿sf] of]u_
or, Z + Z + 100 = 1800
or, 2Z = 800
80 0
∴Z = = 40 0
2
∴ x0 = 500, y0 = 1000 / z0 = 400

cEof;sf nflu k|Zgx¿


lgDg lrqx¿af6 x0 / y0 sf] dfgx¿ lgsfNg'xf];\ .
-s_ -v_ B
A

0 O 0
60 A
x x
O y
0
D
C
40
B C

-u_
D

O 0
A 80
0
x
C
B

pTt/x¿ M -s_ 500 -v_1200, 300 -u_ 500

gd'gf k|Zg 2 : D

lbOPsf] j[Ttdf O j[Ttsf] s]Gb| xf] . olb AO // BC /


AB // OC eP ∠OCB (= x0) sf] dfg lgsfNg'xf];\ .
O

;dfwfg M A

(i) ∠AOC = ∠ABC = ao -dfgf}+_ -;dfgfGt/ rt'e'{h ABCO sf


C
;Dd'v sf]0fx¿ ._ B
(ii) a[xt ∠AOC = 2×∠ABC -Pp6} rfk ADC df cfwfl/t
186
s]Gb|Lo sf]0f / kl/lw sf]0f larsf] ;DaGw_
=2a0
(iii) ∠AOC + a[xt ∠AOC = 3600 - ljGb' O sf] jl/kl/sf] Ps rSs/sf] sf]0f ePsfn]_
or, a0 + 2a0 = 3600
∴ a0 = 1200
(iv) ∠OCB + ∠ABC = 1800 -j|mdfut leqL sf]0fx¿sf] of]ukmn M AB ‖ OC_
or, x0 + a0 = 1800
∴ x0 = 600
cEof;sf nflu k|Zgx¿ M
!= tn lbOPsf lrqx¿af6 x0 sf] dfg lgsfNg'xf];\ .
-s_ -v_ -u_

P
140 0
Q R O
x0 O
0
M A 110

O x
0
0
x
P C
N B

pTt/x¿ M -s_ 1200 -v_ 1250 -u_ 500

D
gd'gf k|Zg 3 : A
lbOPsf j[Ttdf O j[Ttsf] s]Gb| xf] . olb 120 0
∠BAD = 1200 eP, ∠COD (x0) sf] gfk x0
B C
kTtf nufpg'xf];\ . O

;dfwfg M
1. a[xt ∠BOD = 2∠BAD – -Pp6} rfk BCD df cfwfl/t s]Gb|Lo = 2 × 1200 – sf]0f / kl/lw sf]0f
larsf] ;DaGw ._
= 2400
2. ∠BOC = 1800 – ;/n sf]0f ePsfn] .
3. ∴ ∠COD (x ) = 2400 - 1800 = 600
0

187
cEof;sf nflu k|Zgx¿ M
lbOPsf] lrqx¿af6 x0 / y0 sf] dfg lgsfNg'xf];\ .
-s_ -v_ -u_
A

D P
A 0
N
110 x0
x
0 O
CM
600 Q O
D
B 0
O 140
y0
450 C
B

pTt/x¿ M -s_ 400 -v_1200 -u_ 250, 1100

gd'gf k|Zg 4 :
lbOPsf] j[Ttdf s]Gb|ljGb' O 5 . olb QO = QR eP,
∠PTS sf] dfg kTtf nufpg'xf];\ .

B
P S

Q R
600

T
;dfwfg M
h'lSt M QS / RO hf]8f}+ .
oxfF,
(i) QO = QR – lbOPsf] .
(ii) QO = RO – cw{ Jof;x¿ .
(iii) ∴ QO = QR = RO – (i) / (ii) cg';f/ .
(iv) ∴ ∠QOR = 60 0
– ∆QOR ;dafx' lqe'h ePsfn] .
0
(v) ∠PQS = 90 – cw{ j[Ttsf] sf]0f ePsfn] .
1
(vi) ∠QSR = ∠QOR – Pp6} rfk QR df cfwfl/t kl/lw sf]0f / s]Gb|Lo sf]0fsf] ;DaGw .
2
1
= × 60 0
2
= 300
(vii) ∠PQS =∠PTS+∠QST – ∆QST sf] afx\o sf]0f / To;sf] leqL ljkl/t b'O{ sf]0fx¿sf] ;DaGw
188
or, 900 = ∠PTS + 300
∴ ∠PTS = 600
cEof;sf nflu k|Zgx? M
lbOPsf] lrqx¿af6 x0 / y0 sf] dfgx¿ kTtf nufpg'xf];\ .
-s_ -v_ -u_

M
O
A D O B
P Q
500 0
x
O x0 P
B C S R
x0 A
600

E A N

pTt/x¿ M -s_ 650 -v_ 600 -u_ 600


gd'gf k|Zg 5 :
lbOPsf] lrqdf O j[Ttsf] s]Gb| xf] . olb AB//CD ∠BEC = 600 / ∠ABE = 500 5g\ eg] x0 /
sf y0 dfgx¿ lgsfNg'xf];\ .
E

600
O 500
A B
0
x
y0
C D

;dfwfg M h'lSt M AE hf]8f}+ .


ca, (i) ∠AEB = 900 – cw{ j[Ttsf] sf]0f ePsfn]
(ii) ∴ ∠AEC = 90 -60 0 0
= 300 – ∠AEC = ∠AEB - ∠BEC ePsfn] .
(iii) ∴ ∠ABC = ∠AEC = 300 – Pp6} rfk AC df plePsf kl/lw
sf]0fx¿
(iv) ∴ ∠BCD = ∠ABC – PsfGt/ sf]0fx¿ M AB//CD ePsfn]
∴ y0 = 300
km]l/, (v) ∠BAE = 900 - 500 –∆ABE df, ∠AEB = 900 / ∠ABE = 500 ePsfn]
= 400
(vi) ∴ ∠BCE = ∠ BAE – Pp6} rfk BE df plePsf kl/lw sf]0fx¿
∴ x0 = 400
To;}n], ∴ x0 = 400 / y0 = 300

189
cEof;sf nflu k|Zgx¿ M
lbOPsf] lrqx¿af6 xo / y0 sf dfgx¿ kTtf nufpg'xf];\ .
-s_ -v_ -u_
A
R S A
300

O O x0
B 500 P Q
C
5y0 4y0
B C
x0 0
x O

D T

-3_ -ª_
A
P
y0
700
D
O x0 O
Q R
600
x0 B C
T U

lrqdf AB=AC 5g\ .

pTt/x¿ M -s_ 400 -v_ 600 -u_ 500, 100 -3_ 200 -ª_ 600, 600

gd'gf k|Zg 6 :
lbOPsf] lrqdf PQ = PT / PT//SR 5g\ . olb
∠PQT = 800 5 eg] ∠QPS sf] dfg lgsfNg'xf];\ .
P S

800 T
Q R

;dfwfg M
oxfF,
(i) ∠PTQ = ∠PQT = 800 -PQ = PT ePsfn] ;dlåafx' lqe'hsf cfwf/sf sf]0fx¿_
(ii) ∠QRS = ∠PTQ =800 -;ª\ut sf]0fx¿ M PT ‖ SR ePsfn]_
(iii) ∠QPS + ∠QRS = 1800 -rj|mLo rt'e'{h PQRS sf ;Dd'v sf]0fx¿ ePsfn]_
or, ∠QPS + 800 = 1800

190
∴ ∠QPS = 1000
cEof;sf nflu k|Zgx¿ M
!= lbOPsf] lrqx¿af6 x0 sf] y0 dfg kTtf nufpg'xf];\ .
-s_ -v_ -u_ -3_ -ª_
A D R P
P S
x0
800 x0
E H O
300
M N A x0
B
B D x0 O
y0 y0
Q R
G D
F C

pTt/x¿ M -s_ 400 -v_ 1200, 600 -u_ 900 -3_ 1200 -ª_ 450, 1350

gd'gf k|Zg 7 M
lbOPsf] lrqdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] .
olb ∠CDE = 750 eP ∠CED sf] dfg kTtf nufpg'xf];\ .
A E D

750

B C
;dfwfg M
oxfF,
(i) ∠ABC = ∠ADC=750 –
;dfgfGt/ rt'e'{h sf ;Dd'v sf]0fx¿
(ii) ∴ ∠CED = ∠ABC – rlqmo rt'e'\{hsf] afx\o sf]0f Tof] sf]0fsf] leqL ljkl/t
∴ ∠CED = 750 sf]0f;Fu a/fa/ x'g] ePsfn] .
cEof;sf nflu k|Zgx¿ M
lbOPsf] lrqx¿df xo / yo sf] gfkx¿ lgsfNg'xf];\ .
-s_ -v_ -u_
T S
P
x 0 M P
800 A E D
0 0
y x0 x

O
640
Q
650
1400
B F y0
R
Q U R N P

191
pTt/x¿ M -s_ 800 -v_ 650, 660 -u_ 700 , 700
gd'gf k|Zg 8 :
lbOPsf] lrqdf ∠CDE sf] cw{s DF xf] / DF//BC 5g\ .
olb ∠ ABC = 860 eP x0 sf] dfg kTtf nufpg'xf];\ .
D
A E
x0
F
860
B
C

;dfwfg M
(i) ∠CDE = ∠ABC – rj|mLo rt'e'{h ABCD sf] afx\osf]0f / To;sf] leqL ljkl/t sf]0fsf] ;DaGw .
= 860
1
(ii) ∠CDF = ∠EDF = ∠CDE – ∠ CDE sf] cw{s DF ePsfn]
2
1
= × 860
2
= 430
(iii) ∠ BCD = ∠CDF –PsfGt/ sf]0fx¿ M BC//DF 5 .
= 430
(iv) ∴ ∠BAD + ∠BCD = 1800 –rj|mLo rt'e'{hsf] ;Dd'v sf]0fx¿ ePsfn] .
or, x0 + 430 = 1800
∴ x0 = 1370
cEof;sf nflu k|Zgx¿ M
!= tn lbOPsf lrqx¿df x0 / y0 sf] dfg lgsfNg'xf];\ .

-s_ -v_ -u_


E
R
P Q
960 200
A S
600
M S
D x0 y0
y0 x0

x0 960
Q
920
B R N P
0 0 0 0 0
pTt/x¿ M -s_ 48 -v_ 32 , 32 -u_104 , 76

192
yk cEof;sf nflu k|Zgx¿ M
tn lbOPsf lrqx¿df x0 / y0 sf dfgx¿ kTtf nufpg'xf];\ .
-s_ -v_ -u_
C D
300
D C S
x0 O
A 200 x0
O B x0
0
y0 R
y0 A 30 B
0 400
Q T
P
E

-3_ -ª_ -r_


A

B P Q
x0
0
x0 y

O B
1200 C
y 0
C
x0 400
D
300 900

A P Q S R
-5_ -h_ -em_
A A

x0
800
O B D
B x0
O C A
0
700 50
250 y0 x0
D E C
B C

pTt/x¿ M -s_800, 400 -v_ 300 -u_ 400, 800 600, 1200
-3_
-ª_ 550 -r_ 800, 1000 -5_ 400 -h_ 400, 300 -em_ 400

nfdf] pTt/ cfpg] k|Zgx¿


gd'gf k|Zg 1 :
Pp6f j[Tt PQR sf] Pp6} rfk QR df ag]sf s]Gb|Lo sf]0f QOR kl/lw sf]0f QPR sf] b'O{ u'0ff x'G5
egL l;b\w ug'{xf];\ .
yfxf lbOPsf] M O PQR sf] s]Gb| O xf] . pxL QR df s]Gb|Lo ∠QOR / kl/lw ∠QPR plePsf 5g\ .
l;b\w ug'{kg]{ M ∠QOR = 2∠QPR
193
h'lSt M PO hf]8f}+ / o;nfO{ ljGb' S ;Dd nDAofcf+} .
P

Q R
S

k|df0f M
tYox¿ sf/0fx¿
1. ∆POQ df PO = QO 1. Pp6} j[Ttsf cw{ Jof;x¿ ePsfn]
2. ∠PQO = ∠QPO 2. ;dlåafx' ∆POQ sf cfwf/sf sf]0fx¿
ePsfn] .
3. ∠QOS = ∠PQO + ∠QPO 3. lqe'hsf] afx\osf]0f / To;sf] leqL
= ∠QPO + ∠QPO ljkl/t b'O{ sf]0fx¿sf] ;DaGw .
= 2∠QPO
4. To:t}, ∠ROS =2∠RPO 4. dflysf] h:t} -∆POR af6_
5. ∠QOS + ∠ROS=2(∠QPO + 5. tYo 3 / 4 hf]8\bf
∠RPO)
6. ∴ ∠QOR = 2∠QPR 6. l;ª\uf]6'j|m] tYo
k|dfl0ft eof] .
csf]{ tl/sf M
P

Q S R

k|df0f M
tYox¿ sf/0fx¿
1. ∠QOR ≡ QR 1. j[Ttsf] s]Gb|Lo sf]0f / ;Dd'v rfksf]
;DaGwaf6 .
2. 2∠QPR ≡ QR 2. j[Ttsf] kl/lw sf]0f / ;Dd'v rfksf]
;DaGwaf6 .
3. ∴ ∠QOR = 2 ∠QPR 3. tYo 1 / 2 cg';f/ -a/fa/L tYo_
k|dfl0ft eof] .
gd'gf k|Zg 2:

194
s]Gb|ljGb' X ePsf] j[Ttsf] rfk BC df plePsf kl/lw sf]0fx¿ ∠BAC / ∠BDC a/fa/ x'G5g\ egL
k|dfl0ft ug'{xf];\ .
A D

B C

;dfwfg M
yfxf lbOPsf] M j[Ttsf] s]Gb|ljGb' X xf] . kl/lw sf]0fx¿ ∠BAC / ∠BDC pxL rfk BC df
plePsf 5g\ .
k|dfl0ft ug'{kg]{ M ∠BAC = ∠ BDC
h'lSt M BX / CX hf]l8Psf] 5 .

k|df0f M
tYox¿ sf/0fx¿
1. ∠BAC = 1 ∠ BXC 1. Pp6} rfk BC df cfwfl/t s]Gb|Lo sf]0f / kl/lw
2
sf]0fsf] ;DaGw .
2.
∠BDC=
1
∠BXC
2. sf/0f 1 cg';f/
2
3. ∴ ∠BAC= ∠BDC 3. tYo 1 / 2 cg';f/ .
k|dfl0ft eof] .
k|df0f M
tYox¿ sf/0fx¿
1. ∆POQ df PO = QO 1. Pp6} j[Ttsf cw{ Jof;x¿ ePsfn]
2. ∠PQO = ∠QPO 2. ;dlåafx' ∆POQ sf cfwf/sf sf]0fx¿
ePsfn] .
3. ∠QOS = ∠PQO + ∠QPO 3. lqe'hsf] afx\osf]0f / To;sf] leqL
= ∠QPO + ∠QPO ljkl/t b'O{ sf]0fx¿sf] ;DaGw .
= 2∠QPO
4. To:t}, ∠ROS =2∠RPO 4. dflysf] h:t} -∆POR af6_
5. ∠QOS + ∠ROS=2(∠QPO + 5. tYo 3 / 4 hf]8\bf
∠RPO)
6. ∴ ∠QOR = 2∠QPR 6. l;ª\uf]6'j|m] tYo
k|dfl0ft eof] .

195
csf]{ tl/sf M
P

Q R

k|df0f M
tYox¿ sf/0fx¿
1. ∠QOR ≡ QR 1. j[Ttsf] s]Gb|Lo sf]0f / ;Dd'v rfksf]
;DaGwaf6 .
2. 2∠QPR ≡ QR 2. j[Ttsf] kl/lw sf]0f / ;Dd'v rfksf]
;DaGwaf6 .
3. ∴ ∠QOR = 2 ∠QPR 3. tYo 1 / 2 cg';f/ -a/fa/L tYo_
k|dfl0ft eof] .
gd'gf k|Zg 3 :
s]Gb|ljGb' X ePsf] j[Ttsf] rfk BC df plePsf kl/lw sf]0fx¿ ∠BAC / ∠BDC a/fa/ x'G5g\ egL
k|dfl0ft ug'{xf];\ .
A D

B C

;dfwfg M
yfxf lbOPsf] M j[Ttsf] s]Gb|ljGb' X xf] . kl/lw sf]0fx¿ ∠BAC / ∠BDC pxL rfk BC df
plePsf 5g\ .
k|dfl0ft ug'{kg]{ M ∠BAC = ∠ BDC
h'lSt M BX / CX hf]l8Psf] 5 .
k|df0f M
tYox¿ sf/0fx¿
1.
∠BAC =
1
∠ BXC
1. Pp6} rfk BC df cfwfl/t s]Gb|Lo sf]0f / kl/lw sf]0fsf]
2 ;DaGw .
2.
∠BDC=
1
∠BXC
2. sf/0f 1 cg';f/
2
3. ∴ ∠BAC= ∠BDC 3. tYo 1 / 2 cg';f/ .
196
k|dfl0ft eof] .

j}slNks tl/sf M
A D

B C

tYox¿ sf/0fx¿
1.
∠BAC
1
BC
1. j[Ttsf] kl/lw sf]0f / ;Dd'v rfksf]
2 ;DaGw
2.
∠BDC
1
BC
2. sf/0f 1 cg';f/
2
3. ∠BAC= ∠BDC 3. tYo 1 / 2 cg';f/
k|dfl0ft eof]

gd'gf k|Zg 4 :
rj|mLo rt'e'{h PQRS sf ;Dd'v sf]0fx¿ kl/k"/s x'G5g\ egL k|dfl0ft ug'{xf];\ .
;dfwfg M
yfxf lbOPsf] M O j[Ttsf] s]Gb| xf] / PQRS Pp6f rj|mLo rt'e'{h xf] .
k|dfl0ft ug'{kg]{ M (i) ∠P + ∠R = 1800 /
(ii) ∠Q + ∠S = 1800
h'lSt M (i) QO / SO hf]8f}+ .
(ii) ∠ QOS = x0 / a[xt ∠ QOS = y0 dfgf}+ .
P

x S
Q O
y

R
csf]{ t/Lsf M
tYox¿ sf/0fx¿
1.
∠P
1
≡ QRS
1. j[Ttsf] kl/lwsf]0f / ;Dd'v rfksf] ;DaGw
2

197
2. 1
∠R ≡ QPS
2. sf/0f (1) cg';f/
2
3.
∠P +∠R =
1
(QRS + QPS)
3. tYo 1 / 2 hf]8\bf
2
4. 4. l;ª\uf]6'j|m] tYo / Ps kl/lw = 3600 x'g]
ce 0
QPS +QRS = O PQRS=360 ePsfn] .
5. ∴ ∠ P + ∠ R =1800 5. tYo 3 / 4 cg';f/
To;/L g} ∠Q + ∠ S = 1800
k|dfl0ft eof] .
cEof;sf nflu k|Zgx¿ M
1. s]Gb| X ePsf] Pp6f j[Ttsf] rfk BC df cfwfl/t s]Gb|Lo ∠BXC kl/lw ∠BAC sf] bf]Aa/ x'G5
egL k|dfl0ft ug'{xf];\ .
2. s]Gb| A ePsf] Pp6f j[Ttsf] kl/lwdf ljGb'x¿ X, Y / Z 5g\ eg] k|dfl0ft ug'{xf];\ .
1
∠YXZ = ∠YAZ
2
3. j[Ttsf] Pp6} j[Ttv08df ag]sf sf]0fx¿ a/fa/ x'G5g\ egL l;b\w ug'{xf];\ .
4. s]Gb| O ePsf] Pp6f j[Ttsf] kl/lwdf ljGb'x¿ P, Q, R / S kb{5g\ eg] ∠PRQ = ∠PSQ x'G5
egL k|dfl0ft ug'{xf];\ .
5. rj|mLo rt'e'{h ABCD sf] ;Dd'v sf]0fx¿ kl/k"/s x'G5g\ egL l;b\w ug'{xf];\ .
6. rj|mLo rt'{e'h PQRS df k|dfl0ft ug'{xf];\ M ∠Q + ∠S = 1800
k|df0f M
tYox¿ sf/0fx¿
1. 1 0
∠P = y
1. Pp6} rfk QRS df plePsf kl/lw sf]0f /
2 s]Gb|Lo sf]0fsf] ;DaGw .
2.
∠R =
1 0
x
2. Pp6} rfk QPS df plePsf kl/lw sf]0f /
2 s]Gb|Lo sf]0fsf] ;DaGw
∠P +∠R =
1 0 0
(x + y )
3. tYo 1 / 2 hf]8\bf
3. 2
4. x0 + y0 = 3600 4. ljGb' O sf] jl/kl/sf] Ps rSs/sf] sf]0f
ePsfn] .
5. ∴ ∠ P + ∠ R =1800 5. tYo 3 / 4 cg';f/
To;/L g} ∠Q + ∠ S = 1800
k|dfl0ft eof] . C D
gd'gf k|Zg 5 :
lbOPsf] j[Ttdf s]Gb|ljGb' O xf] / BC = DC 5g\ eg]
k|dfl0ft ug'{xf];\ . AD//OC B A
O

198
;dfwfg M
tYox¿ sf/0fx¿
(i) s]Gb|Lo sf]0f / ;Dd'v rfksf] ;DaGw .
(i) ∠BOC ≡ BC
(ii)
∠BAD ≡
1
BCD
(ii) kl/lw sf]0f / ;Dd'v rfksf] ;DaGw .
2
(iii) 1 (iii)
∠BAD ≡ 2 BC ≡
2 BC = CD ePsfn] BCD = 2 BC x'G5 .
BC
(iv) ∴ ∠ BOC = ∠BAD (iv) tYo (i) / (iii) cg';f/
(v) ∴ AD//OC (v) tYo (iv) cg';f/, ;ª\ut sf]0fx¿ a/fa/
ePsfn] .
k|dfl0ft eof] .
R S
cEof;sf nflu k|Zgx¿ M
1. lbOPsf] j[Ttdf O s]Gb| / rfk PS sf] dWo ljGb' R xf] eg], k|dfl0ft
Q
ug'x{ f]\;\ . RO//SQ P
O

2. lbOPsf] j[Ttdf O s]Gb| xf] . olb AD//OC 5 eg] BC = DC x'G5 egL C


D
k|dfl0ft ug'{xf];\ .
A B
3. ;dfgfGt/ hLjfx¿n] a/fa/ rfk k|ltR5]bg ub{5g\ egL l;b\w ug'{xf];\ . O

A
B
X
gd'gf k|Zg 6 : D
C
lbOPsf] lrqdf j[Ttsf] b'O{ hLjfx¿ AB / CD afx\oljGb' X df e]l6Psf
5g\ . k|dfl0ft ug{'xf];\ M
1
∠AXC ≡ (AC - BD)
2

;dfwfg M h'lSt M A / D hf]8f}+ .


tYox¿ sf/0fx¿
(i)
∠BAD ≡
1
BD / ∠ADC ≡
1
AC
(i) j[Ttsf] kl/lw sf]0f / ;Dd'v
2 2 rfksf] ;DaGw
(ii) ∠ADC = ∠BAD + ∠AXC (ii) ∆ADX sf] afx\o sf]0f To;sf]
leqL b'O{ ljkl/t sf]0fx¿sf]
of]u;Fu a/fa/ x'G5 .

199
(iii) ∠AXC = ∠ADC - ∠BAD (iii) tYo 2 cg';f/ -kIffGt/ ubf{_

(iv)
∠ AXC ≡
1
AC -
1
BD
(iv) tYo (i) / (iii) cg';f/
2 2
cyf{t\
1
∠AXC ≡ (AC - BD )
2
k|dfl0ft eof] .

cEof; nflu k|Zgx¿ M


1. Pp6f j[Ttsf] b'O{ cf]6f hLjfx¿ PQ / RS afx\o ljGb' X df k|ltR5]bg x'G5g\ . k|dfl0ft
ug'{xf];\ M ∠PXR= 1 (PR - QS)
2
2. lrqdf j[Ttsf b'O{ hLjfx¿ PQ / RS leqL ljGb' X df k|ltR5]bg ePsf 5g\ . k|dfl0ft
ug'{xf];\ M
1
(i) ∠PXR = 1 (PR + QS) (ii) ∠PXS = (PS + QR)
2 2

P S
X

R Q

3. lbOPsf] j[Ttdf hLjfx¿ AB / CD cfk;df ljGb' X df nDa 5g\ . k|dfl0ft ug'{xf];\ .

(i) BC + AD = 1800

(ii) BC + AD = AC + BD
A

C
X D

B
gd'gf k|Zg 7 :
lbOPsf] j[Ttdf ∠AXD = ∠BYC eP k|dfl0ft ug'{xf];\ M AB//CD

200
X Y

A B

C D
;dfwfg M
k|df0f M
tYox¿ sf/0fx¿
(i) ∠X = ∠Y (i) lbOPsf]

(ii) (ii) a/fa/ kl/lw sf]0fx¿sf ;Dd'v rfkx¿


ACD = BDC ePsfn]
(iii) (iii)
ACD - CD =BDC - CD tYo (ii) sf] b'j} tkm{af6 pxL CD 36fpFbf
(iv) (iv) z]if tYo
AC = BD
(v) AB//CD tYo 4 cg';f/ a/fa/ rfk k|ltR5]bg ug]{
hLjfx¿ ;dfgfGt/ x'g] ePsfn]
k|dfl0ft eof] .

cEof;sf nflu k|Zgx¿ M


1. lbOPsf] j[Ttdf ∠X = ∠Y eP AB//CD x'G5
egL k|dfl0ft ug'{xf];\ .
X Y

A B

C D
2. lbOPsf] j[Ttdf olb AB//CD eP ∠X =∠Y x'G5 egL l;b\w ug'{xf];\ .
X Y

A B

C D

201
gd'gf k|Zg M 8:
lbOPsf]j[Ttdf BC = AD / AE = BF 5g\ .
k|dfl0ft ug'{xf];\ M ∠AED = ∠BFC
D C

A E F B

;dfwfg M
h'lSt M AD / BC hf]8f}+ .
k|df0f M
tYox¿ sf/0fx¿
1. 1. lbOPsf]
AD = BC
2. 2. of]utYo
AD + DC = BC + DC
3. 3. l;ª\uf]6'j|m] tYo
ADC = BCD
4. ∠ ABC = ∠BAD 4. tYo 3 cg';f/ a/fa/ rfkx¿n] agfPsf] kl/lw
sf]0fx¿
5. cj ∆ADE / ∆BCF df, 5.
(i) AD = BC tYo 1 cg';f/ a/fa/ rfkx¿n] agfPsf]
(i)
hLjfx¿
(ii) ∠A = ∠B (ii) tYo 4 cg';f/
(iii) AE = BF (iii) yfxf lbOPsf]af6
6. ∴ ∆ADE ≅ ∆ BCF 6. e'=sf]=e'= tYo
7. ∴ ∠AED = ∠BFC 7. cg'¿k lqe'hx¿sf ;+utL sf]0fx¿ ePsfn]
k|dfl0ft eof] .
S R
cEof;sf nflu k|Zgx¿ M
1. lbOPsf] j[Ttdf PS = QR / ∠PAS = ∠QBR 5g\ eg], k|dfl0ft
ug'{xf];\ M PA = QB

P A B Q

P S
2. lbOPsf] lrqdf PQ = RT / ∠PQR sf] QS cw{s xf] .
k|dfl0ft ug'{xf];\ . SQ = ST
Q T
R
202
A D

3. lbOPsf] lrqdf ABCD Pp6f ju{ xf] . olb AE = AF eP, BD//EF F


x'G5 egL k|dfl0ft ug'{xf];\ .
B C
E
yk cEof;sf nflu k|Zgx¿ M
1. lbOPsf] lrqdf hLjfx¿ AB / CD ljGb' X df k|ltR5]bg ePsf 5g\ . A D
olb CX = BX eP, X
k|dfl0ft ug'{xf];\ M
(i) ACB = CBD (ii) AB = CD C B

A
2. lbOPsf] j[Ttdf O s]Gb| xf] . olb AB = BC eP
k|dfl0ft ug'{xf];\ M O
(i) AD = CD (ii) ∠ABC sf] cw{s BD xf] . B D

3. lbOPsf] j[Ttdf AC = BD eP k|dfl0ft ug'{xf];\ M A D

(i) AB = CD (ii) AD//BC

B C

S T
4. lbOPsf] j[Ttdf rfk QP / rfk RP sf A B
dWo ljGb'x¿ j|mdzM S / T eP , k|dfl0ft ug'{xf];\ . PA = PB.
Q R

A
5. lbOPsf] j[Ttdf O s]Gb|ljGb' / BQ = BR 5g\ .
k|dfl0ft ug'{xf];\ M ∠B = 1 (∠Q - ∠R) P
2 O

Q R
gd'gf k|Zg 9:
B
203
lbOPsf] j[Ttsf] s]Gb|
O xf] . k|dfl0ft ug'{xf];\ .
∠AOC -∠BOD = 2∠AEC
A

;dfwfg M B

h'lSt M A / D hf]8f}+ . O E
k|df0f M D
tYox¿ sf/0fx¿ C
1. ∠AOC = 2∠ADC 1. Pp6} rfk AC df cfwfl/t
s]Gb|Lo sf]0f / kl/lw
sf]0fsf] ;DaGw
2. ∠BOD = 2∠BAD 2. Pp6} rfk BD df cfwfl/t
s]Gb|Lo sf]0f / kl/lw
sf]0fsf] ;DaGw
3. ∠AOC- ∠BOD = 2 (∠ADC - 3. tYo 1 af6 2 36fpFbf
∠BAD)

4. ∠ ADC = ∠BAD + ∠AEC 4. ∆AED sf] afx\osf]0f /


To;sf] leqL b'O{ ljkl/t
sf]0fx¿sf] ;DaGw
5. ∴ ∠ADC - ∠BAD = ∠AEC 5. tYo 4 af6 kIffGt/ ubf{
6. ∴ ∠AOC - ∠BOD = 2 6. tYo 3 / 5 cg';f/
∠AEC
k|dfl0ft eof] .
cEof;sf nflu k|Zgx¿ M A

1. lbOPsf] lrqdf O j[Ttsf] s]Gb| xf] . k|dfl0ft ug'{xf];\ . B

X O
1
∠AXD = (∠AOD - ∠BOC)
2 C
D

A
2. lbOPsf] lrqdf
O j[Ttsf] s]Gb| xf] . k|dfl0ft ug'{xf];\ . B
∠AOC + ∠BOD = 2∠AXC O
D
A

X
C B

204
O

R S
X
3. lbOPsf] lrqdf O j[Ttsf] s]Gb| xf] . olb PQ ⊥ RS eP, k|dfl0ft ug'{xf];\ M ∠ROQ + ∠SOP =
1800

gd'gf k|Zg 10 :
lbOPsf] j[Ttdf MN//AB eP P Q

k|dfl0ft ug'{xf];\ M ∠P = ∠Q

;dfwfg M M N
h'lSt M AN hf]8f}+ . B
A
tYox¿ sf/0fx¿
1. ∠Q = ∠N 1. Pp6} rfk AM df plePsf kl/lw
sf]0fx¿
2. ∠P = ∠A 2. Pp6} rfk BN df plePsf kl/lw
sf]0fx¿
3. ∠N = ∠A 3. PsfGt/ sf]0fx¿ ; MN//AB ePsfn]
4. ∴ ∠ P = ∠Q 4. tYox¿ 1, 2 / 3 cg';f/
k|dfl0ft eof] . X Y

cEof;sf nflu k|Zgx¿ M


1. lbOPsf] j[Ttdf ∠X = ∠Y 5 eg] AB//CD x'G5 egL
k|dfl0ft ug'{xf];\ . A B

D
C

2. lbOPsf] lrqdf XAY / PAQ ;/n /]vfx¿ x'g\ . X A


Q
k|dfl0ft ug'{xf];\ M∠PBX = ∠QBY
P Y

B
P

3. lbOPsf] j[Ttdf PQ = PX eP k|dfl0ft ug'{xf];\ M Q


∆XRS Pp6f ;dlåafx' lqe'h xf] .

S
R

B 205
C
E F
D
4. lbOPsf] lrqdf ∠EDF sf] cw{s AD xf] eg] AB = AC x'G5 egL k|dfl0ft ug'{xf];\ .

O
gd'gf k|Zg 11 : C

lbPsf] j[Ttsf] s]Gb| O xf] / DO ⊥ AB 5g\ .


k|dfl0ft ug'{xf];\ . ∠ADO = ∠AEC A
O
B

;dfwfg M h'StL BC hf]8f}+ . E

k|df0f M
tYo sf/0f
i) ∠ACB = 90 0
i) cw{ j[Ttsf] sf]0f ePsfn] .
ii) ∴ ∠ABC + ∠BAC = 90 0
ii) ;dsf]0f ∆ABC sf Go"g sf]0fx¿
iii) ∠AOD = 90 0
iii) lbPsf]af6 DO ⊥ AB ePsfn]
iv) ∴ ∠ADO + ∠OAD = 90 0
iv) ;dsf]0f ∆ADO sf Go"g sf]0fx¿
v) ∴ ∠ADO = ∠ABC v) tYo (i) / (ii) cg';f/ Pp6} sf]0f
∠BAC.(∠OAD) sf ;dk'/sx¿
ePsfn]
iv) ∠ABC = ∠AEC iv) Pp6} rfk AC df plePsf kl/lw
sf]0fx¿
vii) ∴ ∠ADO = ∠AEC vii) tYo (v) / (vi) cg';f/ .
k|dfl0ft eof] .
B

cEof;sf nflu k|Zgx¿ M


1. lbOPsf] lrqdf O j[Ttsf] s]Gb| / EO ⊥ AC 5g\ . A
O
C
k|dfl0ft ug'{xf];\ . ∠B = ∠E
D
E

P
2. lbOPsf] lrqdf O j[Ttsf] s]Gb|
xf] / SO ⊥ QR 5g\ .
k|dfl0ft ug'{xf];\ M ∠OPR = ∠OSQ Q
O
R

206
3. lbOPsf] lrqdf O j[Ttsf] s]Gb| 5g\ . olb ∠OCB = ∠ADO
5g\ eg] DO ⊥ AB x'G5, egL k|dfl0ft ug'x{ f];\ . O
A B

gd'gf k|Zg 12 :
lbOPsf] lrqdf b'O{ cf]6f j[Ttx¿ A / B ljGb'df C
D
k|ltR5]bg ePsf 5g\ . O ;fgf] j[Ttsf] s]Gb| xf] . C
OA / OB nfO{ hf]8]/ 7"nf] j[Ttsf] kl/lwsf]
A
ljGb'x¿ j|mdz M C / D ;Dd k'Ug] u/L nDAofOPsf
5g\ . O
k|dfl0ft ug'{xf];\ M (i) AB // CD (ii) AC = BD
B
;dfwfg M D
k|df0f
tYox¿ sf/0fx¿
1. OA = OB 1. Pp6} j[Ttsf cw{ Jof;x¿
2. ∠OAB = ∠OBA 2. ;dlåafx' ∆OAB sf cfwf/sf sf]0fx¿
3. ∠OAB = ∠ODC 3. rj|mLo rt'e'{h ABDC sf] afx\o sf]0f /
To;sf] leqL ljkl/t sf]0fsf] ;DaGw
4. ∴ ∠OBA = ∠ODC 4. tYo 2 / 3 cg';f/
5. ∴ AB // CD 5. tYo 4 df ;ª\ut sf]0fx¿ a/fa/ ePsfn]
6. km]l/, ∠OBA = ∠OCD 6. sf/0f (3) cg';f/
7. ∴ ∠ODC = ∠OCD 7. tYo (4) / (6) cg';f/
8. OC = OD 8. ∆OCD df a/fa/ sf]0fx¿ ∠C / ∠D
sf ;Dd'v e'hfx¿ ePsfn]
9. ∴ OC − OA = OD − OB 9. tYo (8) af6 (1) 36fpFbf
10. ∴ AC = BD 10. z]if tYo
11. To;}n] AB // CD / AC = BD 11. tYo 5 / 10 af6
k|dfl0ft eof] .
B
A
cEof;sf nflu k|Zgx¿ M
1. lrqdf O ;fgf] j[Ttsf] s]Gb| xf] . olb OAB / OCD ;/n /]vfx¿ O
x'g\ eg] AB = CD x'G5g\ egL k|dfl0ft ug'{xf];\ .
C
D

2. lrqdf rj|mLo rt'{e'h ABCD sf] A


D

207
E

C
B
e'hfx¿ AD / BC nfO{ E ;Dd nDAofOPsf] 5 . olb AE = BE 5 eg],
k|dfl0ft ug'{xf];\ M (i) AB // DC (ii) DE = CE

A X
C
3. lbOPsf] lrqdf b'O{ cf]6f j[Ttx¿ ljGb' X / Y df k|ltR5]bg
ePsf 5g\ . olb AXC / BYD ;/n /]vfx¿ x'g\ eg] AB // CD D
x'G5 egL k|dfl0ft ug'{xf];\ . B Y

4. lbOPsf] lrqdf olb ∠ EAC sf] cw{s AB xf] eg] k|dfl0ft E A

ug'{xf];\ M BC = BD D

B C

S
gd'gf k|Zg 13 :
lbPsf] lrqdf NPS, MAN / RMS ;/n /]vfx¿ x'g\ eg]
PQRS Pp6f rj|mLo rt'e{'h xf] egL k|dfl0ft ug'{xf];\ . P M
A

M R
;dfwfg M h'lSt M AQ hf]8f}+ . Q
tYox¿ sf/0fx¿
1. ∠NPQ = ∠NAQ 1. Pp6} rfk NQ df cfwfl/t kl/lw
sf]0fx¿ .
2. ∠NAQ = ∠MRQ 2. rj|mLo rt'{e'h AQRM sf] jfx|o sf]0f /
To;sf] leqL ljkl/t sf]0fsf] ;DaGw .
3. ∴ ∠NPQ = ∠MRQ 3. tYo 1 / 2 af6 .
4. ∴ PQRS Pp6f rj|mLo rt'e{'h xf] . 4. tYo 3 cg';f/ rt'e{'h PQRS sf] afx\o sf]0f
To;sf] leqL ljkl/t sf]0f;Fu a/fa/
ePsfn] .
k|dfl0ft eof] .
cEof;sf nflu k|Zgx¿ M A

1. lbOPsf] lrqdf k|dfl0ft ug'{xf];\ M ABCD Pp6f rj|mLo rt'{e'h G


F
D

xf] . E
B
C

2. lbOPsf] lrqdf AC=AB / XY // BC


X Y
208

B C
eP XBCY Pp6f rj|mLo rt'{e'h xf] egL l;b\w ug'{xf];\ .

3. lbOPsf] lrqdf AB / EF cfk;df ;dfgfGt/ 5g\ eg] CDEF Pp6f


A
rj|mLo rt'e{'h x'G5 egL k|dfl0ft ug'{xf];\ . D E

F
C
B

4. lbOPsf] lrqdf AF // ED 5g\ eg] BCDE Pp6f rj|mLo


B E
rt'e{'h xf] egL k|dfl0ft ug'{xf];\ . A

D
C F
5. lbOPsf] lrqdf AD // BC / AB // DE 5g\ . olb DE=DC
eP ABCD Pp6f rj|mLo rt'e{'h xf] egL k|dfl0ft ug'{xf];\ . A D

gd'gf k|Zg 14 :
lbOPsf] lrqdf ∠BAC sf] cw{s AG xf] eg] k|dfl0ft ug'{xf];\ M B C
E
(i) A, E, F / D rj|mLo ljGb'x¿ x'g\ .
(ii) EF// BC A
D

;dfwfg E F

h'lSt M A / D hf]l8Psf 5g\ . B


k|df0f M G
C

tYox¿ sf/0fx¿
1. ∠BAG = ∠CAG 1. ∠BAC sf] cw{s AG ePsfn]
2. ∠BAG = ∠BDG 2. Pp6} rfk BG df plePsf kl/lw sf]0fx¿
3. ∴ ∠CAG = ∠BDG cyf{t 3. tYo 1 / 2 cg';f/
∠EAF = ∠EDF
4. ∴ A, E, F / D rj|mLo ljGb'x¿ x'g\ 4. tYo 3 cg';f/ EF n] A / D df a/fa/
sf]0fx¿ agfPsf]n]
5. ∠CAD = ∠DEF 5. Pp6} rfk DF df cfwfl/t kl/lw sf]0fx¿
6. ∠CAD = ∠DBC 6. Pp6} rfk DC df cfwfl/t kl/lw sf]0fx¿
7. ∴ ∠DEF = ∠DBC 7. tYo 5 / 6 cg';f/
8. ∴ EF//BC 8. tYo 7 df ;ª\ut sf]0fx¿ a/fa/ ePsfn]
k|dfl0ft eof] .

cEof;sf nflu k|Zgx¿ M A G


E 209

C F D
B
1. lbOPsf] j[Ttdf AB=AC 5g\ eg] k|dfl0ft ug'{xf];\ .
(i) D, E, G / F rflqms ljGb'x¿ x'g\ .
(ii) BC // FG

A
D

2. lbOPsf] j[Ttsf] s]Gb| O xf] . olb AE=CE eP k|dfl0ft ug{'xf];\ M EO


// CB
E O

C
B
P

S T
3. lbOPsf] lrqdf, olb ST // AB 5g\
eg] k|dfl0ft ug'{xf];\ PS = PT A B

Q R
yk cEof;sf nflu k|Zgx¿ M
1. lbOPsf] j[Ttsf] s]Gb| O xf] . olb ST = UT 5 eg] k|dfl0ft R
ug'{xf];\ . ∠R = ∠S S

P Q
O T
U

O
2. lbOPsf] j[Ttsf] s]Gb| O xf] .
k|dfl0ft ug'{xf];\ M ∠AOC = 2(∠ACB + ∠BAC ) A C

A
Y

D
210
C
B X
3. lbOPsf] j[Ttdf ∠BAD / ∠BCD sf cw{sx¿ j|mdzM AX / CY x'g\ eg] XY j[Ttsf] Jof;
x'G5 egL k|dfl0ft ug'{xf];\ .

E
4. lbOPsf] lrqdf b'O{ cf]6f j[Ttx¿ ljGb' E / F df k|ltR5]bg
ePsf 5g\ . olb ABCD Pp6f ;Lwf/]vf xf] eg] k|dfl0ft
ug'{xf];\ M ∠AFC + ∠BED = 1800
F
A B C D

5. lbOPsf] j[Ttdf ABCD Pp6f ;dfgfGt/ rt'e'{h xf] . A D

k|dfl0ft ug'{xf];\ . CD = ED

B C E

6. lbOPsf ∆ABE df AC ⊥ BE / BD ⊥ AE 5g\ eg] A


k|dfl0ft ug'{xf];\ M ∠DCE = ∠BAD
D

E
B C
7. lbOPsf] ∆ABC df AB, BC / CA sf dWo ljGb'x¿ j|mdz M M, O / N x'g\ . olb AP ⊥
BC 5 eg] MNOP Pp6f rj|mLo rt'e'{h xf] egL k|dfl0ft ug'{xf];\ .
A

M N

B C
P O

M 211
O
R S
X

Q
8. lbOPsf] j[Ttdf s]Gb|ljGb'
O5 . olb PQ ⊥ RS 5g\ eg] k|dfl0ft ug'{xf];\ M
(i) ∠POR = ∠PMQ
(ii) MNOP Pp6f rj|mLo rt'e'{h xf] .

212
kf7 12 :kz{ /]vf (TANGENT)

!= kl/ro B

o; kf7af6 5f]6f] pTt/ cfpg] Pp6f k|Zg P;Pn;L k/LIffdf D C


;f]lwg] Joj:yf 5 .
@= cfwf/e"t tYox¿ T N
1. j[Ttsf] s]Gb|ljGb' / :kz{ ljGb' hf]8\g] cw{ Jof; :kz{ /]vfdf A

nDa x'G5 .
2. j[Ttsf] afx\o ljGb'af6 lvlrPsf b'O{ :kz{ /]vfx¿sf] :kz{ ljGb'x¿;Ddsf] b'/L a/fa/
x'G5g\ .
3. j[Ttsf] :kz{ ljGb'af6 lvlrPsf] hLjfn] :kz{ /]vfl;t agfPsf sf]0fx¿ j|mdzM PsfGt/
j[Tt v08sf sf]0fx¿;Fu a/fa/ x'G5g\ .
2 2 2
4. ;dsf]0f lqe'hdf, -s0f{_ = -nDa_ + -cfwf/_ x'G5 .
Y P
Wofg lbg'kg]{ s'/fx¿
(i) j[Ttsf] :kz{ /]vf eGgfn] j[Ttsf] kl/lwsf] Pp6f ljGb'nfO{ 5f]P/ C B

hfg] /]vf xf] . :kz{ ljGb' eGgfn] Tof] 5f]Psf] ljGb'nfO{ a'‰g'kb{5 .
h:t} M TN, XY / PQ :kz{ /]vfx¿ x'g\ eg] A, B / C ljGb'x¿ X Q
:kz{ljGb'x¿ x'g\ . T A N

Q
A
(ii) cfwf/e"t tYo 2 cg';f/ PA = PB, QA = QC /
RB = RC x'G5g\ . C

P
B
R

B
(iii) lrqdf hLjf AB n] j[TtnfO{ b'O{ cf]6f v08dfljefhg ul/Psf]
D
5 . To;}n] ADB / ACB j[Tt v08x¿ x'g\ . To:t} AB n] :kz{ /]vf TN C
;Fu agfPsf sf]0fx¿ ∠BAN / ∠BAT agfPsf 5g\ . ca, T N
A
∠BAN sf] PsfGt/ j[Tt v08 ADB xf] eg] ∠BAT sf]
PsfGt/j[Ttv08 eGgfn]] j[Ttv08 ACB nfO{ a'‰g'kb{5 . To;}n] tYo 3 cg';f/ ∠BAN = ∠BDA
/ ∠BAT = ∠BCA x'G5g\ .

213
(iv) ;dsf]0f lqe'hsf] s0f{ eGgfn] ;dsf]0fsf] ;Dd'v e'hf / B
c? b'O{ e'hfnfO{ nDa / cfwf/ a'‰g'kb{5 . h:t}
∆ABC df ∠ABC = 90 0 To;}n] AC s0f{ eof] . D
∴ AC 2 = AB 2 + BC 2 -o;nfO{ kfOyfuf]/; ;fWo elgG5 _ C

A N
5f]6f] pTt/ cfpg] k|Zgx¿sf] pTt/ / cEof;sf nflu T
k|Zgx¿ M
1. lbOPsf] lrqdf TAN :kz{/]vf / A :kz{ ljGb' 5g\ . olb AN = 24cm / BN=18cm 5g\ eg]
j[Ttsf] cw{ Jof; kTtf nufpg'xf];\ .

T A 24 cm N

;dfwfg M
(i) OA ⊥ TN -j[Ttsf] cw{Jof; :kz{ /]vfsf] :kz{ ljGb'df nDa x'g] ePsf]n]_
(ii) OA = OB = x -dfgf}+_ -Pp6} j[Ttsf cw{ Jof;x¿_
(iii) ∴ ON 2 = OA 2 + AN 2 -kfOyfuf]/; ;fWo_
or, (18+ x)2 = x2 + 242
or 324 + 36x + x2 = x2 + 576
or 36x = 252
∴ x=7 To;}n] cw{Jof; = 7cm

cEof;sf nflu k|Zgx¿ M lbOPsf] lrqx¿df X sf] dfg lgsfNg'xf];\ .


-s_ -v_ -u_
A A A
T N

O O

B B
O

T A 8 cm N T A x cm N

pTt/x¿ M -s_ 4cm -v_ 4cm -u_ 5cm

214
T
gd'gf k|Zg 1 : B C

lbOPsf] lrqdf O j[Ttsf] s]Gb|, TAN :kz{/]vf x0


/ A :kz{ ljGb' xf] . olb ∠OTA = 20 eP
0
D A
O
∠DCA(= x) sf] dfg lgsfNg'xf];\ M
T

;dfwfg M (i) ∠OAT = 90 0 - N

-cw{Jof; OA :kz{/]vf TN df nDa x'g] ePsfn]_


(ii) ∠AOT = 90 0
− 20 =70 - ∠AOT + ∠OTA = 90 0 x'G5 ._
0

1
(iii) ∠ADB = ∠AOB = 350 -Pp6} rfk AB df cfwfl/t kl/lw sf]0f / s]lGb|o
2
sf]0fsf] ;DjGw_
(iv) ∴ ∠ADC + ∠ACD = 90 0 - ∆ADC df ∠DAC = 90 o ePsfn]_
∴ ∠ACD = 90 0 − ∠ADC
= 900 - 350
∴ x = 550
0
cEof;sf nflu k|Zg M lbOPsf] lrqx¿df x sf] dfg lgsfNg'xf];\ .
-s_ -v_ -u_
T

B
B
O
x° B A
O
O
60° B
C M

40° x°
N T
A N A 24 cm N

-3_ -ª_
A
O

x° B O x° 40° P
35°
T A N B

pTt/x¿ M -s_ 250 -v_ 300 -u_ 500 -3_ 700 -ª_ 1400

gd'gf k|Zg 2:

215
lbOPsf] lrqdf PA / PB b'O{ :kz{ /]vfx¿ x'g\ . olb ∴ ∠APB = 80 0 eP, A

∠ACB sf] dfg lgsfNg'xf];\ .

P 80° ?° C

;dfwfg M
(i) PA = PB-afx\o ljGb' P af6 j[Ttdf lvlrPsf :kz{ /]vfx¿_ B
(ii) ∠PAB = ∠PBA = x 0 -dfgf}_ -;dlåafx' ∆PAB sf
cfwf/sf sf]0fx¿_
(iii) 800 + x0 + x0 = 1800 - ∆PAB sf] ltg cf]6f sf]0fx¿sf] of]u_
∴ x = 50 0
(iv) To;}n], ∠PAB = ∠ACB -PsfGt/ j[Tt v08sf sf]0fx¿ ePsfn]_
∴ ∠ACB = 50 0
cEof;sf nflu k|Zgx¿ M
tn lbOPsf lrqx¿df x0 sf] dfg lgsfNg'xf];\ .
-s_ -v_
S
- u_
S
A
Q R
Q R

60° P

B
P P

pTt/x¿ M -s_ 10cm -v_ 800 -u_ 650

216
yk cEof;sf nflu k|Zgx¿ M
tn lbOPsf] lrqx¿df x0 / y0 sf] dfg lgsfNg'xf];\ .

-s_ -v_ -u_


P

B
N
C
C B x°
x° O x°
130°
Q
A
50° y°

T A N T A N T

-3_ -ª_ -r_


B T

50°

A A
B O
y° x°
C
O y° P

T 25° N D
A N B

(TA=AB / ∠ ATC = 250)


pTt/x¿ M
-s_ 400 -v_ 600, 600 -u_ 500
-3_ 400, 400 -ª_ 250 -r_ 560, 680

217
kf7 13 /rgf (Construction)
1. kl/ro
o; kf7df lqe'h / rt'e{'hsf] If]qkmn ;DaGwL ;fWox¿sf cfwf/df, a/fa/ If]qkmn x'g]
lqe'h / rt'e'{hsf] /rgf ug]{ tl/sfsf af/]df rrf{ ul/Psf] 5 . o; kf7af6 P;Pn;L
k/LIffdf nfdf] pTt/ cfpg] Pp6f k|Zg ;f]lwg] 5 eGg] s'/f ljlzi6Ls/0f tflnsfdf pNn]v
ul/Psf] 5 .

2. cfwf/e"t tYox¿
-s_ Pp6} cfwf/ / pxL ;dfgfGt/ /]vfx¿ lar /x]sf
(i) lqe'hx¿sf] If]qkmn a/fa/ x'G5g\\ .
(ii) ;dfgfGt/ rt'e'{hx¿sf] If]qkmn a/fa/ x'G5g\ .
(iii) lqe'hsf] If]qkmn ;dfgfGt/ rt'e'{hsf] If]qkmnsf] cfwf x'G5 .
-v_ ;dfgfGt/ rt'e'{hsf]
(i) ;Dd'v e'hfx¿ a/fa/ x'G5g\ .
(ii) ;Dd'v sf]0fx¿ a/fa/ x'G5g\ .
(ii) ljs0f{x¿ k/:k/ ;dlåefhg x'G5g\ .

3. Wofg lbg'kg]{ s'/fx¿


-s_ ;j{k|yd /rgf ug'{kg]{ gfds/0f;lxt lrqsf] v];|f -/km_ sf]/]df lrq agfpgdf ;xhtf
cfp“5 .
-v_ :ki6 / dl;gf] /]vf lvRg'kb{5 . /]vfsf] df]6fO{ sxL“ dl;gf] sxL“ df]6f] geO{ Psgf;sf] x'g'
/fd|f] x'G5 .
-u_ lbOPsf gfkx¿ lrqdf b]vfpg / gfds/0f ug{ lj;{g' x'“b}g .
-3_ /rgf u/]sf] lrqnfO{ ;}b\wflGts ¿kdf hf“Rg'kb{5 .
-ª_ lrq tof/ u/]kl5 cGTodf cfjZos lrq of] xf] egL n]Vg'kb{5 .
-r_ /rgfsf r/0fx¿ pNn]v ug'{kb}{g .

gd'gf k|Zg 1:
AB =BC = 5.5cm, CD=DA=4.5cm / ∠BAD = 75 sf] ePsf] rt'e'{h
0
ABCD sf]
If]qkmn;Fu a/fa/ x'g] Pp6f lqe'h ADE sf] /rgf ug'{xf];\ .

218
oxfF rt'e{h' / lqe'hsf] ;femf e'hf AD
nfO{ lrqdf h:t} af“of kIfdf /flvPsf] .
∴ cfjZos ADE sf] /rgf ul/of] .

r/0fx¿
1. lbOPsf] rt'e'{h ABCD sf] /rgf ug]{ . To;sf nflu M
(i) cfwf/ AB=5.5cm lvrf}+ .
(ii) A df ∠BAD = 750 lvrL ;f] /]vfdf AD = 4.5cm sf] rfk sf6f}+ .
(iii) D af6 DC = 4.5cm sf] rfk / B af6 BC = 5.5cm sf] rfk Ps cfk;df sf6]/ DC / BC
hf]8f}+ . o;/L rt'e'{h ABCD k'/f tof/ eof] .
2. ljs0f{ BD hf]8]/ of];Fu C af6 ;dfgfGt/ /]vf lvRg] . h;n] AB nfO{ nDAofOPsf] efunfO{
ljGb' E df e]6\5 . ;dfgfGt/ /]vf CE lvRgsf nflu M
(i) lrqdf b]lvP h:t} B af6 BD / BC nfO{ sf6\g] u/L Pp6f rfk PQ lvRg] / ;f]xL rfk a/fa/
x'g]u/L C af6 CB nfO{ sf6\g] u/L csf]{ rfk RS lvRg] . rfk PQ gfk]/ R af6 RT rfk sf6\g] .
o;/L PsfGt/ sf]0fx¿ ∠DBC = ∠BCE eO{ DB//CE x'G5 . -k/LIffdf r/0fx¿ n]lv/xg'
kb}{g . rfk PQ / RT eg]/ gfds/0f klg ug'{kb}{g ._
3. A / E hf]8\g] .
cEof;sf nflu k|Zgx¿
1. PQ = QR = 5cm, RS = Sp = 6cm / ∠P = 60 0 x'g] rt'e'{h PQRS /rgf u/L ;f] rt'e'{hsf]
If]qkmn;Fu a/fa/ x'g]u/L ∆PST sf] /rgf ug'{xf];\ .
2. AB = 6.2cm, BC = 5.3cm / CD = 5cm, PS = 5.7cm / AC = 5.6cm ePsf] rt'e'{h ABCD

/rgf u/L pSt rt'e'{hsf] If]qkmn;Fu a/fa/ x'g] u/L ∆ BCE sf] klg /rgf ug'{xf];\ .

219
gd'gf k|Zg @ M
a = 7cm, b = 6.6 / c = 5.8cm ePsf] Pp6f ∆ ABC /rgf u/L To;sf] If]qkmn;Fu a/fa/
x'g] Pp6f ;dfgfGt/ rt'e'{h CDEF sf] /rgf ug'{xf];\ . h;sf],
(i) Pp6f sf]0f ∠CDE = 60 0 5 . (ii) Pp6f e'hf DE = 6.8cm 5 .
;dfwfg M
S
A E F
X y A
T
R
c=5.8cm b=6.6cm

b=6.6cm B C
c = 5.8cm a=7cm

D 60
B P a=7cm 0 C

:. cfjZos ;dfgfGt/ rt'e\{'h CDEF /rgf ul/of] .

r/0fx¿ M
1. ∆ ABC sf] /rgf M
(i) cfwf/ BC = a = 7cm lvrf}+ .
(ii) B af6 AB = c =5.8cm sf] rfk / C
af6 CA = b = `6.6cm sf] rfk Ps
cfk;df sf6]sf] ljGb' A ;Fu B / C
hf]8]/ ∆ ABC jgfcf}+ .

2. cfwf/ BC ;Fu ;dfgfGt/ x'g]u/L A af6


/]vf XY lvrf}+ . h;sf] lgldTt
(i) B af6 Pp6f rfk PQ lvrf}+ / ;f]xL gfk a/fj/sf] rfk RS ljGb' A af6 lvrf}+ .
(ii) ∠B agfpg] rfk PQ gfk]/ R af6 rfk RT sf6\g] .

220
;dfgfGt/ /]vf XY lvRg] . -PsfGt/ sf]0fx¿ ∠BAX = ∠ABC ePsfn]_
(iii) A ;Fu T hf]8]/
3. BC sf] nDjfw{s lvr]/ BC sf] dWo ljGb' D kTtf nufpg] . h;sf] lgldTt M
(i) BC sf] cfwfeGbf a9L gfksf] rfk lnP/ B / C af6 lrqdf b]vfP h:t} M o;sf] b'j} ;fO8df
rfkx¿ lvRg] . o;/L rfkx¿ sfl6Psf] ljGb'x¿ hf]8\g] . h;n] BC nfO{ D df sf6\5 .
4. D df ∠CDE = 60 0 sf] sf]0f lvrf}+ . DE n] XY nfO{ E df e]6\5 .
5. ca E af6 DC = EF x'g] u/L XY df rfk EF sf6\g] / FC hf]8\g] . o;/L ;dfgfGt/ rt'e'{h CDEF
sf] /rgf k'/f eof] .
(ii) ∆ ABC sf] If]qkmn a/fa/ x'g] u/L Pp6f e'hf DE = 5.5cm ePsf] ;dfgfGt/ rt'e'{h CDEF
sf] /rgf ug{ r/0fx¿ 1, 2 / 3 k"/f ug]{ .
6. 5.5cm sf] rfk gfk]/ D / C af6 XY sf] b'O{ ljGb'x¿ E / F df sf6\g] . DE / CF hf]8]/
CDEF sf] /rgf k'/f x'G5 .
∴ cfjZos ;dfgfGt/ rt'e'{h CDEF sf] /rgf ul/of] .

cEof;sf nflu k|Zgx¿


1. a = 7.8cm, b = 7.2cm / c = 6.3cm ePsf] ∆ ABC sf] If]qkmn;Fu a/fa/ x'g]u/L Pp6f sf]0f
0
45 ePsf] Pp6f ;dfgfGt/ rt'e'{hsf] /rgf ug'{xf];\ .
2. PQ = 7.5cm, QR = 6.8cm / RP = 6cm ePsf] Pp6f ∆ PQR /rgf u/L To;sf] If]qkmn;Fu
a/fa/ x'g] u/L Pp6f e'hf TQ = 6.4cm ePsf] ;dfgfGt/ rt'e'{h TQSU sf] /rgf ug'{xf];\ .
3. AB = 6cm, BC = 7cm / CA = 5cm ePsf] ∆ ABC sf] /rgf u/L To;sf] If]qkmn;Fu a/fa/ x'g]
Pp6f cfot CDEF sf] /rgf ug'{xf];\ .

gd'gf k|Zg 3. AB = 6.2cm, AC = 8cm / BD = 6cm ePsf] ;dfgfGt/ rt'e'{h ABCD sf] /rgf
u/L To;sf] If]qkmn;Fu a/fa/ x'g]u/L ∆ ADE sf] /rgf ug'{xf];\ .
∴ cfjZos ∆ ADE sf] /rgf eof] .

D C

6cm 8cm

A 6.2cm B
r/0fx¿ M1. lbOPsf] gfkcg';f/ ;dfgfGt/ rt'e'{h ABCD
lvRg] .
(i) cfwf/ AB = 6.2 lvrf}+ .
221
(ii) A af6 4cm sf] rfk / B af6 3cm sf] rfk lvr]/ cfk;df ljGb' O df sf6f}+ .
(iii) AO / DO nfO{ hf]8]/ nDAofpg] .
(iv) AO = CO 4cm sf] rfk lnP/ O af6 rfk OC sf6\g] / BO = OD = 3cm x'g]u/L O
af6 rfk OD sf6\g] .
(v) AD, DC / BC hf]8]/ ;dfgfGt/ rt'e'{h ABCD k'/f ug]{ .
2. cfwf/ AB nfO{ nDAofP/ AB = BE = 6.2cm agfpg] .
3. D / E hf]8\g] .
∴ ∆ ADE tof/ eof] . h;sf] If]qkmn ABCD sf] If]qkmn;Fu a/fa/ x'G5 .
cEof;sf nflu k|Zgx¿ M
1. AB = 4cm, ∠ABC = 60 0 / BC = 6cm ePsf] Pp6f ;dfgfGt/ rt'e'{h ABCD sf]
0
/rgf u/L To;sf] If]qkmn;Fu a/fa/ x'g] / Pp6f sf]0f 30 ePsf] lqe'hsf] /rgf
ug'{xf];\ .
2. ;dfgfGt/ rt'e'{h PQRS sf] /rgf ug'{xf];\ . h;df PQ = 5cm ljs0f{ PR = 6cm /
ljs0f{ QS = 8cm 5g\ . pSt ;dfgfGt/ rt'e'{hsf If]qkmn;Fu a/fa/ x'g]u/L Pp6f
∆ PSA sf] /rgf klg ug'{xf];\ .

222
kf7 !$= k|of]ufTds k/LIf0f (EXPERIMENTAL VERIFICATION)

!= kl/ro
o; kf7df lqe'h / ;dfgfGt/ rt'e'{hsf] If]qkmn tyf j[Tt ;DaGwL ;fWox¿sf] k|of]uåf/f
k/LIf0f ug]{ tl/sfsf af/]df rrf{ ul/Psf] 5 . ljlzi6Ls/0f tflnsf cg';f/ P;Pn;L k/LIffdf
o; kf7af6 nfdf] pTt/ cfpg] Pp6f k|Zg ;f]lwg] 5 .
@= Wofg lbg'kg]{ s'/fx¿ M
1. b'O{ cf]6f km/s km/s gfksf / cfs[ltsf lrqx¿ agfpg'kb{5 .
2. lrqx¿ 7'nf] / :ki6 x'g'kb{5 / gfkx¿ k|Zgdf pNn]v u/] cg';f/ x'g'kb{5 .
3. cfjZos gfkx¿nfO{ tflnsfdf k|:t't u/L To;sf] cfwf/df lg:sif{ lgsfNg'kb{5
4. yfxf lbOPsf] n]Vbf k|of]udf cfpg] HofldtLo pks/0fx¿sf] -h:t} M k]lG;n,sDkf;,
k|f]6\ofS6/ cflbsf] gfd klg pNn]v ul/P /fd|f] x'G5 ._
5. S.L.C k/LIffdf yfxf lbOPsf] / k/LIf0f ug'{kg]{ pNn]v ul//xg' cfjZos 5}g .
#= gd'gf k|Zgf]Tt/ / cEof;
gd'gf k|Zg 1:
j[Ttsf] Pp6} rfkdf cfwfl/t s]Gb|Lo sf]0f kl/lw sf]0fsf] bf]Aa/ x'G5 egL k|of]uåf/f k/LIf0f ug'{xf];\ .
sDtLdf 3cm cw{Jof;x¿ ePsf km/s km/s gfksf b'O{ cf]6f j[Ttx¿ clgjfo{ 5 ._

1. yfxf lbPsf] M
(i) k]lG;n sDkf;sf] db\btn] 4cm / 4.5cm cw{Jof;x¿ ePsf b'O{ cf]6f j[Ttx¿ lvlrPsf
5g\ . s]Gb|nfO{ O n] hgfOPsf] 5 .
(ii) k|To]s j[Ttdf ?n/sf] ;xfotfn] rfk QR df cfwfl/t x'g] u/L km/s km/s gfksf s]Gb|Lo
sf]0f QOR / kl/lw sf]0f QPR agfOPsf 5g\ .
223
2. k/LIf0f ug'{kg]{ M ∠QOR = 2∠QPR
3. ljlw M b'j} lrqdf k|f]6\ofS6/n] ∠QOP / ∠QPR gflkPsf 5g\ . gfkx¿ lgDg tflnsfdf
k|:t''t ul/Psf 5g\ .

gfk tflnsf
lrq ∠QOR ∠QPR glthf
(i) 940 470 ∴ ∠QOR = 2∠QPR

(ii) 540 270 ∠QOR = 2∠QPR

4. lgisif{ M dflysf tflnsfaf6 j[Ttsf] Pp6} rfkdf cfwfl/t s]Gb|Lo sf]0f kl/lw sf]0fsf] bf]Aa/
x'G5 eGg] tYo k|dfl0ft x'G5 .

cEof;sf nflu k|Zgx¿ M


k|of]uåf/f l;b\w ug{'xf];\ M
(3cm.eGbf a9L cw{Jof;x¿ ePsf b'O{cf]6f j[Ttx¿ clgjfo{ 5)
1. s]Gb|ljGb' O ePsf] j[Ttsf] rfk BC df cfwfl/t s]Gb|Lo sf]0f ∠BOC kl/lw sf]0f ∠BAC
sf] bf]Aa/ x'G5 .
2. j[Ttsf] pxL rfk BC df ag]sf kl/lw sf]0fx¿ ∠BAC /∠BDC a/fa/ x'G5g\ .
3. cw{j[Ttdf aGg] sf]0f Ps ;dsf]0f x'G5 .
0
4. rj|mLo rt'e{'h PQRS df ∠P+∠R=180 x'G5 .
gd'gf k|Zg 2:
Pp6} cfwf/ / pxL ;dfgfGt/
/]vfx¿ lar ag]sf ;dfgfGt/ F D E C
M N
rt'e'{hx¿sf] If]qkmnx¿ a/fa/
x'G5g\ .
1. yfxf lbOPsf] M
(i) ;]6 :Sjfo/sf] d4tn] /]vfx¿
XY//MN lvlrPsf] 5 .
(ii) XY df km/s gfksf] cfwf/ X B Y
A G
AB lnO{ ;dfgfGt/ /]vfx¿
lardf km/s gfksf b'O{ cf]6f ;dfgfGt/ rt'e'{hx¿ ABCD / ABEF agfOPsf 5g\\ .
(iii) ;]6 :Sjfo/sf] ;xfotfn] AB df EG nDa lvlrPsf] 5 .

224
M F E D C N

X B Y
A G

2. kl/If0f ug'{kg]{ M ABCD sf] If]qkmn = ABEF sf] If]qkmn


3. ljlw M l8efO8/ / ?n/sf] db\btn] k|To]s lrqdf cfwf/ AB / EG rfk gfk]/ ABCD
/ ABEF sf] If]qkmn u0fgf u/]/ tnsf] tflnsfdf k|:t't ul/Psf] 5 .
lrq AB EG ABCD sf] If]qkmn ABEF sf] If]qkmn = glthf
= (AB.EG) (AB.EG)
(i) 3.8cm 3.3cm 12.54cm2 12.54cm2 ABCD = ABEF
(ii) 5.5cm 4cm 22cm2 22cm2 ABCD = ABEF

4. lgisif{ M o;/L dflysf] tflnsfaf6 Pp6} cfwf/ / pxL ;dfgfGt/ /]vfx¿ larsf ;dfgfGt/
rt'e'{hx¿sf] If]qkmn a/fa/ x'G5g\ eGg] tYo k|dfl0ft x'G5 .

cEof;sf nflu k|Zgx¿ M


k|of]uåf/f k/LIf0f ug'{xf];\ .
(i) Pp6} cfwf/ / pxL ;dfgfGt/ /]vfx¿ larsf lqe'hx¿sf] If]qkmn a/fa/ x'G5g\ .
(ii) Pp6} cfwf/ / pxL ;dfgfGt/ /]vfx¿ lar /x]sf] lqe'hsf] If]qkmn ;dfgfGt/ rt'e'{hsf]
If]qkmnsf] cfwf x'G5 .
(iii) Pp6} cfwf/ PQ / pxL ;dfgfGt/ /]vfx¿ PQ / ST lar /x]sf ;dfgfGt/ rt'e'{hx¿ PQRS
/ PQTU sf] If]qkmn a/fa/ x'G5g\ .

225
If]q M ^ lqsf]0fldlt (Trigonometry)
!= kl/ro -Introduction)
lqsf]0fldlt (Trigonometry) zAb lu|s
Word Triangle
Metron : To Measure cyjf the Measurement of the angle of a triangle cyf{t lqe'hsf]
ltg cf]6f sf]0fsf] gfknfO{ lqsf]0fldlt elgG5 . lqe'hsf] xn ug'{ g} o;sf] ljz]iftf xf] . lqsf]0fldlt
/ Hofldlt cfk;df ;DalGwt ljifox¿ x'g\ . lqsf]0fldltsf] ljsf;df lu|s Astronomer
Hipparchus sf] dxTTjk"0f{ e"ldsf b]lvG5 To;}n] pgnfO{ lqsf]0fldltsf hGdbftfsf ¿kdf lnG5 .
cfhfef]ln cfP/ lqsf]0fldltsf] k|of]u cGo If]qx¿ Engineerting, Geology, Astrological
Survey, Navigation / lj1fgsf cGo If]qx¿df ePsf] kfOG5 . lqsf]0fldltnfO{ ul0ftsf] ;a}eGbf
Jofjxfl/s cª\u dflgG5 . lj1fgsf] pGgltnfO{ lzv/df k'¥ofpgdf o;sf] 7'nf] e"ldsf /x]sf]
kfOG5 .
d'Vo ljifoj:t'x¿ (Main Subject matters)
-s_ lqsf]0fldlto cg'kftx¿ (trigonomeric ratios)
-v_ lqsf]0fldlto ;"qx¿ k|of]u u/L lqe'h tyf rt'e'{hsf If]qkmn
-u_ pGgtf+z sf]0f (angle of elevation) / cjgltsf]0f (angle of depression) sf]0f
-3_ lqsf]0fldlto cg'kftsf] k|of]u u/L prfO tyf b'/L;“u ;DalGwt ;d:ofx¿sf] ;dfwfg
S.L.C Exam Specification Grid – 2065
P;Pn;L k/LIff ljlzi6Ls/0f tflnsf M 2065
;+1fg 1fg (knowledge) l;k hDdf l;k ;d:of hDdf s"n hDdf
(cognitive af]w (skill) cª\s (skill) ;dfwfg cª\s (Grand
domain) (understanding) (total (problem (total total
If]q (Area) marks) solving) marks) marks)
ljifoj:t' 5f]6f] pTt/ cfpg] k|Zg nfdf] pTt/ cfpg] k|Zg
(content) (short answer) questions) (Long answer)
questions)
lqe'hsf] 11 - 2 - - - 2
If]qkn (Area
lqsf]0fldlt of Triangle)
(trigonometry) prfO / b"/L - - - - 1 4 4
(Height and
Distance)

226
pTt/ s'l~hsf
Marking Scheme

5f]6f] pTt/ cfpg] k|Zgsf nflu


lqe'hsf] If]qkmn l7s ;"q k|of]u afkt 1 cª\s A
l7s pTt/ lgsn] afkt 1 cª\s
7cm
hDdf M 2 cª\s
pbfx/0f M lbOPsf] lrqdf AB = 7cm, BC = 16cm C
B
/ sf] If]qkmn eg] ∠ABC sf] dfg lgsfNg'xf];\ . 16cm
;dfwfg
ABC sf] If]qkmn (A) = 18m

or, Marks

or,
or,
Marks
nfdf] pTt/ cfpg] k|Zgsf nflu pTt/ s'l~hsf
l7s lrq tyf j0f{g afkt 1 cª\s
s'g} e'hf jf sf]0f kTtf nufP/ afkt 1 cª\s
k|Zgn] ;f]w]cg';f/sf] l7s dfg 1 cª\s
u0fgf u/] afkt hDdf 4 cª\s
pbfx/0f M Pp6f 3/sf] 5taf6 s]xL ld6/ 6f9f /x]sf] ?vsf] 6'Kkf]df x]bf{ 30) sf] pGgtf+z sf]0f
aG5 . olb pSt 3/ / ?vsf] prfO j|mdzM 6 ld6/ 18 ld6/ 5 eg] 3/ / ?v larsf] b'/L
kTtf nufpg'xf];\ .
;dfwfg E
dfgf“} AB Pp6f 3/ xf] h;sf] prfO 6m 5 . CE Pp6f ?v xf] h;sf] prfO
18 m 5 .
3/sf] 5t A af6 ?vsf] 6'Kkf] E df x]bf{ 300 sf] pGgtf+z sf]0f ag]sf] 5 . A 300 D
AB = CD = 6m
CE = 18m 6
EAD= 300
ED = EC – DC B C
= 18 – 6
=12 m …................................ 1 Marks
;dsf]0f ADE af6
227
Tan 300 = ...................... 1 Marks
AD
Or,
Or,
Or, AD = 12 x 1.732
Or, AD = 20. 78 m
3/ / ?v larsf] b'/L = 20.78 m ............................1 Marks
cfwf/e"t tYox¿ tyf ;"qx¿
(Basic Facts and Formula)
C
i). lqsf]0fldlt cg'kftx¿ (Trigonometric Ratios)
Sin A =

Cos B = B
A
Tan C =
A
(ii) ABC sf] If]qkmn =
of] ;"q k|of]u ug{ lqe'hdf c b

cj:yf ;Gt'i6 x'g'kb{5 hxf“ a, b, c lqe'hsf ltg B a


C

cf]6f e'hfx? x'g\ .


iii) ljleGg ljlzi6 sf]0fx¿sf] lqsf]0fldlt cg'kft
Angle 00 300 450 600 900
Ratio
Sin 0 1

cos 1 0

Tan 0 1
(undefiend)

228
iv) ABC sf] If]qkmn = cfwf/ prfO A

BC AD
D
A
B B
D
v) ;dfgfGt/ rt'e'{h ABCD sf] If]qkmn = 2ABC sf] If]qkmn

C
B
A D
vi) cfotg ABCD sf] If]qkmn = cfwf/ x prfO = BC x AB

B C B
vii) pGgtf+z sf]0f (angle of elevetion) b[li6/]vf
cjnf]sg stf{n] xf]rf] :yfgdf jl; cUnf] :yfgdf /x]sf] j:t'sf]
cjnf]sg ubf{ b[li6 /]vf n] hldg jf hldg ;+u ;dfgfGt/ /]vf ;+u agfPsf]
sf]0fnfO{ pGgtf+z sf]0f elgG5 . C A
lIflth /]vf
lrqdf ACB= pGgtf+z sf]0f xf] .
viii) cjglt sf]0f (angle of depression) B X
cjnf]sgstf{n] xf]rf] :yfgdf a;L cUnf] :yfgdf b[[li6 /]vf
(opticalize)
/x]sf] j:t'sf] cjnf]sg ubf{ b[li6 /]vfn] hldg jf hldg;“u
;dfgfGt/ /]vf;“u agfPsf] sf]0fnfO{ cjglt sf]0f elgG5 . C
A
lIflth /]vf (Horizontal line)
15.1.3 ljz]if Wofg lbg'kg]{ s'/fx¿ B X
cjgltsf]0f
i) cjglt sf]0f / pGgtf+z sf]0f hlxn] klg a/fa/ x'G5 lsgls

oL b'O{ sf]0fx¿ PsfGt/ sf]0f x'g\ . pGgtf+ztLsf]0f


C
cyf{t\, ∠ACB = ∠CBX x'G5 . cjgtLA sf]0f (Angle of depression)

A (Angle of elevation)

s0f{(h)
ii) ∠B 900 ;dsf]0f ∆ABC df ∠B = 900 ePsfn]
∠B ;fd'g]sf] e'hf AC nfO{ s0f{ (h) elgG5 .
To:t} nfO{ Go"gsf]0f elgG5 B C
/ o;nfO{ angle of reference elgG5 / of] angle of reference sf] ;fd'Gg]sf] e'hf AB nfO{
nDa (p) elgG5 / af“sL t];|f] e'hf BC nfO{ cfwf/ (b) elgG5 .
s0f{ ;w}“ 900 sf] ;Dd'v e'hf x'G5 t/ nDa / cfwf/ eg] Angle of reference sf cfwf/df
lgwf{/0f ul/g] ePsf]n] km/s kg{ ;S5 .

229
A
h:t} M
Q
s0f{(h)
cfwf/ (b)

iii) dlWosfn] lqe'hnfO{ cfwf ub{5 . B C


nFDa (p)
lrqdf, dlWosf AD n] ABC nfO{ cfwf ub{5 To;}n]
A
ABD sf] If]qkmn = ADC sf] If]qkmn

vi) Pp6} cfwf/ AB / pxL ;dfgfGt/


/]vfx¿ AB / CD lar /x]sf B D C
lqe'h ABE / ;dfgfGt/ rt'e{'h ABCD df lqe'hsf]
If]qkmn ;dfgfGt/ rt'e{'hsf] If]qkmnsf] cfwf x'G5 . cyf{t\
D E
C
ABE sf] If]qkmn = sf] If]qkmn
cyf{t\ 2 ∆ ABE sf] If]qkmn = ABCD sf] If]qkmn
v) prfO / b'/L ;DaGwL ;d:ofnfO{ ;dsf]0f lqe'h (right A B
angled triangle) df abnL lrq agfpg' cjZos x'G5 .
vi) lqe'hsf] If]qkmn lgsfNbf k|of]u x'g] sf]0f yfxf lbOPsf] 2 cf]6f e'hfsf] lardf k/] gk/]sf] ljrf/
ug'{kb{5 / olb lardf gk/]sf] eP To;nfO{ lardf kfg]{ pkfox¿sf] vf]hL ug'{kb{5 .
vii) lqe'hsf] If]qkmnsf] kl/df0f n]lv;s]kl5 PsfO n]Vg la;{g' x“'b}g, h:t} M ∆ABC = 10 ju{ ;]=ld=
10 ju{ PsfO cflb .

gd'g k|Zg pTt/


5f]6f] pTt/ cfpg] k|Zgx¿
gd'gf k|Zg 1 M C
lbOPsf] ∆ABC df a = 12 cm, c = / ∠ABC = 45 5 eg]
0
12cm
∆ABC sf] If]qkmn lgsfNg'xf];\ .
450
;dfwfg A B
15 cm
∆ABC sf] If]qkmn =

=
= 90cm2
P
cEof;sf nflu k|Zgx¿
4cm
1. lbOPsf] ∆PQR df olb PQ = 4 cm QR = 7cm / ∠PQR = 300 eP
∆PQR sf] If]qkmn lgsfNg'xf];\ . Ans: 7cm2 Q 30
0
R
7cm

230
2. lbOPsf] ∆PQR df PQ = 4 P
0
PR = 8cm / ∠QPR = 450 5 eg] 45
8cm
4 cm
∆PQR sf] If]qkmn lgsfNg'xf];\ . Ans: 16cm2
Q R

3. lbOPsf] lqrdf KM = 17cm M


∠MKP = 600 / KP = 20cm 17cm
eP ∆MPK sf] If]qkmn lgsfNg'xf];\ . Ans: 147.22cm2 60
0

K 20cm P

4. lbOPsf] lrq ∆XYZ df XY = YZ = 12 cm


X
/ ∠XYZ = 300 eP ∆XYZ sf] If]qkmn lgsfNg'xf];\ .
Ans: 36cm2 0
30
Z Y

5. lbOPsf] lrqdf a = 4cm, b = 6cm / ∠C = 600 eP ∆ABC sf]


If]qkmn lgsfNg'xf];\ . A
6cm
2 60
0
Ans: 10.39cm B C
4cm

gd'gf k|Zg g+= 2 : X

lbOPsf] lrqdf ∠XYZ = 300, yz=12cm / ∆ xyz sf] If]qkmn= 27 cm2 5


eg] e'hf XY sf] gfk lgsfNg'xf];\ . Z 30
0
Y
12cm
;dfwfg
lbOPsf] ∆XYZ sf] If]qkmn (A) =
or, 27 =
or, 27 = 3xy
or, 3xy = 27
or, xy =
A
or, xy = 9cm
cEof;sf nflu k|Zgx¿ 6

1. lbOPsf] lrqdf AB = 6 , 45
0
C
B
∠ABC = ∆45 / ∆ABC sf] If]qkmn = 24cm2
0

5 eg] e'hf BC sf] gfk kTtf nufpg'xf];\ . Ans: 8cm


X
0
30
10cm 231

Y Z
2. lbOPsf] lrqdf xz = 10cm , ∠yxz = 300
/ ∆xyz sf] If]qkmn = 24cm2 5 eg]
xy sf] gfk kTtf nufpg'xf];\ .
Ans: 9.6cm
Y
0
3. lbOPsf] ∆xyz df olb xy = 14cm 60
14cm
∠xyz = 600 / ∆xyz sf] If]qkmn = 28 eP Z X
e'hf yz sf] nDafO kTtf nufpg'xf];\ . Ans: 8cm
A
4. lbOPsf] ∆ABC df BC = 12 cm, AB = AC,
∠B = 300 / ∆ABC sf] If]qkmn 27cm2 5 0
30
eg] e'hf AC sf] nDafO kTtf nufpg'xf];\ . B 12cm C

[Hint:(∆ABC ;dflåjfx' lqe'h ePsfn] o;sf cfwf/sf sf]0fx¿ a/fa/ x'G5 cyf{t\ ∠B =
∠C = 300 x'G5 To;kl5 ∆ABC sf] If]qkmnsf] ;"q k|of]u ug]{)] Ans: 12cm

5. ;“u} lbOPsf] ∆ABC df


∠A + ∠B = 1500, AC = 8cm / A
∆ABC sf] If]qkmn 24cm2 eP
8cm
e'hf BC sf] gfk kTtf nufpg'xf];\ . Ans: 12cm [Hint :
(;'?df ∠C sf] dfg kTtf nufpg] / To;kl5 ∆ABC sf] If]qkmnsf] ;"q B C
nufpg])]

A
gd'gf k|Zg g+= 3 : 6cm
;“u} lbOPsf] lrqdf AB = 6cm, BC = 8cm
B
/ ∆ABC sf] If]qkmn = 12 cm2 eP
8cm C
∠ABC sf] gfk kTtf nufpg'xf];\ .
;dfwfg
∆ABC sf] If]qkmn (A) =
Or, 12 =
Or, 12 = 24 sinABC

232
Or, 24 SinABC = 12

Or, SinABC =

Or, SinABC =
Or, Sin ABC = sin600
∴ ∠ABC = 600
P
cEof;sf nflu k|Zgx¿
1. lbOPsf] lqe'hdf PQ = 10cm, PR = 18cm 10cm
18cm

/ ∆PQR sf] If]qkmn = 45 eP


Q
∠QPR sf] dfg kTtf nufpg'xf];\ . Ans:600 R

D
2. lbOPsf] ∆DEF df DF = 7cm,
7cm
EF = 10cm, ∆DEF sf] If]qkmn =
0
50
/ ∠DEF = 500 eP ∠EDF sf] dfg kTtf nufpg'xf];\ . E 10cm
F

Hint: ;'?df ∆ sf] If]qkmnsf] ;"qaf6 Ans:700


∠DEF kTtf nufpg] To;kl5 clGtddf ∠EDF sf] dfg kTtf nufpg'xf];\ .
P
3. ;“u}sf] lrqdf PQ = 7cm, 7cm
QR = 16cm / ∆PQR sf] If]qkmn = 5
Q R
16cm
eg] ∠PQR sf] dfg kTtf nufpg'xf];\ . Ans:600

4. lbOPsf] ∆ LMN df LN= 7cm, MN = 10cm / ∆ L


7cm
LMN sf] If]qkmn = eP ∠MNL sf] dfg
lgsfNg'xf];\ . Ans: 600 M
? N
10cm

9 cm P
gd'gf k|Zg g+= 4 : S

lbOPsf] lrqdf PQRS Pp6f ;dfGgfGt/ rt'e{'h


xf] h;df QR nfO{ T laGb';Dd a9fPsf] 5 . 6 cm
?
olb ;dfgfGt/ rt'e{'hsf] If]qkmn = 27 T R Q

233
e'hf QP = 6cm / e'hdf PS = 9cm
eP ∠SRT sf] gfk kTtf nufpg'xf];\ .
;dfwfg
lbPsf], = ;=r= PQRS 5 . (A) = 27
PQ = 6cm = SR cyf{t PQ = SR =6cm
To:t}, PS = 9cm = RQ
cyf{t\ PS = RQ = 9cm
/rgf M ljs0f{ SQ nfO{ hf]8f“} .
ca,
;=r= PQRS sf] If]qkmn (A) = 2∆SRQ sf] If]= (;=r=sf] ljs{0fn] ;=r= nfO{ cfwf ug]{ ePsfn] ._
or, 27
or, 27 = 6 x 9 x sin SRQ
or, 27 = 54 sin SRQ
or, 54 sinSRQ = 27
or, 54 sinSRQ =27

or, sin SRQ =

or, sin SRQ =


or, sin SRQ = sin600
∴ ∠SRQ = 600
ca km]l/ ∠SRQ + ∠SRT = 1800 -;/n sf]0f 1800 x'g] ePsfn] ._
or, 600 +∠SRT = 1800
or, ∠SRT = 1800 - 600 = 1200

cEo;sf nflu k|Zgx¿ D C


1. lbOPsf] lrqdf ;dfgfGt/ rt'e{'h ABCD sf]
If]qkmn = 81 5 . olb BC = f
/ AB = eP ∠DAB sf] gfk kTtf nufpg'xf];\ . ? f
0 A B
Ans: 60 ff

2. lbOPsf] ;dfgfGt/ rt'e'{h ∆ABCD sf] If]qkmn D


600 C
kTtf nufpg'xf];\ h;df AD = 6cm, AB = 8cm 6cm
/ ∠ BCA = 60 5 .
0
Ans: 24
A 8cm B

234
3. ;“u}sf] lrqdf ;dfgfGt/
S R
rt'e'{h PQRS sf] If]qkmn = 5.
olb ∠P = 450 / QR = eP
e'hf SR sf] nDafO kTtf nufpg'xf];\ . 450
P Q
Ans: 7

gd'gf k|Zg 5 : P M
Q
lbOPsf] lrqdf 60 ju{ ;]=ld= If]qkmn ePsf]
;dfgfGt/ rt'e{'h PQRS / ∆MRS Pp6}
cfwf/ SR df /]xsf 5g\ . olb SM = S 8cm R

SR = 8cm eP ∠AMR sf] dfg lgsfNg'xf];\ .


;dfwfg
;=r= PQRS sf] If]qkmn (A) = 2∆SMR sf] If]qkmn -Pp6} cfwf/ / pxL ;dfgfGt/ /]vfx¿lar /x]sf
lqe'h / ;dfgfGt/ rt'e'{hdf ;+=r= sf] If]qkmn lqe'hsf] If]qkmnsf] 2 u'0ff;“u a/fa/ x'g] ePsfn] ._
or, 60 =
or, 60 = 5 x 8 x sin MSR
or, 60 = 40 sin MSR
or, 40 sin MSR = 60
or, sin MSR =

or,Sin MSR =

or, Sin MSR =

or, Sin MSR =


or, Sin MSR = sin6 00
∴∠MSR = 600

A P
cEof;sf nflu k|Zg D
1. lbOPsf] lrqdf 18 ju{ ;]=ld= If]qkmn ePsf]
;dfgfGt/ rt'e'{h ABCD / ∆BPC Pp6}
B 6cm C
cfwf/ BC df /x]sf 5g\ . olb BC = 6cm
/ BP = 6 cm eP ∠PBC lgsfNg'xf];\ . Ans: 300

235
A D
2. lbOPsf] lrqdf 80 ju{ ;]=ld= If]qkmn ePsf]
;dfgfGt/ rt'e'{h ABCD / lqe'h PCD Pp6} P
8cm
cfwf/ DC df /x]sf 5g\ . olb PC = 8cm / PD = 10 cm B C
0
eP ∠CPD lgsfNg'xf];\ . Ans: 45
A E
1000 D
3. lbOPsf] lrqaf6 ;dfgfGt/ rt'e'{h ABCD sf]
If]qkmn kTtf nufpg'xf];\ . hxf“ BC = 10cm, 6cm
100

CE = 6cm, ∠DCE = 100 / ∠BAD = 1000 5g\ . B


2 10cm C
Ans: 60cm
[Hint:∠BAD =∠ BCD = 1000 (= ;=r=sf] ;Dd'vsf]0fx¿ a/fa/ x'g] ePsfn] . )
t/ ∠ECD = 100
To;}n] ∠ BCE = 100 - 100
= 900
ca dflysf] h:t} u/L ;=r= ABCD sf] If]qkmn lgsfNg] . ]
gd'gf k|Zg g+= 6 :
D C
lbOPsf] lrqdf ABCD Pp6f ;dafx' rt'e'{h xf] h;sf] If]qkmn 18 cm2 5
/ ∠ABC = 600 5 eg] e'hf AB sf] gfk kTtf nufpg'xf];\ . 600
;dfwfg A B
ca,
;dafx' rt'e'{h ABCD sf] If]qkmn = 2∆ABC sf] If]=
or, 18 =2x

or, 18 = AB x AB x [ AB = BC]

or, 18 = (AB)2

or, (AB)2 = 18

or, (AB)2 =

or, (AB)2 = 36
or, (AB)2 = (6)2
∴ AB = 6cm

236
cEof;sf nflu k|Zgx¿ S
R
1. lbOPsf] lrqdf PQRS Pp6f ;dafx' rt'e'{h xf] .
450 10 m
olb PQ = 10 cm / ∠PQR = 450 eP
pSt ;dafx' rt'{e'h PQRS sf] If]qkmn kTtf nufpg'xf];\ . P Q

Ans: 100 cm2


K N
2. lbOPsf] lrqdf KLMN Pp6f ;dafx' rt'e'{h xf] .
h;sf] If]qkmn 72 cm2 5 / ∠NML = 1800 eP 1200
L
e'hf KL sf] gfk lgsfNg'xf];\ . M
Ans: 12cm
gd'gf k|Zg g+= 7 :
lbOPsf] lrqdf ∆BPC Pp6f ;dafx' ∆ xf] . / ABCD Pp6f ;dfafx' rt'e'{h D C
2
xf] . olb APCD sf] If]qkmn 27 cm eP AB sf] gfk kTtf
nufpg'xf];\ .
A B P
;dfwfg M /rg M ljs0f{ BD hf]8f}“ .
∆BPC ;dafx' ∆ePsfn] ∠B = ∠C = ∠P = 600
km]/L, ∠B = ∠A = 600 ;+ut sf]0f ePsfn] .
;djfx' rt'e{'h ABCD sf] If]= (A1) = 2∆ABD sf] If]=
= 2x

= AB x AB x [ AD = AB]

= (AB)2
To:t}, ;dafx' ∆BPC sf] If]= (A2) =
=

=
k|Zgfg';f/,
APCD sf] If]= (A) = A1 + A2
or, 27 = (AB)2 + (AB)2

or, 27 =( + (AB)2

or, 27 =( (AB)2

or, (AB)2 = 27

237
or, (AB)2 =

or, (AB)2 =
or, (AB)2 = 36
or, (AB)2 = (6)2
or, AB = 6cm.
cyjf j}slNks tl/sf
APCD sf] If]qkmn (A) = 3 ∆ABCD sf] If]qkmn [∆APCD = ∆ABD + ∆BCD + ∆BPC
= ∆ABC+∆ABD+∆ABD
=3∆ABD]
Or, 27

Or, 27

Or, 27 (AB)2
Or, 3 (AB)2 = 108
Or, (AB)2 =
Or, (AB)2 = 36
Or, (AB)2 = (6)2
∴ AB = 6cm.

cEof;sf nflu k|Zgx¿ 8cm


P S
1. lbOPsf] lrqdf PQRS Ps ;dafx' rt'e'{h / ∆RTS Ps ;dfafx'
lqe'h eP ;dnDa rt'e'{h PQTS sf] If]qkmn kTtf nufpg'xf];\ .
Q R T
Ans: 48

T
2. ;“u}sf] lrqdf ∆QSR Pp6f ;dafx' lqe'h xf] / PQST Pp6f
;dafx' rt'e{'h xf] . olb ;dnDa rt'e{'h PQRT sf] If]qkmn P
48 ju{ ;]=ld= 5 eg] PT sf] nDafO kTtf nufpg'xf];\ . S

Ans: 8cm
Q
R

238
gd'gf k|Zg g+= 8 :
lbPsf] rt'e{'h ABCD sf] If]qkmn kTtf A
nufpg'xf];\ h;df AB = BC, AD = CD = 3cm
BD = 5cm / ∠BDC = 300 5g\ . B 300
D

;dfwfg
1. e'hf AB = BC – yfxf lbOPsf] . C

(i) e'hf AD = e'hf CD – yfxf lbPsf] .


(ii) e'hf BD = e'hf BD – ;femf e'hf ePsfn] .
(iii) 1. ABD ≅ BCD – e'= e'= e'= tYocg';f/ .

2. ∆ABD = ∆BCD – cg'¿k lqe'hsf] If]qkmn a/fa/ x'g] ePsfn] .

ca, ∆BCD sf] If]qkmn =


=
=
ca, k|Zgcg';f/
rt'e{'h ABCD sf] If]qkmn = 2 ∆BCD sf] If]qkmn
=2x
=
= 7.5 cm2

cEof;sf nflu k|Zgx¿ P


1. lbOPsf] rt'e'{h PQRS sf] If]qkmn
Q S
kTtf nufpg'xf];\ h;df PQ = PS, QR = ST = 8cm,
PR = 12 cm / ∠PRQ = 300 5 . Ans: 48cm2 300

R
2. lbOPsf] lrqdf rª\ufsf] If]qkmn
A
lgsfNg'xf];\ h;df AB = AD,
BC = CD = 27cm, AC = 30 cm B D
/ ∠ACD = 300 5 . Ans: 405cm 2
300

239
gd'gf k|Zg g+=9:
lbOPsf] lrqdf BD dlWosf xf] . olb BD = 6cm
BC = 10cm / ∠DBC = 300 eP A
∆ABC sf] If]qkmn kTtf nufpg'xf];\ .
D
;dfwfg
∆ABD = ∆BDC – dlWosf BD n] ∆ABC nfO{ cfwf ug]{ ePsfn] . B 300
ca, 10cm C

∆BDC sf] If]qkmn =


=
=
ca k|Zgfg';f/, ∆ABC sf]=If]==2∆BDC sf
A
=2×15
0
= 30cm2 30
8cm
cEof;sf nflu k|Zgx¿ 6cm
fff
1. lbOPsf] lrqdf AD dlWosf xf] . olb ∠CAD = 300 AD = C
B D
6cm / AC = 8cm eP ∆ABC sf] If]qkmn kTtf
nufpg'xf];\ .
Ans: 24cm2 Q

2. lbOPsf] lrqdf PS dlWosf xf] . olb SP=4cm, 60


0
P
S 4cm
PQ= cm / ∠QPS=600 eP ∆PQR sf] If]qkmn
kTtf nufpg'xf];\ .
R
P
Ans: 6cm2 0
98
yk cEof;sf nflu ldl>t k|Zgx¿
1. lbOPsf] ∆PQR df ∠QPR = 980, ∠PQR = 370 0
37
Q R
PR = 6 cm / QR = 9 cm 5g\ eg] ∆PQR sf] If]qkmn 9cm
kTtf nufpg'xf];\ . Ans: 27cm2
A
2. ;“u} lbOPsf] lrqdf AB = 6cm, BC = 8cm / ∆ABC sf]
If]qkmn 12 j=;]=ld= eP ∠ABC sf] gfk kTtf
nufpg'xf];\ .
B C
Ans: 300 8 cm

240
C
5x 16 cm
3. ∆ABC sf] If]qkmn 3 j=;]=ld= e'hf BC sf] nDafO 3cm /
0
∠ACB = 60 eP e'hf AC sf] nDafO kTtf nufpg'xf];\ . 3x 4x
B
A 20 cm
Ans: 4cm

Aa 12 cm
Ba
4. ;“u}sf] lrqdf ABCD Ps ;dafx' rt'e{'h xf] . olb AB = 12cm
/ rt'e'{h ABCD sf] If]qkmn 72 j=;]=ld= eP ∠BCD sf] gfk
kTtf nufpg'xf];\ . Ans: 300 Da Ca

5. lbOPsf] ∆ABC df BC = 16cm, AB = 20cm eP


W X
∆ABC sf] If]qkmn kTtf nufpg'xf];\ . 0
60
Ans:

T Z Y
6. lbOPsf] lrqdf wxyz Ps ;dafx' rt'e{'h / ∆WTZ Ps
;dafx' lqe'h eP ;dnDa rt'e'{h XYTW sf] If]qkmn kTtf nufpg'xf];\ .
Ans:

7. lbOPsf] lrqdf 64 j= ;]=ld= If]qkmn ePsf] ;dfgfGt/ rt'e{'h P


A D
ABCD / lqe'h BPCPp6} cfwf/ / BC df /x]sf 5g\ . olb BC =
8cm / BP = 8 cm eP ∠PBC lgsfNg'xf];\ . Ans: 450
B 8cm C

8. lbOPsf] ;dfgfGt/ rt'e'{h ABCD df A D


2
∆ADE sf] If]qkmn lgsfNg'xf];\ . Ans: 7.5cm
5cm
0
30
B 6cm C

9. ;“u}sf] lrqdf PQRS Pp6f ;dafx' rt'e{'h xf]


R
h;sf] If]qkmn 18 j=;]=dL= 5 . olb ∠PQR = 300 eP PS S
sf] nDafO kTtf nufpg'xf];\ .
Ans: 6cm 30
0
Q
P

241
A D
10. lrqdf lbOPsf] ;dfgfGt/ rt'e{'h ABCD 70
0
10cm
sf] If]qkmn kTtf nufpg'xf];\ .
Ans: 65
0
B 50 13cm C

11. lbOPsf] lrqdf PQ = 12cm, P


0
QR = 16 cm, Rs 8cm, ∠PQR = 60 / 12cm
∠PSR = 300 5 . olb ∆PQR = 4∆PSR eP PS
0
30 S
8cm
R
sf] dfg kTtf nufpg'xf];\ . 0
60
Q
Ans: 18cm

12. lbOPsf] lrqdf AD//BC 5 . olb AD = 10cm, AB = 8c, D C

∠DAB = 300 / ∠DBC = 600 5 . olb ∆DBC sf]


If]qkmn = 2∆ABD sf] If]qkmn eP BC 10cm
sf] nDafO kTtf nufpg'xf];\ . 0
60
[Hint: ∠ADB = ∠DBC = 600 PsfGt/ sf]0f ePsfn] . 30
0
A
∴ ∠ABD = 900 x'G5 ca ;dsf]0f ∆ABD af6 BD e'hf kTtf nufO{ 8cm

;dfwfg ug]{ . ]
Ans: 15.39cm

nfdf] pTt/ cfpg] k|Zgx¿ X 0


A
30
gd'gf k|Zg g+= 1 :
91 m cUnf] Pp6f w/x/fsf] 6'Kkf]af6 ;f]xL ;dtndf /x]sf] 12m 0
C 30 E
cUnf] 3/sf] 5tdf x]bf{ 300 sf] cjglt sf]0f kfOof] eg] w/x/f /
91cm
3/ larsf] b'/L kTtf nufpg'xf];\ . 12cm
;dfwfg
D B
dfgf“} AB Pp6f w/x/f xf], h;sf] 6'Kkf] A / km]b B 5 . To;t}
CD Pp6f 3/ xf] pSt 3/sf] 5t C df w/x/fsf] 6'Kkf]af6 x]bf{
cjglt sf]0f ∠CAX = 300 agfPsf] 5 .
k|Zgg';f/,
AB = 91m
BE = CD = 12m
AE = AB – BE
= 91 – 12
= 79m
∠CAX = ∠ACE = 300
242
(PsfGt/ sf]0f ePsfn])w/x/f / 3/ larsf] b'/L (CE = BD = ?)
;dsf]0f ∆ACE af6
Tan 300 =

Or,

Or, CE = 79
= 79 x 1.732
= 136.83m
∴ w/x/f / 3/ larsf] b'/L = 136.83m=

cEof;sf nflu k|Zg


1. 2m cUnf] dflg;n] Pp6f vDafsf] 6'Kkf] x]bf{ 300 sf] pGgtf+z sf]0f kfP5 . olb vDafsf]
prfO 21m 5 eg] ;f] dflg; / vDaf larsf] b'/L kTtf nufpg'xf];\ . Ans: 32.91cm
2. b'O{ cf]6f 3/ xm sf] km/sdf 5g\ . bf];|f] 3/sf] 6'Kkf]af6 klxnf] 3/sf] 6'Kkf]sf] cjglt sf]0f
450 5 . olb klxnf] 3/sf] prfO 30m 5 / bf];|f] 3/sf] prfO 60m eP x sf] dfg kTtf
nufpg'xf];\ . Ans: 30m

gd'gf k|Zg g+= 2 :


1.7m cUnf] Pp6f s]6fn] p8fO/x]sf] rª\ufsf] wfuf]sf] nDafO 180m x'“bf lIflth;“u o;n] 300 sf]
sf]0f agfp“5 eg] hldgb]lv rª\uf ;Ddsf] prfO slt x'G5 <
;dfwfg E
dfgf} AB Pp6f dflg; xf] / rª\ufsf] wfufsf] 180m
nDafO AE xf] / rª\ufsf] wfufn] lIlth;“u 300
A 300 D
sf] pGGtf+z sf]0f agfPsf] 5 .
k|Zgg';f/, AB = CD = 1.7cm 1.7m
B C
AE = 180m
∠EAD = 300
hldgb]lv rª\uf ;Ddsf] prfO (CE) = ?
;dsf]0f ∆ADE af6
Sin 300 =

Or, =
Or, DE = 180
Or, 2DE =
Or, DE = 90m
243
∴ CE = CD + DE
= (1.7 + 90)m
= 91.7m
∴ hldgb]lv rª\uf;Ddsf] prfO (CE) = 91.7m

cEof;sf nflu k|Zg


1. 2m cUnf] dflg;n] Pp6f :tDesf] 6'Kkf]df x]bf{ pGgftf+z sf]0f 600 kfP5 . olb :tDe /
dflg; larsf] b'/L 45m eP :tDesf] prfO kTtf nufpg'xf];\ . (79.94m)
2. 1.7m cUnf] dflg;n] Pp6f :tDesf] 6'Kkf] cjnf]sg ubf{ pGgtf+z sf]0f 600 kfOof] . olb
:tDe / dflg; larsf] b'/L 25m eP :tDesf] prfO kTtf nufpg'xf];\ . Ans:45m

gd'gf k|Zg g+= 3 : D


Pp6f dflg;n] cfkm"eGbf cufl8sf] 52m cUnf] vDafsf] 6'Kkf]df x]bf{
pGGtf+z sf]0f 300 kfP5 . olb dflg; / vDa larsf] b'/L 86m 5 eg] A 300
52m
86m
To; dflg;sf] prfO kTtf nufpg'xf];\ .
B 86m C

;dfwfg
dfgf} AB Pp6f dflg; xf] h:t} CD Pp6f
vDaf xf] h;sf] 6'Kkf] D df x]bf{
pGgtf+z sf]0f 300 ag]sf] 5 .
k|Zgg';f/,
dflg; / vDaf larsf] b'/L (AE = BC = 86m)
vDafsf] prfO (CD) = 52m
∠DAE = 300
dflg;sf] prfO AB = EC = ?
;dsf]0f AED af6
Tan300 =

Or, =

Or, DE = 86
Or, DE =

Or, DE =
Or, DE = 49.65m
∴ EC = DC - DE

244
= (52 + 49.65)m
= 2.35m
∴ dflg;sf] prfO (AB = EC) = 2.35m

cEof;sf nflu k|Zg


1. 26m cUnf] Pp6f vDafsf] 6'Kkf]af6 To; vDafsf] l7s cufl8 15 b'/Ldf /x]sf] Pp6f
0
3/sf] 6'Kkf]nfO{ cjnf]sg ubf{ cjglt sf]0f 30 kfOof] eg] 3/sf] prfO slt xf]nf <
Ans:11m
2. b'O{ :tDe 60m sf] b'/Ldf 5g\ . cUnf] :tDesf] prfO 150m 5 . pSt :tDesf] 6'Kkf]af6
xf]rf] :tDesf] 6'Kkfsf] cjgltsf]0f 300 eP xf]rf] :tDesf] A
prfO kTtf nufpg'xf];\ .
Ans:115.35m

gd'gf k|Zg g+= 4 :


Ps hgf dflg;n] 80 cUnf] Pp6f w/x/fsf] 6'Kkf]nfO{ ;f] ?
C 240m B
w/x/fsf] km]bb]lv 240m k/ af6 x]bf{ aGg] pGgtf+z sf]0f kTtf
nufpg'xf];\ .
;dfwfg
dfgf} AB Pp6f w/x/f xf] h;sf] 6'Kkf] A nfO{ s'g} dflg;n] C laGb'af6 x]bf{ aGg] pGGtf+z
sf]0f∠ACB xf] .

k|Zgg';f/,
AB = 80
BC = 240m
∠ACB = ?
;dsf]0f ∆ABC af6
Tan ACB =

Or, Tan ACB =

Or, Tan ACB =

Or, Tan ACB =

Or, Tan ACB =

245
Or, Tan ACB = Tan 300
∴ ∠ACB = 300
∴ pGGt+fzsf]0f = 300

cEof;sf nflu k|Zgx¿


1. 10m cUnf] :yfgaf6 ;f]xL ;dtndf kg]{ l7s cufl8 /x]sf] 30m cUnf] :tDesf] 6'Kkfdf x]bf{
x0 pGgtf+z sf]0f kfOof] . olb pSt :yfg / :tDesf] b'/L 20 m eP x0 sf] dfg kTtf
nufpg'xf];\ . Ans:300
2. 16m cUnf] :yfgaf6 ;f]xL ;dtndf kg]{ l7s cufl8 /x]sf] 41m cUnf] :tDesf] 6'Kkfdf x]bf{
x0 sf] pGgtf+z sf]0f agfPsf] 5 . olb pSt :yfg / :tDesf] b'/L 25 m eP x0 sf] dfg
kTtf nufpg'xf];\ . Ans:300

gd'gf k|Zg g+= 5 :


9m cUnf] 3/sf] 5fgfdf 1.5m cUnf] dflg;n] rª\uf p8fO/x]sf] lyof] / A

rª\uf hldgb]lv 58m prfOdf lyof] olb To; rª\ufsf] wfuf]n] lIflth;Fu
300 sf] sf]0f agfPsf] /x]5 eg] ;f] rª\ufsf] wfuf]sf] nDafO kTtf
nufpg'xf];\ . C 300 B
58m

9m 1.5m
D E
;dfwfg
G F
dfgf} AF hldgb]lv rª\uf;Ddsf] prfO xf] .

CD dflg;sf] prfO xf], DG 3/sf] prfO xf] .


AC rª\ufsf] wfufsf] nDafO xf] .
k|Zgg';f/,
DG = EF = 9cm
CD = BF= 1.5m
AF = 58cm
AB = 58m
AB = AF – EF – BE
= 58 – 9 – 1.5
= 47. 5m
∠ACB = 300
;dsf]0f ABC af6
Sin 300 =

246
Or,
Or, AC = 95 m
rª\ufsf] wfufsf] nDafO (AC) = 95m

cEof;sf nflu k|Zgx¿


1= 5 m cUnf] 3/sf] 5fgfdf m cUnf] dflg;n] rª\uf p8fO/x]sf] lyof] / rª\uf
hldgb]lv 20 m prfOdf lyof] . olb To; rª\ufsf] wfufn] lIflth;“u 450 sf] sf]0f
agfPsf] /x]5 eg] ;f] rª\ufsf] wfufsf] nDafO kTtf nufpg'xf];\ . Ans:34.29m
2. 6m cUnf] 3/sf] 5fgfdf 1.6m cUnf] dflg;n] rª\uf p8fO/x]sf] lyof] / rª\uf hldgb]lv
60m prfOdf lyof] . olb To; rª\ufsf] wfuf]n] lIflth;Fu 300 sf] sf]0f agfPsf] /x]5 eg]
/f] rª\ufsf] wfufsf] nDafO{ kTtf nufpg'xf];\ . Ans:104.8m
gd'gf k|Zg g+= 6 :
Pp6f 18m cUnf] ?v xfjfn] ef“lrP/ 6'Kkfn] hldgdf x'“bf 300 sf] sf]0f ag]sf] 5 . pSt ?vsf]
ef“lrPsf] efusf] nDafO kTtf nufpg'xf];\ .
;dfwfg A
dfgf“} AC pp6f ?v xf] h'g xfjfn] C laGb'df ef“lrP/ x
ef“lrPsf] efu AC n] hldg sf] D laGb'df C
0
5'bf 30 sf]0f agfPsf] 5 . 18m
k|Zgg';f/, x

AB = 18m 300
D B
∠CDB = 300
ef“lrPsf] efusf] nDafO (AC = CD = ?)
dfgf“} AC = CD = xm df 5 .
BC = AB – AC
= (18 - x)
ca ;dsf]0f ∆BDC af6
Sin 300 =

Or,
Or, 36 – 2x = x
Or, 36 = x + 2x
Or, 36 = 3x
Or, x =
Or, x = 12

247
ef“lrPsf] efusf] nDafO (AC) = (CD) = 12m

cEof;sf nflu k|Zgx¿


1. Pp6f 14m cUnf] ?v xfjfn] ef“lrP/ 6'Kkf]n] hldgdf 5'bf hldg;“u 600 sf] sf]0f ag]sf]
5 . ?vsf] ef“lrPsf] efusf] nDafO kTtf nufpg'xf];\ . Ans:7.50 m
2. Pp6f ?v cf“wLn] ef“lrP/ hldg;“u ;Dsf]0f lqe'h agfp“5 . ?vsf] ef“lrPsf] efun] hldg;“u
600 sf] sf]0f agfp“5 . olb clxn] ?vsf] 6'Kkf] o;sf] km]baf6 15m 6f9f 5 eg] ?v slt
cUnf] lyof] < Ans:55.98m
3. x'/Ln] Pp6f l;wf ?v ef“lrbf o;sf] 6'Kkfn] km]baf6 4 m 6f9f hldgdf 5f]P/ 300 sf]
sf]0f agfp“5 eg] ef“lrg'eGbf klxnfsf] ?vsf] prfO kTtf nufpg'xf];\ . Ans:12m

gd'gf k|Zg g+= 7 : A

Pp6f j[Ttsf/ rf}/sf] dWo efudf Pp6f 60 m cUnf] vDaf


ufl8Psf] 5 . ;f] rf}/sf] kl/lwsf] s'g} Pp6f laGb'af6 ;f] vDafsf]
6'Kkfdf x]bf{ 300 sf] pGgtf+z sf]0f aG5 eg] ;f] rf}/sf] Jof;sf]
300
nDafO kTtf nufpg'xf];\ . C
0 B

;dfwfg
dfgf“} j[Ttsf/ rf}/sf] dWo efu 0 5 .
pSt dWo efudf ufl8Psf] vDaf -AO) 5 .
rf}/sf] kl/lwsf] B laGb'af6 vDafsf] 6'Kkf]
A df x]bf{ 300 sf] pGgtf+z sf]0f ag]sf] 5 .
k|Zgg';f/,
AO = 60 m
0
∠ABO = 30
Jof; (BC) = ?
;dsf]0f ∆AOB af6
Tan 300 =

Or,

Or, BO = 60 x 2
Or, BO = 60 x 3
Or, BO = 180m
ca k|Zgg';f/ Jof; (BC) = 2BO (d = 2r)
= 2 x 180
248
= 360m

cEof;sf nflu k|Zgx¿


1= Pp6f j[Ttsf/ kf]vf/Lsf] Jof; 60 m 5 . pSt kf]vf/Lsf] lardf ufl8Psf] vDafsf] 6'Kkfdf
;f] kf]vfl/sf] lsgf/faf6 x]bf{ 300 sf] pGgtf+z sf]0f aG5 eg] kfgLsf] ;txb]lv vDafsf]
6'Kkf] ;Ddsf] prfO kTtf nufpg'xf];\ . Ans:17.32m
2= Pp6f j[Ttsf/ kf]v/Lsf] s]Gb|df Pp6f vDafsf] 7f8f] pEofOPsf] 5 . vDafsf] 6'Kkf] kfgLsf]
;txaf6 30m prfOdf 5 . kf]vf/Lsf] kl/lwsf] Ps laGb'af6 o;sf] pGgtf+z sf]0f 600 eP
pSt kf]v/Lsf] cw{Jof;sf] nDafO kTtf nufpg'xf];\ . Ans:17.32m
3. Pp6f j[Ttsf/ kf]v/Lsf] s]Gb|df kflgsf] ;txb]lv dfly 11.62m cUnf] vDaf kf]v/Lsf]
lsgf/fsf] s'g} laGb'af6 1.62m cUnf] dflg;n] vDafsf]
A
6'Kkf] cjnf]sg ubf{ pGgtf+z sf]0f 300 kfof] eg] ;f]
kf]v/Lsf] Jof; slt xf]nf <
Ans:34.64m

gd'gf k|Zg g+= 8:


s'g} ?vsf] 5fofsf] nDafO ;"o{sf] prfO 450 ePsf] ;dodf ;"o{sf]
prfO 600 ePsf] ;dodf eGbf 20m nfdf] 5 eg] ;f] ?vsf] A
450
0
60
prfO kTtf nufpg'xf];\ . D 25m C B
xm
;dfwfg M x + 20m
dfgf} AB Pp6f ?v xf], BC / BD o;sf 5fofx¿ x'g\ .
k|Zgg';f/,
∠ACB = 600
∠ADB = 450 + BC = x -dfgf}“_
BD = (x + 20) m
?vsf] prfO (AB) = ?
;dsf]0f ∆ABC af6
Tan600 =

Or, =

Or, AB = ……… (i)


km]l/ ;ds0f ∆ABD af6
Tan 450 =

Or, 1 =

249
Or, 1 =
Or, = x + 20
Or, – x= 20
Or, = 20
Or,

Or,

Or,
Or,
∴ ?vsf] prfO (AB) =
= 27.32 x 1.732
= 47.32m

cEof;sf nflu k|Zgx¿


1. 30m cUnf] s'g} ?vsf] 5fofsf] nDafO ;"o{sf] prfO 450 ePsf] ;dodf ;"o{sf] prfO 600
ePsf] ;dodfeGbf x m nfdf] x'G5 eg] x sf] dfg kTtf nufpg'xf];\ . Ans:12.68m
2. xm cUnf] s'g} ?vsf] 5fofsf] nDafO ;"o{sf] prfO 300 ePsf] ;dodf ;"o{sf] prfO 450
ePsf] ;dodfeGbf 21.96m n] a9L x'G5 eg] x sf] dfg kTtf nufpg'xf];\ . Ans:30m
3. 30 cUnf] s'g} ?vsf] 5fofsf] nDAffO ;"o{sf] prfO 300 ePsf] ;dodf ;"o{sf] prfO
0
60 ePsf] ;dodfeGbf slt ld6/n] a9L x'G5 < Ans:6m

gd'gf k|Zg g+= 9 : A

1m cUnf] Pp6f s]6f aTtLsf] vDafaf6 6m 6f9f 5 . pSt s]6fsf] 5fof C


nfdf] 5 eg] aTtLsf] vDafsf] prfO kTtf nufpg'xf];\ . ?
1m
;dfwfg
dfgf“} AB Pp6f aTtLsf] vDaf xf] / CD Pp6f dflg; xf] . D 6m B
E
k|Zgg';f/, m
CD = 1m
BD = 6m
ED =
AB = ?
;dsf]0f ∆CDE af6

250
TanE =

Or,TanE=
Or, TanE = Tan 300
∴∠E = 300
km]l/ ;dsf]0f ∆ABE af6
TanE =

Or, Tan 300 =

Or,

Or, AB =

Or, AB =

Or, AB =

Or, AB =
Or, AB = 4.46m
alQsf] vDafsf] prfO = 4.46m

cEof;sf nflu k|Zgx¿


1. 1.5m cUnf] dflg;sf] 5fof 3m x“'bf 15m cUnf] ejgsf] 5fofsf] nDAffO kTtf
nufpg'xf];\ . Ans:30m
@ 12 lkm6 cUnf] j:t'sf] 5fof 24 lkm6 x'“bf 21 lkm6 cUnf] j:t'sf] 5fofsf] nDafO kTtf
nufpg'xf];\ . Ans:21 feet

yk cEof;sf nfuL ldl>t k|Zgx¿


1. b'O{ cf]6f 3/x¿ 45m sf] km/sdf 5g\ . bf];|f] 3/sf] 6'Kkfaf6 klxnf] 3/sf] 6'Kkfsf]
cjgltsf]0f 450 5 . olb klxnf] 3/sf] prfO 20m eP bf];|f] 3/sf] prfO kTtf
nufpg'xf];\ . Ans:65m
2. 1.5m prfO ePsf] Pp6f s]6fn] rª\uf p8fO/fv]sf] 5 . wfuf]sf] nDAffO 200m ePsf] a]nf
rª\ufsf] wfufn] lIflth;“u 300 sf] sf]0f agfp“5 eg] hldgaf6 rª\ufsf] prfO lgsfNg'xf];\ .
Ans:101.5m

251
3. s'g} cjnf]sgstf{ cfgf] 8m cUnf] 3/sf] dflyNnf] tnfaf6 l7s cufl8 /x]sf] dlGb/sf]
6'KkfnfO{ x]bf{ 600 sf] pGgtf+z sf]0f kfP5 . olb 3/ / cjnf]sgstf{ larsf] b'/L 15
eP dlGb/sf] prfO kTtf nufpg'xf];\ . Ans:53m
4. gbLsf] Ps lsg/df 60 lkm6 cUnf] 6fj/ 5 . gbLsf] csf]{ lsgf/af6 6fj/sf] 6'Kkf] x]bf{
pGgtf+z sf]0f x /x]5 . olb gbLsf] rf}8fO 120 lkm6 eP x0 sf] dfg kTtf nufpg'xf];\ .
0

Ans:600
5. 18 lkm6 cUnf] 3/sf] 5fgfdf 6 lkm6 cUnf] dflg;n] rª\uf p8fO/x]sf] lyof] / rª\uf
hldgb]lv x lkm6 prfOdf lyof] . olb To; rª\ufsf] wfuf]n] lIflth ;Fu 300 sf] sf]0f
agfPsf] /x]5 . olb wfufsf] nDafO 52 lkm6 eP x sf] dfg kTtf nufpg'xf];\ . (50 lkm6)
6. Pp6f ?v xfjfn] ef“lrP/ 6'Kkfn] hldg;“u 450 sf] sf]0f agfp“5 . pSt ef“lrP/ af“sL /x]sf]
efusf] prfO 18 lkm6 eP k'/f ?vsf] prfO kTtf nufpg'xf];\ . (36 lkm6)
7. j[Ttsf/ kf]v/Lsf] s]Gb|df kfgLsf] ;txb]lv dfly 11.62m cUnf] vDaf 5 . kf]vf/Lsf]
lsgf/sf] s'g} laGb'af6 1.62m cUnf] dflg;n] vDafsf] 6'Kkf] cjnf]sg ubf{ pGgtf+z sf]0f
600 kfof] eg] ;f] kf]v/Lsf] Jof; kTtf nufpg'xf];\ . (11.54 m)
8. Pp6f 3/ 10 lkm6 cUnf] 5 . pSt 3/sf] 5taf6 Pp6f 14 lkm6 cUnf] dlGb/sf] 6'Kkf]
cjnf]sg ul/Psf] 5 . olb 3/ / dlGb/larsf] b'/L 45 lkm6 eP pSt dlGb/sf] 6'Kkfsf]
0
pGgtf+z sf]0f kTtf nufpg'xf];\ . (60 )
9. 2 cUnf] kvf{nsf] 5fof 2m nfdf] ePsf a]nfdf ;"o{sf] prfO kTtf nufg'xf];\ . (600)
10. 6 lkm6 cUnf] dflg; pp6f j[Ttsf] vDafaf6 x lkm6 6f9f 5 . pSt s]6fsf] 5fof 2 lkm6
nfdf] 5 / j[Ttsf] vDafsf] prfO 28 lkm6 eP x sf] dfg kTtf nufpg'xf];\ . (4 lkm6)
11. j[Ttsf/ kf]vf/Lsf] s]Gb|df kfgLsf] ;txb]lv dfly 24 lkm6 cUnf] vDaf 5 . kf]v/Lsf]
lsgf/sf] s'g} ljGb'af6 x lkm6 cUnf] dflg;n] vDafsf] 6'Kkf] cjnf]sg ubf{ pGgtf+z
sf]0f 450 kfof] . olb ;f] kf]v/Lsf] Jof; 36 lkm6 eP x sf] dfg kTtf nufpg'xf];\ . (6lkm6)
12. Ps hgf dflg; vDafsf km]baf6 50, k/ plePsf] 5 . Toxf“af6 vDafsf] 6'Kkf] x]bf{ p;n]
300 sf] pGgtf+z sf]0f kfP5 . olb hldgaf6 p;sf] cf“vf 1.5cm dfly 5 eg] pSt
vDafsf] prfO kTtf nufpg'xf];\ . Ans:30.36 m

252
If]q M & tYofª\s zf:q (Statistics)
1. If]q kl/ro
o; tYofª\s zf:q If]qdf dWos, dlWosf / rt'yf{+znfO{ ;dfj]z ul/Psf] 5 . o; If]qaf6 kl/Iffdf
5f]6f] k|Zg 2 cf]6f = 2 X 2 = 4 cª\ssf / nfdf] k|Zg Pp6f = 1 X 4 = 4 cª\ssf] cfpg] Joj:yf
5.
2. cfwf/e"t tYo / ;"qx¿
2.2 cfwf/e"t tYox¿
-s_ dWos (Mean) M lbPsf] tYofª\ssf] cf};t dfgfª\snfO{ dWos elgG5 . o;nfO{ Χ n]
hgfOG5 .
-v_ dlWosf (Median) M lbOPsf] tYofª\ssf] a9\bf] . 36\bf] j|mddf /fVbfsf] dWo dfgnfO{
dlWosf elgG5 . o;nfO{ md jf Q2 n] hgfOG5 .
-u_ rt'yf{+z (Quartice) M lbOPsf] tYofª\snfO{ a9\bf] jf 36\bf] j|mddf /fVbf klxnf] 25 % df
kg]{ / 75% df kg]{ dfgfª\s / 75 % df kg]{ dfgfª\snfO{ j|mdzM klxnf] / t];|f] rt'yf+{z
elgG5 . klxnf] rt'yf+{znfO{ Q1 / t];|f] rt'yf+{znfO{ Q3 n] hgfOG5 .
2.2 cfwf/e"t ;"qx¿
JolStut >]0fL vl08t >]0fL juL{s[t >]0fL

tYofª\s 21, 27,32,47 X 10 20 25 30 X 0–10 10–20 20–


f 2 7 4 5 30
f 2 7 4
dWos

dlWosf cf“} kb cf“} kb dlWosf kg]{ :yfg cf“} kb

md = L +
rt'yf{+z Q1= cf}“ Q1= cf} kb Q1= kg]{ :yfg cf}“ kb
kb Q3= cf} kb
Q1 = L
Q3= cf“}
kb

Q3= kg]{ :yfg cf}“ kb

253
-

Q3 = L
gf]6 M N = -af/Daf/tfsf] of]ukmn_
L = juf{Gtfsf] tNnf] dfg
c.f. = dlWosf÷rt'yf{+z kg]{ juf{Gt/eGbf dflyNnf] juf{Gt/sf] c.f.
f = dlWosf÷rt'yf{+z kg]{ juf{Gt/sf] f.
I = juf{Gt/sf] km/s -h:t} M 0–10 sf] km/s 5_

3. ljz]if Wofg lbg'kg]{ s'/fx¿


-s_ dlWosf / rt'yf{+z lgsfNg] k|Zgdf tYofª\snfO{ a9\bf] 5 . 36\bf] j|mddf /fVg'k5{ . a9\bf]
j|mddf /fVg' pTtd dflgG5 .
-v_ dlWosf / rt'yf+{zdf JolStut >]0fLdf bzdnjdf kb cfP ljz]if Vofn ug'{k5{ . h:t} M
2.25 cf}“ kb cfPdf 2.25 cf}“ kb = 2 cf}“ kb + 0.25 -3 cf}“ kb_ x'G5 .
-u_ k|To]s k|Zgsf] cGTodf lgZsif{ n]Vg' clgjfo{ 5 .

4. gd'gf k|Zgf]Tt/ / cEof;


4.1 5f]6f] pTt/ cfpg] k|Zgx¿
gd'gf 1 :
s'g} ju{s[t tYofª\ssf] dWos ( ) = 50 / = 750 5 eg] N sf] dfg lgsfNg'xf];\ .
;fdfwfg
oxfF lbOPsf]
dWos ( ) = 50 / = 750
N=¿
xfdLnfO{ yfxf 5,
or, 50 =
or, 50 = × N = 750
or, N = = 15
∴ N = 15
To;}n] lbOPsf] tYofª\s N = 15 x'G5 .
cEof;sf nflu k|Zgx¿
-s_ olb = 320 / = 16 eP N sf] dfg slt xf]nf (N = 20)
-v_ olb N = 40,
-u_ olb = 150 eP n sf] dfg lgsfNg'xf];\ < (N= 40)
-3_ olb s'g} tYofª\sf] 40 / N = 20 eP

254
gd'gf 2 :
s'g} lg/Gt/ >]0fLdf kbx¿sf] ;ª\Vof (N) = 50 + a
dWos = 20 / kbx¿sf] of]ukmn = 1200 eP 'a' sf] dfg kTtf nufpg'xf];\ .
;dfwfg
oxfF lbOPsf],
dWos = 20
N= 50 + a
xfdLnfO{ yfxf 5,
=
Or, 20 =
Or, 20 × (50 + a) = 1200
Or, 1000 + 20a = 1200
Or, 20a = 1200 – 1000
Or, 20a = 200
Or, a =
∴ a = 10
To;}n] a = sf] dfg 10 x'G5 .
cEof;sf nflu k|Zgx¿
-s_ olb = 72 + 8k, = 6 / eP k sf] dfg slt xf]nf (k = 12)
-v_ olb Pp6f >]0fLdf = 10, = 700 + 5, / = N = 40 + 3m eP m sf] dfg kTtf
nufpg'xf];\ < (m = 12)
-u_ olb = 14.25, = 240 + 15p, / N = 17 + p eP p sf] dfg kTtf nufpg'xf];\ <
(p = 3)

gd'gf 3 :
lbPsf] n]vflrqaf6 dlWosf >]0fL kTtf nufpg'xf];\ .
;dfwfg
oxf“,
n]vflrqsf] dflyNnf] laGb' 55 5 .
To;}n] N= 55
dlWosf kg]{ >]0fL = cf}
=
= 27.5 cf}“ >]0fL
27.5 cf}“ >]0fL = 200 – 300

255
To;}n] lbPsf] n]vflrqsf] dlWosf >]0fL 200 - 300 x'G5 .
cEof;sf nflu k|Zgx¿
-s_ lbPsf] n]vflrqaf6 dlWosf >]0fL lgsfNg'xf];\ .

-v_ lbPsf] cf]hfOeaf6 klxnf] rt'yf{+z (Q1 = cf}“


>]0fL) / t];|f] rt'yf{z (Q3 = cf}“ >]0fL)
lgsfNg'xf];\ . (Q1 = 10-20, Q3 = 30-40)

-u_ ;“u} lbPsf] n]vflrqaf6 dlWosf >]0fL kTtf nufpg'xf];\ . (400-500)

256
4.2. nfdf] pTt/ cfpg] k|Zgx¿
gd'gf 1 :
lbOPsf] cf“sF8faf6 klxnf] rt'yf{+z kTtf nufpg'xf];\ .
k|fKtfª\s 0-20 20-40 40-60 60-80 80-100
ljb\ofyL{ ;ª\Vof 5 7 7 5 4

;dfwfgM
k|fKtfª\s ljb\ofyL{ ;ª\Vof c.f.
0-20 5 5
20-40 7 12
40-60 7 19
60-80 5 24
80-100 4 28
N =28
ca, Q1 kg]{ >]0fL = cf}“ kb
= cf“kb
oxfF, 7 -jf eGbf 7'nf]_ cf}“ kb = 20 – 40
Q1 kg]{ >]0fL = 20 – 40
To;}n], L = 20, =7, c.f = 5, f = 7, i = 20
-
Q1 = L

-
= 20

= 20

= = = 25.71
To;}n] lbPsf] tYofª\ssf] klxnf] rt'yf{+z (Q1) = 25.56
cEof;sf nflu k|Zgx¿
-s_ lbPsf] tYofª\saf6 dlWosf lgsfNg'xf];\ .
k|fKtfª\s 10-20 20-30 30-40 40-50 50-60 60-70
ljb\ofyL{ ;ª\Vof 2 5 7 6 3 2

257
-v_ lbPsf] tYofª\saf6 klxnf] rt'yf{+z lgsfNg'xf];\ .
pd]/ 0-10 10-20 20-30 30-40 40-50 50-60
Af/Daf/tf 4 8 12 20 18 6

-u_ lbOPsf] cf“s8faf6 t];|f] rt'yf{+z (Q3) lgsfNg'xf];\ .


Tf}n (kg) 40- 44-48 48-52 52-56 56-60 60-64
44
ljb\ofyL{ 8 10 14 16 3 1
;ª\Vof

gd'gf 2:
lbOPsf] tYofª\ssf] dlWosf 18 eP 'k' sf] dfg lgsfNg'xf];\ .
k|fKtfª\s 0-10 10-20 20-30 30-40 40-50
ljb\ofyL{ 5 K 20 4 2
;ª\Vof
;dfwfg
k|fKtfª\s ljb\ofyL{ ;ª\Vof c.f.
0-10 5 5
10-20 K 5+k
20-30 20 25+k
30-40 4 29+k
40-50 2 31+k
N = 31 + k
oxfF, dlWosf = 18 cf}“ kb
dlWosf kg]{ >]0fL = 10 - 20
ca, L = 10, c.f = 5, f = k, i = 10
To;}n],
dlWosf = L

or, 18 = 10 +

or, 18 – 10 =
or, 8 =
or, 8 x k = (21 = k) x 5
or, 8k – 5k = 105
258
or, 3k = 105
or, k =
∴k = 35
lbOPsf] tYofª\ssf] dlWosf 18 eP k = 35 x'G5 .

cEof;sf nflu k|Zgx¿


-s_ lbOPsf] tYofª\ssf] dlWosf 24 eP 'p' sf] dfg slt xf]nf <
juf{Gt/ 0-10 10-20 20-30 30-40 40-50
Af/Daf/tf 4 12 P 9 5

-v_ olb klxnf] rt'yf{+z 31 5 eg] 'm' sf] dfg kTtf nufpg'xf];\ .
juf{Gt/ 10-10 20-30 30-40 40-50 50-60 60-70
Aff/Daf/tf 4 5 M 8 7 6

-u_ olb Q3 = 60 eP 'x ' sf] dfg lgsfNg'xf];\ .


pd]/ -jif{df_ 10-20 20-30 30-40 40-50 50-60 60-70 70-80
;ª\Vof 3 5 4 5 4 X 3

5. cEof;sf nflu yk ldl>t k|Zgx¿


-s_ lbOPsf] tYofª\ssf] Q1 lgsfNg'xf];\ .
juf{Gt/ 0-20 0-40 0-60 0-80 0-100
Aff/Daf/tf 4 12 P 9 5

-v_ lbOPsf] tYofª\sf] dlWosf kTtf nufpg'xf];\ .


juf{Gt/ 0≤x<4 4≤ x <8 8≤ x <12 12≤ x <16 16≤ x <20
Aff/Daf/tf 5 7 8 7 5

-u_ lbOPsf] tYofª\ssf] dlWosf 32 eP a sf] dfg slt xf]nf <


k|fKtfª\s 5-15 15-25 25-35 35-45 45-55 55-65
ljb\ofyL{ 5 8 A 9 7 1
;ª\Vof

259
If]q M * ;DefJotf (Probability)
!= If]q kl/ro
-s_ kf7\oj|mdn] sIff !) sf nflu tf]s]sf] ljifoj:t'
• kf/:kl/s lgif]ws 36gfx¿ (mutually exclusive events_ sf nflu ;DefJotfsf] hf]8
l;b\wfGt (addition law_ / u'0fg l;b\wfGt (multiplication law) ;DaGwL ;fwf/0f ;d:of
• ;DefJotf j[If lrq (tree diagram) ;DaGwL ;d:of -ltg 36gfdf b'O{ tx / b'O{ 36gfdf ltg
tx;Dd dfq}
• ;fwf/0f k/fl>t 36gfx¿sf ;DefJotf ;DaGwL ;d:of -y}nf]af6 an lgsfNg] ._
-v_ o; PsfOaf6 P;Pn;Ldf b'O{ cf]6f 5f]6f] pTt/ cfpg] k|Zgx¿ ;f]Wg] k|fjwfg /x]sf] 5 . b'j}
k|Zgx¿ @ cª\ssf x'g] x'gfn] hDdf $ cª\s o; PsfOaf6 k/LIffdf ;f]lwG5 .

@= cfwf/e"t cjwf/0ff / ;"qx¿


-s_ ;Defjgfsf] kl/ro
s'g} 36gf x'g ;S5 jf ;Sb}g / To;sf] lglZrttf slt 5 egL ul0ftLo ¿kdf JoSt ug]{
tl/sf g} ;DefJotf xf] . h:t} M ltdLn] kfFr cf]6f u'Rrf Ps} k6s kmfn]/ vf]kLdf k'¥ofpg
vf]Hof] . ltdLn] Pp6f vf]kLdf v;fof} eg] k'/l:s[t x'G5f} . s] Pp6f u'Rrf vf]kLdf k'U5 t < s]
of] lgZlrt 5 < kSs} klg lglZrt 5}g t/ Pp6f vf]kLdf v:g klg t ;S5 . xf] o;}nfO{
ul0ftLo efiffdf n]Vof] eg] Tof] ;DefJotf xf] .
;DefJotf xfdLn] k9\b} cfPsf] leGgsf] h:t} cjwf/0ff xf] . dflysf] pbfx/0fdf kfFr cf]6f
u'Rrfdf Pp6f vf]kLdf v;fNg' eg]sf] leGgdf o;/L b]vfpg ;lsG5 <
1
= 5A E

1
olb vf]lkdf v;fpg'kg]{ Pp6f eP o;nfO{ leGgdf 5
A E A n]lvG5 x}g t < xf] To;/L g} o;sf]
;DefJotf klg 15 g} x'G5 .
A E A

km]l/, # cf]6f sfnf] / Pp6f ;]tf] kTtLnfO{ ;Fu}} /fv]/ leGgdf n]vf}“ t .
leGgdf lbOPsf] lrqnfO{ 43 n]lvG5 lg .
A E A

o;}nfO{ ;DefJotfdf o;/L JofVof u/f}“ M


# cf]6f sfnf / Pp6f ;]tf] sfuhsf kTtLx¿ ePsf]af6 ltg cf]6f kTtL leSof] eg] Pp6f sfnf] kg]{
;DeJAotf slt x'G5 < of] eg]sf] klg l7s pxL leGg xf] 34 . A E A

ca eg, leGg / ;DefJotfdf s]xL km/s 5}g eg] lsg ;DefJotfnfO{ leGg elgPg t < xf]o;df
vf; km/s klg 5 . Tof] s] eg] Pp6f sfnf] kTtL lemSbf leGgdf 14 x'G5 eg] ;DefJotfdf 34 x'G5 .
A E A A E A

260
Tof] lsgeg] ;DefJotfdf sfnf] kTtL # cf]6fdWo] s'g} Pp6f lemSg'kg]{ ePsfn] c+zdf 3 n]Vg'k/]sf]
xf] .
;DefJotf lgsfNg] ;"q M ;Fu}sf] 6f]s/Ldf !! cf]6f an 5g\ h;df 6 cf]6f sfnf] / 5 cf]6f ;]tf] .
5
ca, Pp6f sfnf] an lemSof] eg] To;sf] ;DefJotf 11 x'G5 lsgls Pp6f sfnf] an 5
A E A

cf]6fdWo]af6 s'g} klg cfpg ;S5 h'g c+zdf n]lvof] / hDdf anx¿ 11
ePsfn] x/df 11 n]lvof] .
To:t}, Pp6f ;]tf] an cfpg] ;DefJotf slt xf]nf t < of] kTtf nufpg hDdf
;]tf anx¿ slt 5 egL hfGg'k¥of] . oxfF ^ cf]6f ;]tf anx¿ ePsfn] Pp6f
6
an lemSbf ;]tf] kg]{ ;DefJotf 11
A E x'G5 . oxfF sfnf] an leSbf lemSg ;lsg]
A

jf lemSg cg's"n x'g] anx¿ 5 cf]6f 5g\ . ;]tf] an lemSbf cg's"n jf ;Defljt anx¿sf] ;ª\Vof 6
eof] . oxfF ;]tf] an lemSg] jf sfnf] an lemSg] sfdnfO{ 36gf elgG5 . To;}n] ;DefJotf lgsfNg]
tl/sfnfO{ ;"qab\w u/f}+ t M

hDdf ;Defljt 36gf


s'g} 36gf x'g ;Sg] ;DefJotf = A

hDdf 36gfx? E

oxL ;"qsf cfwf/df,


hDdf ;Defljt 36gf 6
Pp6f ;]tf] an cfpg ;Sg] ;DefJotf = A

hDdf 36gfx? E = 11 = 0.54 pTt/


A A E A .
oxfF hDdf cg's"n 36gf 6 x'g'sf] sf/0f ;]tf anx¿sf] hDdf ;ª\Vof 6 5 . :jtGq ¿kdf lemSof]
eg] tLdWo] s'g} klg an cfpg ;S5 . To:t} u/L,
sfnf anx?sf] ;+Vof 5
Pp6f sfnf] an cfpg ;Sg] ;DefJotf = = A

hDdf anx?x? = E A

11 = 0.46 pTt/
A E A .

-v_ kf/:kl/s lgif]ws 36gf (Mutually Exclusive Events)


s'g} k/LIf0fdf olb b'O{ cf]6f 36gf Ps} k6s kg{ ;Sb}g eg] To:tf 36gfx¿ k/:k/ lgif]ws
36gfx¿ x'g\ .
h:t} M Pp6f 8fO;df ! b]lv ^ ;Ddsf ;txx¿ X'G5\ . pSt 8fO; u'8fof] eg] tL 5 cf]6fdWo] Pp6f
dfq ;tx dfly kb{5 lg . s] b'O{ cf]6f ;tx Ps} k6s dfly cfpg ;S5g\ t < ;Sb}g . xf] To;}n]
8fO;sf !, @, #, $, % / ^ Ps csf{sf k/:k/ lgif]ws 36gf cyjf Ps} k6s cfpg g;Sg]
36gfx¿ x'g\ .
To:t}, Pp6f l;SsfnfO{ 6; u¥of] eg] ls t ufO{ dfly kb{5 cyjf k'R5/ kb{5 . t/ b'j} ufO{ /
lqz"n t Ps} k6s dfly cfp“b}g . To;}n] ufO{ / lqz"n Pp6} l;Ssf Ps k6s kN6fp“bf k/:k/
lgif]ws 36gf x'g\ .
gf]]6 M Pp6} l;Ssf pkmfbf{ jf Pp6} 8fO; Ps k6s dfq u'8fpFbf cfpg] 36gf dfq k/:k/ lgif]ws
x'G5g\ .

261
pbfx/0f != Pp6f l;Ssf

Head Tail

• l;Ssf dfq pkmbf{ k/:k/ lgif]ws • 8fO;dfq u'8fpFbf k/:k/ lgif]ws 36gfx¿
36gfx¿ {H, T} 36gfx¿ {1, 2, 3, 4, 5, 6}
• H kg]{ ;DefJotf = ½ • 1 kg]{ ;DefJotf = 1/6
• T kg]{ ;DefJotf ½ • 2 kg]{ ;DefJotf = 1/6
• 3 kg]{ ;DefJotf = 1/6
• Ps k6s pkmfbf{ H / T b'j} kg{]
• 4 kg]{ ;DefJotf = 1/6
;DefJtf x'Fb}g . To;}n] H / T
• 5 kg]{ ;DefJotf = 1/6
k/:k/ lgif]ws 36gf x'g\ .
• 6 kg]{ ;DefJotf = 1/6
• Ps k6s u'8fpFbf s'g} klg b'O{ cf]6f cª\s Ps}
k6s dfly kg{] ;DefJtf x'Fb}g . To;}n] 1, 2, 3, 4, 5
/ 6 k/:k/ lgif]ws 36gfx¿ x'g\ .
-u_ k/:k/ :jtGq 36gfx¿ (Mutually Independent Events)
s'g} v]ndf 5gf]6 x'gsf nflu toss ul/of] . k'gM clGtd r/0fdf ;d"x 5gf]6 ug{sf nflu k'gM csf]{
k6s toss ul/of] eg] oL b'O{ k6s ul/Psf toss x¿ cfk;df c;DalGwt 5g\ . o:tf] cj:yfdf ul/g]
;DefJotfsf 36gfx¿nfO{ c;DalGwt 36gfx¿ elgG5 lsgls klxnf] 6;df cfpg] 36gf / kl5Nnf]
36gfdf x'g] 6;x¿ cfk;df c;DalGwt 5g\ tyf klxnf] 6;df x'g] kl/0ffd;Fu bf];|f] 6;df kg]{
36gfsf] s'g} c;/ x'Fb}g .

Head Tail Head Tail

klxnf] 6;df {H, T} bf];|f] 6; {H, T}


olb klxnf]df H / bf];|f]df T k¥of] eg] oL b'j} 36gf :jtGq 36gfx¿ x'g\ .
To:t}, b'O{ cf]6f 8fO; Ps} k6s u'8fp“bf jf 5'6\6f 5'6\6} u'8fp“bf kg{ ;Sg]
36gfx¿ b'j}df {1, 2, 3, 4, 5, 6} kb{5g\ .

oxf“ klxnf] 8fO;df cfpg] 36gf / bf];|f] 8fO;df cfpg] 36gf c;DalGwt 36gfx¿ x'g\ .

-3_ k/:k/ lgif]ws 36gfsf] hf]8 l;b\wfGt


(Additive Law of Mutually Exclusive Events)

Ps k6s dfq ul/Psf] k/LIf0faf6 k/:k/ lgif]ws 36gf k|fKt x'G5 . h:t} M Ps k6s 6; ug]{, Ps
k6s Pp6f 8fO; u'8fpg] k/LIf0faf6 cfpg] 36gfx¿ cflb o;sf pbfx/0fx¿ x'g\ .

262
k/:k/ lgif]ws 36gfsf] ;DefJotfsf] hf]8 eGgfn] s'g} 8fO; u'8fp“bf, {1, 2, 3, 4, 5, 6} dWo] s'g}
Pp6f 36gf kb{5 . t/ 1 jf 5 kg]{ ;DefJotf slt x'G5 egL ;f]Wof] eg] 1 jf 5 dWo] s'g} Pp6f dfq
36gf kg{ ;S5 . o; cj:yfdf,
1
1 kg]{ ;DefJotf, P (1) = 6 A E A

1
5 kg]{ ;DefJotf, P (5) = 6 A E A

1 1
1 jf 5 dWo] s'g} Pp6f dfq 36gf kg{] ;DefJotf = 6+6 A E A A E

1
= 12 A E

oxfF 1 kg]{ ;DefJotf hlt x'G5, 1 jf 5 dWo] s'g} Ps kg]{ ;DefJotf a9L x'G5 . To;}n] tL b'O{
;DefJotfnfO{ hf]l8G5 . ctM
sg} 36gf A sf] ;DefJotf P(A) / 36gf B sf] ;DefJotf P(B) eP,

A jf B s'g} Ps kg]{ ;DefJotf = P(A) + P(B)

#= ;dfwfg ul/Psf pbfx/0fx¿ M


gd'gf ! M
2 b]lv 20 ;Dd n]lvPsf ;ª\Vof kTtLx¿af6 gx]l/sg Pp6f ;ª\Vof kTtL y'Tbf ju{ ;ª\Vof
jf 3g ;ª\Vof g} kg]{ ;DefJotf kTtf nufpg'xf];\ .

;dfwfg M 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

oxfF, hDdf ;ª\Vof = 19 cf]6f


ju{ ;ª\Vofx¿ = 3 cf]6f
3g ;ª\Vof = 1 cf]6f

ju{;+Vof x?sf] ;+Vof 3


To;}n], ju{ ;ª\Vof kg]{ ;DefJotf hDdf ;+Vofx? = 19 = A E A A E

3g ;+Vof x?sf] ;+Vof 1


3g ;ª\Vofx¿ kg]{ ;DefJotf = hDdf ;+Vofx? = 19A E A A E

To;}n], ;a}vfn] ;ª\Vofx¿dWo]af6,


ju{ ;ª\Vof jf 3g;ª\Vof kg]{ ;DefJotf = ju{;ª\Vof kg]{ ;DefJotf + 3g;ª\Vof kg]{ ;DefJotf
3 1
= +
19 19
A E A A E

263
2
=
19
A E

gd'gf @ M
1 b]lv 100 ;Dd cª\lst ;ª\Vof kTtL (number card) nfO{ /fd|/L lkm6]/ s'g} Pp6f sf8{
gx]/Lsg y'Tbf lgDg sf8{x¿ kg{] ;DefJotf slt x'G5 <
(i) 50 kg{] (ii) hf]/ ;ª\Vofx¿ kg{]
pTt/ M hDdf 36gfx¿sf] ;ª\Vof n(S) = 100
(i) ;Defljt 36gf , 50 kg]{ ;ª\Vof kTtL = 1 -Pp6f dfq_
hDdf ;Defljt 36gf 1
∴ P(50) = hDdf 36gfx? = 100 -lsgls 100 cf]6f kTtLx¿dWo] Pp6f dfq 50 sf]
A E A A E A

kTtL x'G5 .
(ii) hf]/ ;ª\Vof cfpg] ;ª\Vofsf ;Defljt 36gfx¿ = 50 cf]6f
hDdf ;Defljt 36gf 50 1
∴ P -hf]/ ;ª\Vof_ = hDdf 36gfx? = 100 = 2
A E A A

E
E

cEof;sf nflu k|Zgx¿


1. 2 b]lv 30 ;Dd n]lvPsf ;ª\Vof kTtLx¿af6 gx]l/sg Pp6f ;ª\Vof kTtL y'Tbf ju{ ;ª\Vof
4
g} kg]{ ;DefJotf kTtf nufpg'xf];\ . (Answer : 29 ) A E A

2. 2 b]lv 30 ;Ddsf ;ª\Vof kTtLx¿af6 gx]/Lsg Pp6f kTtL lgsfNbf ju{ ;ª\Vof jf 3g
6
;ª\Vof kTtL g} kg]{ ;DefJotf kTtf nufpg'xf];\ . (Answer : 29 )
A E A

3. 2 b]lv 30 ;Ddsf ;ªVof kTtLx¿af6 gx]l/sg Pp6f kTtL y'Tbf ¿9 ;ª\Vofs} kTtL kg]{
10
;DefJotf kTtf nufpg'xf];\ . (Answer : 29 ) A E A

4. Pp6f l:kg/nfO{ 8 cf]6f efudf 1 b]lv 8 ;Dd u/L af“l8Psf] 5 . pSt l:kg/nfO{ hf]8;“u
1
3'dfp“bf ;'O/fn] hf]/ ;ª\Vof g} b]vfpg] ;DefJotf kTtf nufpg'xf];\ . (Answer : 2 )
A E A

gd'gf # M
52 kTtL tf;sf] Ps Kofsaf6 s'g} Pp6f tf; y'Tg] / To;nfO{ lkmtf{ /fv]/ csf]{ k6s klg
Pp6f tf; y'Tbf lgDg tf;x¿ cfpg] ;DefJotf slt slt x'G5 <
(i) b'j} k6s O6f cfpg] (iii) klxnf] k6s kGhf / csf]{df lr8 cfpg]
(iv) b'j} k6s kfg cyjf ;'/y cfpg]
pTt/
(i) Ps Kofs]6 tf;sf] ;ª\Vof n(S) = 52, O6fsf] tf; ;ª\Vof = 13

264
hDdf ;Defljt 36gf OF6fsf] tf; ;+Vof 13 1
P1 -O6f_ = A

hDdf 36gfx? = hDdf tf; = 52 = 4 E A A E A A

E
E

bf];|f] k6s kfg cfpg] ;DefJotf P2 -kfg_


hDdf ;Defljt 36gf kfg tf;sf] ;+Vof 13 1
P2 -O6f_ = hDdf 36gfx? = hDdf tf;sf] ;+Vof = 52 = 4
A E A A E A A

E
E

b'j} k6s O6f cfpg] ;DefJotfnfO{ P -O6f_ eGbf


1 1 1
P -O6f_ = P1 -O6f_ × P2 -O6f_ = 4 × 4 = 16 A

E
E

(iii) klxnf] k6s O6f cfpg] ;DefJotfnfO{ P1 -O6f_ eGbf


OF6f tf;sf] ;+Vof 13 1
P1 -O6f_ = hDdf tf;sf] ;+Vof = 52 = 4
A E A A

E
E

bf];|f] k6s kfg cfpg] ;DefJotfnfO{ P2 -kfg_ eGbf


kfg tf;sf] ;+Vof 13 1
P2 -kfg_ = hDdf tf;sf] ;+Vof = 52 = 4
A E A A

E
E

klxnf] k6s O6f / csf]{ k6s kfg cfpg] ;DefJotfnfO{ P -kfg / O6f_ eGbf
1 1 1
P -O6f_ / kfg_ = P1 -O6f_ × P2 -kfg_ = 4 × 4 = 16 A

E
E

cEof;sf nflu k|Zgx¿


1. /fd|/L lkm6]sf] 52 ktTLsf] Ps Kofs tf;af6 gx]l/ssg Pp6f tf; lemSbf afbzfx
1
;DefJotf tTtf nufpg'xf];\ . (Answer : 13 ) A E A

2. /fd|/L lkm6]sf] 52 kTtLsf] Ps Kofs tf;af6 gx]l/sg Pp6f tf; lemSbf ld:;L jf PSsf kg]{
2
;DefJotf kTtf nufpg'xf];\ . (Answer : 13 ) A E A

3. /fd|/L lkm6]sf] Ps u8\8L tf;af6 gx]l/sg Pp6f tf; lgsfNbf cg'xf/ ePsf] tf; jf k~hf
4
kg]{ ;DefJotf kTtf nufpg'xf];\ . . (Answer : 13 ) A E A

4. /fd|/L lkm6]sf] 52 kTtLsf] Ps Kofs tf;af6 gx]l/sg Pp6f tf; lgsfNbf O6f jf sfnf]
/ªsf] tf; kg]{ ;DefJotf kTtf nufpg'xf];\ . (Answer : 34 ) A E A

5. 52 kTtLsf] Ps Kofs tf;af6 Pp6f tf; y'Tbf PSsf jf ;'/t kg]{ ;DefJotf kTtf nufpg'xf];\ .
4
(Answer : 13 ) A E A

6. Pp6f l;Ssf / To;kl5 8fO;;“u} -Pskl5 csf]{_ pkmfbf{ l;Ssfdf ufO{ / 8fO;df 4 kg]{
1
;DefJotf kTtf nufpg'xf];\ . (Answer : 12) A

E
A

265
k/fl>t 36gf / ;DefJotf j[If lrq
olb b'O{ jf ;f]eGbf a9L 36gfx¿ Pp6f kg]{ ;DefJotf csf]{sf] ;ª\Vof jf ;DefJotfn] c;/ kfb{5
eg] tL 36gfx¿ k/fl>t x'g\ .

gd'gf $ M
Pp6f 6f]s/Ldf % cf]6f ;]tf / # cf]6f sfnf anx¿ 5g\ eg] @ cf]6f
anx¿ Pskl5 csf]{ u/L lemSg] / lemlsPsf] annfO{ k'gM y}nLdf g/fVg] xf]
eg] b'j} k6s sfnf] kg]{ ;DefJotf lgsfNg s] ug{ ;lsG5 <

oxf“ klxnf] an lemSbf,


sfnf anx?sf] ;+Vof 3
sfnf] kg]{ ;DefJotf P1(B) =
hDdf anx?sf] ;+Vof = 8
A E A A E

bf];|f] k6s an lemSbf, sfnf] an klxn] g} lemlsPsf] x'Fbf


sfnf anx¿sf] ;ª\Vof / hDdf anx¿sf] ;ª\Vof 36]sf]
5 . To;}n] o; k6s an lemSbf x'g] ;DefJotf klxn]sf]
an lemSbfsf] 36gfn] km/s kfb{5 .
bf];|f] k6s an lemSbf,
sfnf anx?sf] ;+Vof
sfnf] kg]{ ;DefJotf = hDdf anx?sf] ;+Vof = 72
A E A A E

b'j} an sfnf] kg]{ ;DefJotf


3 2 6 3
P1(B) / P2(B) = 8 × 7 = 56 = 28
A E A A E A A

E
E

o; k/LIf0fdf cfpg ;Sg] 36gfx¿nfO{ j[If lrqdf b]vfp“bf,


bf];|f] k6s an
klxnf] k6s an lemSbf, sfnf]
lemSbf, sfnf] cfPdf ;DefJotf
cfPdf ;DefJotf B 2 lsgls sfnf] an # cf]6f dfq afFsL
7 5g\ / hDdf an % cf]6f x'G5g\ .
3
8
5 klxnf] an sfnf] cfO;s]kl5 bf];|f]
B W 7
an ;]tf] cfpFbf
3B B 3 klxnf] an ;]tf] cfO;s]kl5 bf];|f] an
7
5W
W sfnf] cfPdf
5
hDdf an 8
8 W
4
klxnf] an ;]tf] cfO;s]kl5 bf];|f] an
7
klg ;]tf]] g} cfPdf
klxnf] k6s an lemSbf,
;f]tf] cfPdf ;DefJotf
266
3 2 6 3
dflysf] j[If lrqaf6, b'j} k6s sfnf] cfpg] ;DefJotf 8 × 7 = 56 = 28
A E A A E A A

E
E A g} eof] .
gd'gf % M
Pp6f kl/jf/df 3 hgf aRRff hGdFbf x'g] 36gfx¿sf] j[If lrq agfO{ lgDg s'/fx¿ lgsfNg'xf];\ M
-s_ ltg} hgf s]6L x'g]
-v_ sDtLdf Pp6f s]6L x'g] Girl ½
pTt/ M oxfF, ltg aRrf hGdFbf,
klxnf] aRrf s]6L x'g] Boy ½
Girl ½
1
;Defjgf P1 -s]6L_ = 2 ,
Girl ½
A E A

Girl ½
bf];|f] aRrf s]6L x'g] ;Defjgf
1 Boy ½ Boy ½
P2 -s]6L_ = 2 A E
Girl ½
Girl ½
t];|f] aRrf s]6L x'g] ;Defjgf BOy ½ Girl ½
Boy ½
1
P3 -s]6L_ = 2 A E
Boy ½

ltg} k6s s]6L cfpg] Girl ½


Boy ½
;DefJotf
= P1 -s]6L_ × P2 -s]6L_ × Boy ½
1 1 1 1
P3 -s]6L_ = 2 × 2 × 2 = 8
A

E
E A A E A

-v_ sDtLdf Pp6f s]6L x'g] ;DefJotf = 1


− ;a} s]6f x'g] ;Defjgf
1 1 1 1 1
=1−( × × )=1−
2 2 2
A

E
E A

8 =7 A E A A E A

cEof;sf nflu k|Zgx¿


1. Pp6f emf]nfdf 4 cf]6f ;]tf / 5 cf]6f sfnf p:t} / pq} anx¿ /flvPsf 5g\ . kfn}kfnf] k'gM
g/flvsg b'O{ cf]6f an gx]/L y'Kbf cfpg] ;a} ;Defljt kl/0ffdx¿nfO{ j[If lrqdf
b]vfpg'xf];\ . (Ans..........)
2. Pp6f y}nLdf 7 cf]6f sfnf] / 9 cf]6f xl/of anx¿ 5g\ . gx]l/sg b'O{ cf]6f anx¿ Ps Ps
u/L -k'gM g/fvL_ lemSbf aGg] ;DefJotf j[If lrqdf k|:t't ug'{xf];\ . (Ans..........)
3. Ps bDktLaf6 ltg cf]6f aRrf hlGdPsf 5g\ . ;DefJo kl/0ffdx¿sf] ;DefJotfnfO{ j[If
lrqdf k|:t't ug'{xf];\ . (Ans..........)
267
4. Pp6f kl/jf/df 3 hgf aRrfx¿ hGd“bf b'O{ hgf 5f]/f x'g] ;DefJotfnfO{ j[Iflrq agfO{
33
b]vfpg'xf];\ . (Ans. 100 )
A E A

5. Pp6f afs;df 3 cf]6f /ftf, 5 cf]6f lgnf p:t} l;;fsndx¿ 5g\ . ltg cf]6f l;;fsnd
gx]l/sg k'gM afs;df g/fvL lgsfNbf aGg] gd'gfsf] j[If lrq n]Vg'xf];\ / ltg} cf]6f lgnf
l;;fsnd kg{] ;DefjJotf b]vfpg'xf];\ .
5
(Ans. 28 )
A E A

6. Pp6f afs;df 4 cf]6f /ftf, 7 cf]6f lgnf p:t} l;;fsndx¿ 5g\ . ltg cf]6f l;;fsnd
gx]l/sg k'gM afs;df g/fvL lgsfNbf aGg] gd'gf If]q n]Vg'xf];\ .
(Ans. S = {RRR, RRB, RBR, RBB, BRR, BRB, BBR, BBB})
7. Pp6f l;Ssf ltg k6s p5fNbf aGg] ;DefJo kl/0ffdx¿nfO{ j[If lrqdf k|:t't ug'{xf];\ / -i_
Pp6f dfq ufO{ kg]{ ;DefJotf kTtf nufpg'xf];\ . (Ans. 38 )
A E A

8. ;a} kf6fx¿ ;dfg ePsf] Pp6f 8fO; b'O{ k6s u'8fp“bf aGg] gd'gf If]q n]Vg'xf];\ / klN6Psf
5
;ª\Vofx¿sf] hf]8 8 cfpg] ;DefJotf lgsfNg'xf];\ . (Ans. 28 ) A E A

268
(= P;= Pn= ;L= k/LIffsf] ljlzi6Ls/0f tflnsf, gd"gf k|Zgkq, gd"gf
pTt/ s'l~hsf / cEof;sf nflu gd"gf kZgkq

COMPULSORY MATHS
Model Set
Time: 3.00 hours Full Marks: 100
Pass Marks: 32
;d'x …sÚ (Group ‘A’) [9×(2+2)=36]
1. a. dfg lgsfNg'xf];\ (Evaluate):
45a 2 − 80a 2 + 6a 5
5 5a 2
b. ;/n ug{'xf];\ (Simplify):
a 2 p × a p −1 − a p
a 3 p − a p +1

2. a. xn ug{'xf];\ (Solve) : 3 2 x + 7 − 3 = 0
b. olb Pp6f wgfTds ;ª\Vofsf] ju{af6 7 36fpFbf kl/0ffd 9 x'G5 eg] pQm ;ª\Vof
kQf nufpg'xf];\ .
If 7 is subtracted from the square of a positive number, the result is 9. Find the
number.
3. a. olb ∑ fx = 400+20a, ∑ f =18+2a / lbOPsf] >]0fLsf] dWos @) eP a sf]
dfg
lgsfNg'xf]; .
If ∑ fx = 400+20a , ∑ f =18+2a, and the mean of the given series is 20, find the
value of a. 8

b. ;Fu} lbOPsf ;l~rt jf/Djf/tf js|jf6 dlWosf / 7

6
dlWsfsf] ju{ 5

kQf nufpg'xf];\ . 4
3
Find the median class and value of median from the 2
adjoining cumulative frequency curve. 1

4. a. /fd|/L lkml6Psf] 52 kQL ePsf] tf;sf] 0 10 20 30 40 50 60 70 80 90

u8\8Laf6 Pp6f kQL ->]0fL cGt/_ Class interval

lgsflnPsf] 5 eg] pQm klQ /fgL cyjf sfnf] /ªsf] PSsf kg{] ;DefJotf kQf
nufpg'xf];\ .
A card is drawn from a well-shuffled deck of 52 cards. Find the probability of
getting such card is queen or a black ace.
b. Pp6f l;SsfnfO{ b'O{k6s ;Dd pkmfbf{ aGg] ;DefJotfnfO{ j[Iflrqdf k|:t't
ug{'xf];\ .
A coin is tossed two times and represents the probabilities in a tree diagram.

269
5. a. lqe'h ABC df AB=8 ;]=ld= BC= 12 ;]=ld= / ∠ABC=60° eP ;f] lqe'hsf]
If]qkmn kQf nufpg'xf];\ .
In ∆ABC, AB=8cm, BC= 12 cm and ∠ABC=60°.
Find the area of the triangle.
b. lbOPsf] lrq lqe'hfsf/ cfwf/ ePsf] Pp6f 7f]; lk|Hd xf] . olb AB= 3;]=ld=
BC=5;]=ld= / CF= 12;]=ld= eP pQm lk|Hdsf] cfotg kQf A

nufpg'xf];\ . B C

The adjoining diagram is a triangular based solid prism. If


AB= 3cm, BC=5cm and CF= 12cm find the volume of the D

prism.
F
Pp6f a]ngfsf] cw{Jof; / prfOsf] of]ukmn ;]=ld / cfwf/sf]
E
6. a . 12
kl/lw 416 ;]=ld= eP pQm
a]ngfsf] k"/f ;txsf] If]qkmn lgsfNg'xf];\ .
If the sum of radius and height of cylinder is 12 cm and circumference of base is
416 cm find the total surface area of that cylinder.
b. ;Fu} lbOPsf] lrq Pp6f 7f]; uf]nfsf] xf] . olb cfwf/sf] Jof;
- AB)= 28 ;]=ld= eP pQm uf]nfsf] cfotg lgsfNg'xf];\ .
The diagram given alongside is of a solid sphere. If AB= 28 cm, A B

Find the volume of the sphere. 28cm

7. a. Pp6f j:t'sf] jf:tljs d"Nodf15% a9fO{ clª\st d"No ?=


2760 sfod ul/of] . ;f] j:t'sf] jf:tljs d"No kQf nufpg'xf];\ .
The marked price of an article was fixed to Rs. 2760 by increasing 15% in its actual
price. Find its actual price.
b. ?= 5000 sf] k|ltjif{ 10% jflif{s rqmLo Aofhb/n] 2 jif{df x'g] rlqmo ld>wg
kQf nufpg'xf];\ .
Find the compound amount on Rs. 5000 in 2 years at 10% per
Z T Y
annum.
8. a. lbOPsf] lrqdf, WXYZ Pp6f ;dfgfGt/ rt'e{'h 5 . olb
WX nfO laGb' V ;Dd a9fpFbf ag]sf] ∆ZYV sf] If]qkmn
15cm 2
eP W X V

∆WXT sf] If]qkmn kQf nufpg'xf];\ .


P
If the given figure, WXYZ is a parallelogram . WX is extended
up to U and ∆ZYU is formed. If Area of ∆ZYU is 15cm2,
find
the area of ∆WXT. 46°
S
Q
R

b.
lbOPsf] lrqdf PR⊥QS 5 . olb ∠PQS=46° eP ∠QSR D
C

kQf nufpg'xf];\ . In the given figure, PR⊥QS. If ∠PQS=46°,


find ∠QSR. 30 ° 70°
A O B

270
9. a. lbOPsf] lrqdf laGb'x? A, D, C / B cw{j[Qdf 5g\ . olb ∠DAC=30° / ∠ABC=
70° eP ∠ACD kQf nufpg'xf];\ .
In the given figure, points A, D, C and B are on semi-circle. If ∠DAC=30° and
∠ABC= 70°, find ∠ACD.
b. lbOPsf] lrqdf PT n] laGb' A df j[QnfO{ :kz{ u/]sf] 5 . B

olb∠BAT=60° / ∠BAC=50° eP ∠ABC kQf nufpg'xf];\ .


In the given figure, PT touches a circle at a point A. If ∠BAT=60° and
C
50° 60° T

∠BAC=50°, find ∠ABC. A

;d'x …vÚ (Group ‘B’) [16×4=36]


10 Pp6f ljBfyL{x¿sf] ;d"xdf ul/Psf] ;j{]If0fdf 70% ljBfyL{x¿n] j}1flgsx¿sf
;DaGwdf , 65% n] v]nf8Lx?sf ;DaGwdf / 430 hgfn] b'j}sf af/]df cWoog u/]sf]
kfOof] . olb 8% n] s'g} sf] af/]df klg cWoog u/]sf] kfOPg eg] M
In a survey of the group of students, it was found that 70% of students studied about
scientists, 65% about players and 430 studied about both scientists and players. If 8% did not
study about scientists and players, then,
i) dflysf] tYofªsnfO{ e]glrqdf k|:t't ug{'xf];\ .
Represent the above information in a Venn-diagram.
ii) ;j{]If0fdf efu lnPs]f hDdf ljBfyL{;ª\Vof kQf nufpg'xf];\ .
Find the total number of students who took part in the survey.
11. dxQd ;dfkjt{s lgsfNg'xf];\ . (Find the H.C.F of):
6 x 2 + 2 x,6 x 3 − 10 x 2 − 4 x 2(3x + 1)
2
and
1
12. xn ug{'xf];\ . (Solve) : 5x-1 + 5-x = 1
5
13. ;/n ug{'xf];\ . (Simplify):- 2 1 3y xy
− − 2 + 3
x+ y x− y y −x 2
x + y3
14. b'O{ cÍsf] s'g} Pp6f ;ª\Vof, Tof] ;ª\Vofsf] cª\sx¿sf] of]usf] rf/ u'0ff 5 . olb Tof]
;ª\Vofsf] cª\sx¿sf] :yfg abn]/ aGg] ;ª\Vof / 9 sf] of]ukmn] pQm ;ª\Vofsf] b'O{ u'0ff
x'G5 eg], ;f] ;ª\Vof kQf nufpg'xf];\ .
A two digit number is four times the sum of its digits. If the sum of the number formed by
reversing its digits and 9 is two times the original number, find the original number.

15. olb tn lbOPs]f cfFs8fsf] dWos 68 eP x sf] dfg kQf nufpg'xf];\ .


If the mean of the following data is 68, find the value of x.
Marks obtained 40-50 50-60 60-70 70-80 80-90 90-100
-k|fKtfÍ_
No.of students 17 22 28 26 x 12
-ljBfyL{sf] ;+Vof_

271
16. Pp6f gbLsf] lsgf/df ePsf] 40 ld6/ cUnf] ¿vsf] 6'Kkf]df pQm gbLsf] csf{] lsgf/af6
cjnf]sg ubf{ pGgtf+z sf]0f 30° kfOof] eg] ;f] gbLsf] rf}8fO kQf nufpg'xf];\ .
The angle of elevation of the top of a tree, 40m high situated at the bank of a river when
observed from the opposite bank of the river is found to be 30°, find the breadth of the river.

17. lbOPsf] 7f]; a:t' j]ngf / cw{uf]nf ldn]/ ag]sf] 5 . h;sf]


cfwf/sf] Jof; 14;]=ld= / k"/f nDafO 21;]=ld= 5 eg] ;f] 7f]; 14cm

a:t'sf] k"/f ;txsf] If]qkmn kQf nufpg'xf];\ .


21cm
The given solid object is made up of a cylinder and a
hemisphere whose diameter of the base is 14cm and total length is 21 cm. Find the total
surface area of the solid object.

O
18. tn lbOPsf ju{ cfwf/ ePsf] lk/fld8sf] k"/f ;txsf]
If]qkmn lgsfNg'xf];\ .
Find the total surface area of the following square based
C
pyramid. D

19. A / B n] Pp6f sfd s|dz M 12 / 16 lbgdf ug{ ;S5g\ .A E 7cm F

/ B b'j}hgf ldn]/ 4 lbg sfd u/]kl5 B n] ;f] sfd 5f]8\5 A


B

eg] afFsL sfd ug{ A nfO{ slt lbg nfUnf < kQf
nufpg'xf];\ .
A and B can do a piece of work in 12 and 16 days respectively. A and B work together for 4
days and B leaves the work, find how long will A take to complete the remaining work.
20. Pp6f Sofd/f 25% 5'6 lbP/ 10% d"No clej[l4 s/ nufO{ a]lrof] . olb 5'6 /sd ?=
750 eP pQm Sofd/fsf] d"Nodf d"No clej[l4 s/ /sd slt lyof] kQf nufpg'xf];\ .
A camera was sold after allowing 25% discount on the marked price and then levying 10%
value added tax (VAT). If the discounted amount was Rs.750, how much value added tax
(VAT) was levied on the price of the camera?
21. Pp6f ufpFsf] hg;ª\Vof k|To]s jif{ 5 k|ltztn] a9\b} hfG5 . olb b'O{ jif{sf] cGTodf
1025 hgf a;fOF ;/]/ cGoq hfFbf ;f] ufpFsf] hg;ª\Vof 10,000 eof] eg] ;'?df ;f]
ufpFsf] hg;ª\Vof slt lyof] <
The population of a village increases every year by 5%. If 1025 people leave the village at the
end of two years and the population of the village is 10,000, find the population of the village
in the beginning.
22. Pp6} cfwf/ QR / pxL ;dfgfGt/ /]vfx? QR / PS sf] jLrdf S R
ag]sf lqe'hx¿ PQR / SQR sf] If]qkmn a/fa/ x'G5g egL
k|dfl0ft ug'{xf];\ .
Prove that the triangles PQR and SQR standing on same base
P T
QR and between same parallel lines QR and PS are equal in area. O

23. ;Fu}sf] lrqdf PT j[Qsf] Jof; xf] / O s]Gb|laGb' xf] olb rfk
SR= rfk RT eP PS//OR.x'G5 egL l;4 ug'{xf];\ .

272
In alongside diagram, PT is the diameter and O is centre of circle. If arc SR=arc RT, prove
that PS//OR.
24. Pp6f j[Qsf] pxL rfkdf cfwfl/t kl/lwsf]0fx¿ a/fa/ x'G5g\ egL k|of]u4f/f l;4
ug'{xf];\ . -slDtdf 3;]=ld= cw{Jof; ePsf b'O{ cf]6f j[Qx¿ cfjZos 5g\._ Verify
experimentally that the angles at the circumference standing on the same arc of a circle are
equal.(Two circles of radii at least 3 cm are necessary.)
25. rt'e'{h ABCD sf] /rgf ug'{xf];\ h;df AB=5.8 ;]=ld, BC=6.2;]=ld , CD=5.1;]=ld ,
DA=4.8;]=ld / ∠BAD=60° 5g\ .;fy} pQm rt'e'{h;Fu If]qkmn a/fa/ x'g] lqe'hsf] /rgf
ug'{xf];\ .
Construct a quadrilateral ABCD in which AB=5.8cm, BC=6.2cm , CD=5.1cm , DA=4.8cm
and ∠BAD=60°.also construct a triangle equal in area to the quadrilateral ABCD.

Marking Scheme
Model set 1
1. a.
9a 5 − 4a 5
i) ………………………………….. (1)
5a 5
ii) 1 ……………………………………… …… (1)
a2 p
p
a ( − 1)
b. i)
a ……………… …………………. (1)
a p (a 2 p − a)
1
ii) …………………………………………………. (1)
a

2. a. i)
(3
2x + 7 ) = (3)
3 3

x +7=27 ………………………………………(1)
⇒2
ii) 2 x =20⇒ x =10………………………………..........(1)
b. Let the positive number be x .
i) x 2 − 7 = 9 ……………………………………………(1)
ii) x = 4 …………………………………………………..(1)
3.
400 + 20a
a. (i) 20= ……………………………..……. (1)
18 + 2a
(ii) a=2………………………………………………. (1)

b . (i) Median class = 30-40 …………………………. (1)


Median = 4…………….. ……………………………..…(1)

273
4. a
4 2
i) P(Queen) = , P(B.ace) = ……….……………….1
52 52
3
ii) P(Queen or B.ace) = …………….…………...……….1
26
b.
(i) First outcome………...1
(ii) Second outcome …..1

5. a. (i) Area of triangle ABC =


1
× 8cm ×12cm × sin 60° ………….(1)
2
(ii) Area of triangle ABC=55.42cm2 …………………………(1)
b. (i) AC = 4 cm and area of triangle (A)=6 cm2……..…………....(1)
(ii) Volume of prism (V) = 72 cm3……………..………………..(1)
6. a.
i) T.S.A. of the cylinder= 2πr(r+h)………………….(1)
ii) T.S.A. of the cylinder=416×12=4992cm2……..….(1)

b.
3
4 22  28 
i) V= × ×   ……….(1)
3 7  2 
ii) V= 11498.67 cm3……….(1)

7. a.

i) x +15% of x = Rs. 2760………………….(1)


ii) Actual price( x ) = Rs. 2400 ………………(1)

b.

2
 10 
i) CA = Rs. 5000 1 +  ………………….(1)
 100 
ii) CA = Rs. 6050 …………….………………(1)

274
8. a.
i) Finding area of WXYZ = 30 cm2………… .. 1
ii) Finding area of ∆WXT=15cm2……………….1
iii)

b. (i) Finding ∠QPR=44°………………… ………....1


(ii) Finding ∠QSR= 44°………………………1

9 a. i) Getting ADC=110° with correct reason…………1


ii) Getting ACD=40° with correct reason …………….1

a. i) ∠BAC= 60, with correct reason……………………1


ii) ∠ABC= 70°, with correct reason……………………1

10. Let total number of students be x.


i) Representation of the information in Venn-diagram………1+1

70 x 65 x 8x
ii) − 430 + − 430 + 430 + = x …………..…1
100 100 100
iii) =1000 [i.e. Total number of students =1000]……….1

Alternatively

Let n(s∩p) be a% of total students.


i) Representation of information in Venn-
diagram…………....(1+1)

ii) 70-a+a+65-a=100-8 or
a=43…………………….…….(1)
iii) 43% of total students =430 or, total students =1000….(1)

11. i. 2x(3x+1) …………………………………………… ....(1)


ii. 2x(x-2) (3x+1) ………………………………………. (1)
iii. 2(3x+1) (3x+1) ……………………………………..… (1)
12.
iv. H.C.F = 2(3x+1) …………………………………...……(1)

275
i. Let , 5x = a ⇒ a2-6a+5=0 …………………………….(1)
ii. (a-1) (a-5) = 0 …………………………..……………(1)
iii. a-1=0 ⇒ x=0 …………..……………….…………(1)
a-5=0 ⇒ x-1
iv. x=0, 1 ……………….………………………………..(1)

2x − 2 y − x − y 3y xy ………………….(1)
13. i. + 2 + 3
x −y
2 2
x −y 2
x + y3
x xy
+
( )
ii. ………..……….(1)
(x + y )(x − y ) (x + y ) x − xy + y 2
2

x − x y + xy + x y − xy
3 2 2 2 2
iii.
(
(x + y )(x − y ) x 2 − xy + y 2 ) …………..………………(1)
x3
iv.
(
(x − y ) x 3 + y 3 ) ……………….……………………..(1)
14.
Let a two digit number be 10x+y where x and y are the digits of ten's place and unit place
respectively.
1. 10 +y=4( +y)
⇒6 =3y
∴y=2 …………………………………………..(1)
2. 10y+ +9=2(10 +y)
⇒ 19 =8y+9 ………………………………..………(1)
3. =3 and y = 6……………….………..………………(1)
. The original number = 10×3+6=36……………………(1)

276
15

Mark obtain No. of students Mid value F(m)


40-50 17 45 765
50-60 22 55 1210
60-70 28 65 1820
70-80 26 75 1950
80-90 x 85 85x
90-100 12 95 1140

∑ f = 105 + x ∑ f .m = 6885 + 85x ………………..….1+1


6885 + 85 x
i. 68= …………………………….1
105 + x
ii. x=15 ………………………………………..1

16. (i) Appropriate figure with description ………….. (1)


40
(ii) In right angled triangle CAB, Tan30°= … (1)
AB
(iii) AB= 40 3 meter.….………..……………….. (1)
(iv) The breadth of the river (AB) = 69.28…….... (1)
….meter………….…..(1)

17.

i) Slant height of pyramid =25 ……………..………………..(1)


ii) Area of base of pyramid (A1)= 196 cm2 ………….………(1)
iii) Area of 4 triangles(A2) = 700 cm2 ………..………………(1)
iv) Total surface area of pyramid (A)=896 cm2………….…..(1)

277
18.
i) Radius of the cylinder (r)= Radius of the hemisphere
(r)=7cm………………………………………………..…...1
ii) T.S.A. of cylinder without one circular part(A1)=πr2+2πrh=
22 2 22
× 7 + 2 × × 7 × 21 = 1078 cm2…………………………1
7 7
22 2
iii) Curved surface area of the hemisphere (A2)= 2πr2= 2 × ×7
7
=308cm2………………………………………..1
iv) T.S.A. of the solid(A)= A1=A2
1078+308=1386cm2 ……………………………..……..…1

19. 7
i) A and B can do of work in 1day …………..………..(1)
48
5
ii) Remaining work after4 days= works ………….………(1)
12
5
iii) A do works in 5 days ………..………….……………(1)
12
iv) A can do remaining in 5 days………………………….…..(1)

20.

i) PT = 10000+1025= 11025 …………………………..….(1)


2
 5
ii) 11025 = P 1 +  ………...………….…………...…(1)
 10 
iii) 11025 = P × 1.1025 …………….………….…...…...…(1)
iv) P = Rs. 10,000 …………….………………...…..........…(1)

278
21.
i) Let the MP be Rs x
x
Discount amount = 25% of x = Rs ……………….(1)
4
x
ii) Rs. 750= , o r x=Rs3000 …………….…………...…(1)
4
 x
iii) VAT amount (VAT) = 10% of x−  =
3x
…...…...…(1)
 4 40
iv) VAT amount = Rs 225 ……………………...…..........…(1)

22.
i) Correct figure with given to prove and construction if
necessary…………………………1
ii) Ar(∆PQR) = ½ ar( PQRT)……..1
iii) Ar(∆SQR) = ½ ar( PQRT)……..1
iv) Ar(∆PQR) = Ar(∆SQR) …………1
Full marks will be given for correct and appropriate proof:
Note: If the first step is wrong zero score for this answer.
23

Following statements with correct reason.


i) SR=RT
……………………..………….1
ii) ∠SOR=∠ROT……………….…….1
iii) ∠SPT= ½ ∠SOT= ∠ROT…………1
iv) PS//OR……………………………...1
NB:Full marks will be given for alternative correct and appropriate proof.

24.
i) For the correct figures…………………………..….…..1
ii) For the correct measurements with table……… .. …1+1
iii) For the correct conclusion…………………………..…..1
25. (i) Construction of ∠BAD=60° on the line AB= 5.8 cm…...1
(ii) Construction of quadrilateral ABCD. …………………..1
(iii) Draw a line parallel to BD through the point C…….……1
(iv) Construction of required ∆ADE…………………………1

279

You might also like