Barycentric Coordinates Guide
Barycentric Coordinates Guide
Barycentric Coordinates
Hence we can define P as the center of mass of the system formed by the points
A, B, C with weights u, v, w.
Now we prove that P is the center of mass of the system A, B, C with weights
x, y, z.
1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
32
Francisco Javier Garcı́a Capitán 33
A
−−→ −→ −−→ −→ m − −→
AD =AB + BD = AB + m+n BC,
−→ s −−→ s −→ sm −−→ s
AP = s+t AD = s+t AB + (s+t)(m+n) BC,
−→ −→ −−→ −→ −→ −−→ P
s sm
OP − OA = s+t OB − OA + (s+t)(m+n) OC − OB ,
t
−→ t −→ sn −−→ sm −→ m n
OP = s+t OA + (s+t)(m+n) OB + (s+t)(m+n) OC.
B D C
Then P is the center of mass of the system formed by A, B, C with weights
t(m + n), sn and sm. But,
sn DC (ADC) (P DC) (ADC) − (P DC) 4(P CA)
= = = = = .
sm BD (ABD) (P BD) (ABD) − (P BD) (P AB)
This proves that y : z = (P CA) : (P AB). In the same way, we can prove that
x : y : z = (P BC) : (P CA) : (P AB).
Examples.
A A A
O
G I
B C
B C B C
(1) The centroid G has homogeneous barycentric coordinates (1 : 1 : 1), be-
cause the areas GBC, GCA and GAB are equal to each other.
(2) The incenter I has coordinates a : b : c, because the areas of the trian-
gles IBC, ICA e IAB are respectively 12 ar, 21 br and 12 cr, where r is the
inradius.
(3) The circuncenter O. If R is the circumradius, the coordinates of O are
(OBC) : (OCA) : (OAB) =
= 12 R2 sin 2A : 12 R2 sin 2B : 21 R2 sin 2C =
= sin A cos A : sin B cos B : sin C cos C =
b 2 + c 2 − a2 c 2 + a2 − b 2 a2 + b 2 − c 2
=a · =b· =c· =
2bc 2ac 2ab
=a2 (b2 + c2 − a2 ) : b2 (c2 + a2 − b2 ) : c2 (a2 + b2 − c2 ).
(4) The points on line BC have coordinates of the form (0 : y : z). In the
same way, points on lines CA and AB have coordinates (x : 0 : z) and
(x : y : 0), respectively.
Exercises.
(1) Show that the sum of coordinates of the circumcenter equals to 4S 2 , where
S is twice the area of ABC.
34 Barycentric coordinates
We consider the Heron formula for the area of the triangle and do some
algebraic manipulation:
a2 (b2 + c2 − a2 ) + b2 (c2 + a2 − b2 ) + c2 (a2 + b2 − c2 ) =
=2a2 b2 + 2a2 c2 + 2b2 c2 − a4 − b4 − c4 =
=(a + b + c)(−a + b + c)(a − b + c)(a + b − c) =
a + b + c −a + b + c a − b + c a + b − c
=4 · 4 · · · · =
2 2 2 2
=4S 2 .
(2) Find the coordinates of the excenters.
We consider the following figure that shows the triangle ABC and the
excenter Ib .
A rb
Ib
B C
The barycentric coordinates of Ib are
(Ib BC) : (Ib CA) : (Ib AB) = arb : −brb : crb = a : −b : c.
We observe that the orientation of triangle Ib CA is opposite the orienta-
tion of the other two, giving the negative second coordinate. In the same
way, we have Ia = (−a : b : c) and Ic = a : b : −c.
Exercises.
(1) The orthocenter lies on Euler lines and divides OG in the ratio 3 : −2.
Prove that their barycentric coordinates can be written
H = (tan A : tan B : tan C),
Francisco Javier Garcı́a Capitán 35
or equivalently,
1 1 1
H= : 2 : 2 .
b + c − a c + a − b a + b2 − c 2
2 2 2 2 2
G = (1 : 1 : 1),
with sum 4S 2 and 3 respectively. We first consider these coordinates with
equal sum 12S 2 :
O = 3a2 (b2 + c2 − a2 ) : 3b2 (c2 + a2 − b2 ) : 3c2 (a2 + b2 − c2 ) ,
G = (4S 2 : 4S 2 : 4S 2 ).
Now the first coordinate of H is
(−2)3a2 (b2 + c2 − a2 ) + 3 · 4S 2 =
= − 6(a2 b2 + a2 c2 − a4 ) + 3(2a2 b2 + 2a2 c2 + 2b2 c2 − a4 − b4 − c4 ) =
=3a4 − 3b4 + 6b2 c2 − 3c4 =
=3(a2 − b2 + c2 )(a2 + b2 − c2 ).
In the same way, the second and third coordinates are 3(−a2 + b2 +
c )(a2 + b2 − c2 ) and 3(−a2 + b2 + c2 )(a2 − b2 + c2 ). If we divide them by
2
Now,
1 sin A
1 S = tan A ,
= 2 2bc
2 2 =
2 2
b +c −a 2 b +c −a cos A S
2bc
threfore
H = (tan A : tan B : tan C).
(2) Use that the nine point center N divides OG in the ratio 3 : −1 to show
that their barycentric coordinates can be written as
N = (a cos(B − C) : b cos(C − A) : c cos(A − B)).
Starting from
O = 3a2 (b2 + c2 − a2 ) : 3b2 (c2 + a2 − b2 ) : 3c2 (a2 + b2 − c2 ) ,
G = (4S 2 : 4S 2 : 4S 2 ),
the first coordinate of N is
(−1)3a2 (b2 + c2 − a2 ) + 3 · 4S 2 =
= −3a2 b2 − 3a2 c2 + 3a4 + 3(2a2 b2 + 2a2 c2 + 2b2 c2 − a4 − b4 − c4 )
= 3(a2 b2 + a2 c2 + 2b2 c2 − b4 − c4 ).
36 Barycentric coordinates
2. Conway formula
2.1. Notation. If θ is any angle and S is twice the area of ABC, we define
Sθ = S cot θ. In particular,
b 2 + c 2 − a2 c 2 + a2 − b 2 a2 + b 2 − c 2
SA = , SB = , SC = .
2 2 2
Given two angles θ and φ, we define Sθφ = Sθ · Sφ .
In this notation, we have the formulas :
(1) SB + SC = a2 , SC + SA = b2 , SA + SB = c2 .
(2) SAB + SBC + SCA = S 2 .
The first one is easy. The second one comes from the identity
cot A cot B + cot B cot C + cot C cot A = 1.
To prove this,
cot A cot B + cot B cot C + cot C cot A =
= cot A (cot B + cot C) + cot B cot C =
cos A cos B cos C cos B cos C
= + + · =
sin A sin B sin C sin B sin C
cos A sin C cos B + sin B cos C cos B cos C
= · + · =
sin A sin B sin C sin B sin C
cos A sin(B + C) cos B cos C
= · + · =
sin A sin B sin C sin B sin C
cos A cos B cos C
= + =
sin B sin C sin B sin C
cos B cos C − cos(B + C)
= =
sin B sin C
sin B sin C
= = 1.
sin B sin C
Francisco Javier Garcı́a Capitán 37
Examples.
(1) The orthocenter has coordinates
1 1 1
: : = (SBC : SCA : SAB ) .
SA SB SC
(2) The circumcenter has coordinates
2.3. Examples.
A
We consider the square BCCA BA constructed externally
on the side BC of the triangle ABC. The point BA
has swing angles θ = 90◦ and ϕ = 45◦ , therefore since
cot 90◦ = 0 and cot 45◦ = 1, we have
BA =(−a2 : SC + Sϕ : SB + Sθ ) =
(−a2 : SC + S : SB ). B 45º C
Similary,
CA = (−a2 : SC : SB + S).
We caln calculate the midpoint of the square as the mid- MA
point of BA and C = (0 : 0 : S), giving
MA = (−a2 : SC + S : SB + S).
BA CA
3.2. Examples.
3.2.1. Gergonne point. The points of tangency of the incircle with the sides are
X = (0 : s − c : s − b), Y = (s − c : 0 : s − a) and Z = (s − b : s − a : 0) that can
1 1 1 1 1 1
be rewritten as X = (0 : s−b : s−c ), Y = ( s−a : 0 : s−c ) and Z = ( s−a : s−b : 0).
1 1
Therefore AX, BY and CZ intersect at the point with coordinates ( s−a : s−b :
1
s−c
). This point is known as the Gergonne point Ge of triangle ABC.
X 0 = (0 : s − b : s − c),
Y 0 = (s − a : 0 : s − c), Z' Y'
N
0
Z = (s − a : s − b : 0).
These are the traces of the point with B X' C
coordinates (s − a : s − b : s − c), known
as Nagel point Na of triangle ABC.
3.2.3. Exercise. Show that the Nagel point Na lies on line IG and Na divides IG
in the ratio 3 : −2.
We consider I = (3a : 3b : 3c) y G = (2s : 2s : 2s) both with sum 6s. Then,
−2I + 3G = (6s − 6a : 6s − 6b : 6s − 6c) = (s − a : s − b : s − c) = Na .
From
S
cos A 1
S √
SA − √ =S ±√ =√ 3 cos A ± sin A =
3 sin A 3 3 sin A
√ !
2S 3 1
=√ cos A ± sin A =
3 sin A 2 2
2S
=√ (sin 60◦ cos A ± cos 60◦ sin A) =
3 sin A
2S sin(60◦ ± A)
=√ =
3 sin A
4RS sin(60◦ ± A)
=√ ,
3 a
4. Area of a triangle
(u1 + v1 + w1 )P = u1 A + v1 B + w1 C,
(u2 + v2 + w2 )Q = u2 A + v2 B + w2 C,
(u3 + v3 + w3 )R = u3 A + v3 B + w3 C,
Francisco Javier Garcı́a Capitán 41
5. Lines
5.1. Equation of the line through two points. We can use the formula given
in the previous section for the area of the triangle to establish the equation of the
line through two points (u1 : v1 : w1 ) and (u2 : v2 : w2 ):
u1 v1 w1
u2 v2 w2 = 0.
x y z
5.1.1. Examples.
(1) The equations of the sides BC, CA and AB are, respectively, x = 0, y = 0
and z = 0. For example, since B = (0 : 1 : 0) and C = (0 : 0 : 1), the line
BC has equation
0 1 0
0 0 1 = 0 ⇔ x = 0.
x y z
(2) The equation of the perpendicular bisector of BC is (b2 − c2 )x + a2 (y −
z) = 0. For, this line goes through the midpoint of BC, with coordinates
(0 : 1 : 1) and the circumcenter O of ABC with coordinates
a2 (b2 + c2 − a2 ) : b2 (c2 + a2 − b2 ) : c2 (a2 + b2 − c2 ).
42 Barycentric coordinates
5.2.1. Infinite points. In order to get the equation of a parallel line we consider
the infinite points. We know that each line has an infinite point and all infinite
points lie on a line called line at infinity.
The line at infinity has equation x + y + z = 0, since x + y + z 6= 0 always return
an ordinary point.
The infinite point of the line px + qy + rz = 0 is (q − r : r − p : p − q), since their
coordinates have sum zero and it lies on the line px + qy + rz = 0.
On the other side if P = (u1 : v1 : w1 ) and Q = (u2 : v2 : w2 ) with u1 + v1 + w1 =
u2 + v2 + w2 , we can prove that the infinite point of line P Q has coordinates
(u1 − v1 , u2 − v2 , u3 − v3 ).
For example, since the orthocenter is H = (SBC : SCA : SAB ), the foot of the
altitude from A is AH = (0 : SCA : SAB ) = (0 : SC : SB ), with SC + SB = a2 and
the infinite point of the altitude through A = (a2 : 0 : 0) is −a2 : SC : SB ).
5.2.2. Parallel through a point. The line that goes through P = (u : v : w) parallel
to px + qy + rz = 0 has equation
q−r r−p p−q
u v w = 0.
x y z
5.2.3. Exercises.
(1) Find the equations of the lines through P = (u : v : w) parallel to the
sides of the triangle.
The infinite point of BC is, subtracting coordinates of C from B, (0, 1, −1),
then the line through P parallel to BC has equation
0 1 −1
u v w = 0 ⇔ (v + w)x − u(y + z) = 0.
x y z
Francisco Javier Garcı́a Capitán 43
Z
U E
F Y
P
V W
B D X C
44 Barycentric coordinates
p2 x + q 2 y + r2 z = 0
is the point
q1 r1
: − p1 r1 : p1 q1 .
q2 r2 p2 r2 p2 q2
The infinite point of a line l can be regarded as the intersection of l and the line
at infinity with equation l∞ : x + y + z = 0.
5.3.1. Examples.
(1) Let DEF be the medial triangle of ABC. Find the equation of the line
DIa , joining D and the A-excenter. Show that the lines DIa , EIb and F Ic
are concurrent and find their common point.
The equation of line DIa is
x y z
0 1 1 = 0 ⇒ (b − c)x + ay − az = 0.
−a b c
Similarly we get
EIb : −bx + (c − a)y + bz = 0.
F Ic : cx − cy + (a − b)z = 0.
The three lines concur if and only if the determinant of coefficients is
zero:
b−c a −a −c c b − a
−b c − a b = −b c − a
b = 0.
c −c a − b c −c a − b
To find the common point we solve the system formed by the two first
equations:
a −a b − c −a b − c
: − a
(x : y : z) = : =
c−a b −b b −b c − a
= (a(b + c − a) : b(a + c − b) : c(a + b − c)) =
= (a(s − a) : b(s − b) : c(s − c)) ,
known as Mittenpunkt.
(2) Let DEF be the medial triangle of ABC and X, Y, Z the midpoints of the
altitudes of ABC. Find the equations of lines DX, EY , F Z, show that
they are concurrent and find their common point.
The orthocenter is H = (SBC : SCA : SAB ), hence the foot of the altitude
from A is AH = (0 : SCA : SAB ) = (0 : SC : SB ), with SC + SB = a2 .
Francisco Javier Garcı́a Capitán 45
EY : −b2 x + (a2 − c2 )y + b2 z = 0,
F Z : c2 x − c2 y + (b2 − a2 )z = 0.
Since
c 2 − b2 a2 −a2
−b2 a2 − c 2 b2 =0
2 2
c −c b − a2
2
because the first row is the sum of the other two, the three lines are
concurrent.
To find the common point we solve:
(x : y : z) =
2
a2 −a2 c − b2 −a2 c2 − b2 a2
= 2
: − : =
a − c2 b2 −b2 b2 −b2 a2 − c2
= a2 (a2 + b2 − c2 ) : b2 (a2 + b2 − c2 ) : c2 (a2 + b2 − c2 ) =
=(a2 : b2 : c2 ),
MA = (−a2 : SC + S : SB + S).
Similarly, we have
AB
AC
A CB
MB
MC VE
BC
B C
MA
BA CA
The three lines are concurrent:
0 SB + S −(SC + S)
SA + S
0 −(SC + S) =
SA + S −(SB + S) 0
0 SB + S −(SC + S)
= 0 SB + S −(SC + S) = 0.
SA + S −(SB + S) 0
X'
Z Y
B C
The intersection point of these lines is the orthocenter of AY Z,
X 0 =(∗ ∗ ∗ : SA p(SA r − b2 q + SC p) : SA p(SA q + SB p − c2 r)) =
=(∗ ∗ ∗ : SC (p − q) − SA (q − r) : SA (q − r) − SB (r − p)),
since SA + SC = b2 and SA + SB = c2 .
5.4.1. Examples.
(1) Show that the perpendicular to the sides through the points of tangency
of the excircles are concurrent.
Let X = (0 : s − b : s − c), Y = (s − a : 0 : s − c) and Z = (s − a : s − b : 0) the
points of tangency of the excircles with the corresponding sides.
The point of concurrence of these lines is known as the Bevan point of ABC.
References
[1] P.Yiu, Introduction to the Geometry of the Triangle, 2001, version of 2013, http://math.
fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf.