CANTILEVER BEAM DESIGN
a
weight = [~50000_]N
_-180375x1860
a t" [o.482_]mm.
Cts esse as lb )
leur
x- Distance of point of interest from the support (mm) 368
IP - Load (N) 50000}
L- Length (mm. 388)
|| - Moment of Inertia (cm*) 861
IE- Young's modulus (N/mm?) 2.E+05
iz Section Modulus (cm*) 115.00]
IDeftection equation | Ely= Px? @L-%)
6
JQUTPUT
|Maximum deflection d= PL = 0.482 mm
3EI
Max. Moment = 78400 Nm
Bending Sresss fue = 160.0 Nimm?
IBending Sresss fry . 82.1 Nimm?
Foc = Foy = 0.6F, = 150.0
foal Foc + fo) Foy = 16 “* FAIL
UNPROGRAMIPSEBXLSFOR CHECKING SUPPORT : iGLIP- NO. DA01-06 7"
STEEL PROPERTY
Fy 98503 mm?
E= 200000 = Nimm?*
Ka EG007'9 (table C-C2.1 AISC)
Moment | Radius of
Member] Shape [Section Area | of Inertia |_Gyration_| Modulus of Section
te
(cm)
1 SeEABIES 6.03
2 | fooxt50xt0L 3.08
CALCULATION PART
BBB ON.
ee bP
(eh _t0ersctec0 From Statles ,we obtain
(renter)
Ve $2043 N
1OOx100x1 OL, a“
(rember2)
[= 5204 0 mm.
H= 36800 —__p
CHECK MEMBER 2 (AXIAL COMPRESSION)
Ce = {2076 = 128.7
Kr = 16.9
Fs - 144.30 Nimm? Eq. (E241)
= VIA = 38.2 Nimm?
fuFe = 0.26 oKes
CHECK MEMBER 1 (AXIAL TENSION AND BENDING)
f= HIA = 15.52 Nemm?
Fre06Fy= 150.0 Nim?
fox = MZ = 160.0 Nimm?
fy = MylZy = 82.14 Nimm?
TAH Fic = Fey = 0.6 F, = 150 Némm?
to HolFic foylFy = 417 “AIL Eq, (H2-1)
2 agar
USPROGRAMPSSBXLS 7R6A9 10:50AMce
Kur
Fa
f
Fe
fy
Fy
DESCRIPTION
(Specified minimum yield stress) 36 Ksi
36000 Psi
Modulus of elasticity ( 28,000 Ksi )
Theoretical value of Buckled sha (Table C-C2.1 Page 5-136)
Statical shear on beam , Shear produced by factored fo ( N))
Column slenderess ratio separating elastic and inelastic buckling
Length of column (mmm)
Largest effective slenderness ratio of any unbraced length as defined In AISC ASD
specification Sect. Et
‘Axil compressive stress permitted in a prismatic member in the absence of bending
‘moment , Ksi
when_Klir< Ce
QL 1 (MMA? 1205") Fy
Fe
5/3 + 3/8 ( (Kir) / Co) = ( (KUN / BC.°)
when _Kilr> Ce
Ree
23,( Kur)?
@(Prying force per fastener, kip 1-——( for worst case)
Computed axial stress, ksi
Allowable axial tensile stress, ksi
Computed compressive bending stress at the point under consideration, ksi
Computed bending stress that would be permitted if bending moment alone existed, ksi
working hese Portbndacdirs alloweble chers Sedr mextrom
sete sheess = rraterto| muy ene
warepese VW G+ 245 Mart
At
Pa
ok = 292 9/01” pagesCANTILEVER BEAM DESIGN
Qbrxra wo aexckh Y
pipe
= te? ge? Cee Box >a
T
eer oes ener we a
= bag! fe Px xXSa
ge tai’ [Be] @ sre. tat
4
reo Cobeniag load Yh=2) © aa
etal) Pe fk - 2a)
ober Te 2H)
CALCULATION FOR PIPE UP TO 2" DIA. i Te Fox-ay
INPUT shearing Nood Woe Po
x Distance of point of interest from the support (mm)
P -Load (N) 750 (2" Sch.160) | Pres rer?
L- Length (mm.) 600 (Max. Longth) :
1 Moment of inertia (m4) = 36.8 368x108 am
E- Young's modulus (N/m2) = 2EM1 C2ae4Pa) | yox3} ley,
to 24 x0! 431 Zien
Deflection equation Ely= Px’ (@L-x) aera aerate we
6
Maximum deflection d= POL = 0.734 mm
3E!
Moment Caen x We 0) fees = 450, Num ABH (ley 0)
Fw
TRoeeAM F
Enon Gets p= 20387 fe
Enaaple ye wi Dedlectrer 4 ¥
4 Aagle :
T= seb wh om gle of detlectro » $
bending moment
?
A* G00 9M
re 50/43, he
Argwer
4a GY) deflect conan = = FRED
Cadangle ot deflection =~ 0.105 deg
(Hy beng annem SOC Lentiny Meared wale u53 s208 ye wood
fina Fx M= -49871 ley oe a
DBLFergal Mnehire
API Sranoano 650!
ber bs £85,
Table P-1—Modulus of Elasticity and Thermal
Expansion Coefficient at the Design Temperature
Design, Modo of Sastciy
‘Tompertoro’ (pounds per quar inch) ‘Coefiten™ Be MW
ee ‘ tres 1 perc ide we
70 Baan Taeeoy,,+ — — FAL
200 78,800,000 661 slx0.003 = Winn™
300 28300000 ear mn ne
pr) 2zron9e0 ‘tor
Eo 2000 mas
ee ce BAe
Tove: Liner ineroation may te pple fr internets values. eo
‘Mean coef of henmal etpeto, going fom 70° the tmperre
indie Mere te Apt
a &
ge ant
P
pressute resulting from product head at the glevation ofthe opening centerline,
in pounds per square inch, : Gi
R = nominal tank cadus, in inehes,
1 = shell thickness at the opening connection, in inches.
AT = norgpal operating température minus installation temperature, in degrees
Fahggnheit el
W = unrestrained radial growth ofthe shell, in inches.
Wy = resultant redial deflection atthe opening connection, in inches.
X, = La, ininches
eq = L~a,ininches -
Xa Lincs {
Ye = coefficient determined from Figure P-4B. ‘i
Yn ¥ = coefficients determined from Figure P-4A.
= thermal expansion coefficient ofthe shell material, in inches x 10¢ perinch.*F
(see Table P-1).
fr characteristic parameter, 1.285/(R)™.
A= alfRO°.
{= unrestained shell rotation resulting from product head i radians.
= sholl rotation in the horizontal plane atthe opening conneetion resulting from fi
the circumferential moment, in adiens.
4, = shell rotation i the vertical plane at the opening connection resulting from the
longitudinal moment, in cadians.
P4 Stiffness Coefficients for Opening Connections
‘The stiffness coefficients Ka, Ki, and Ke corresponding to the piping loads Fy, M,, and
‘Mc at an opening connection, as shown in Figure P- I, shail be obtained by the use of Fig-
ures P-2A theough P-2L. Figures P-2A through P-2L shall be used to interpolate interme-
diate values of coefficients.
P.5 Shell Deflection and Rotation
P51 RADIAL GROWTH OF SHELL
‘The unrestrained outward radial growth of the shell atthe center of the opening con
neotion resulting from product head and/or thermat expansion shall be determined as
follows: {
we o.ossan [! =P -cos( BL) -4] + aRAT‘CONTRACT NO, “SHEET NO,
FOSTER WHEELER iNreANaTionat conp. | TIYA Ke
CALCULATION SHEET ono
ome 3 2 1 98 |
\ v
ty
rr tit
ale |
rl :
—| 2 .
| woe
bl td F ' i
ek bade |
CL te ke veces | :
TT olAL | ebechafeerenae nomeer |
me Upeer rap idan nee |
| petra |
steht ob (A dadertaruitile Ma cdis vector I]
TT fie) Be erste! +B cassct req
gt faa! i] |
ty. i ‘ do |
Biche? ¢ He omed ae
alle” + My 220
rl
eect cart skn pd hl te
Pel 2 Nozzle: 4 xr Ast 32pm fodn sa
Pe] Pee \ |
del “fevieet i pi gehy
Dy eel. eueaeer | ad PA rr
2) Bleue, dhud pore usa ok owe yom |
13) ae Te RUD peer ore RAT!
FA) ge 4) Bolle ape
2 owe Yo ak poreee on os wa tH \
EEE ee eer } toad
Ae yocal RUB MEMT TORE nesta (19 fe ts
}2, Uses) Pry
I Veeticat rte !
1 Wade dablee Fete Yq (De ioe x i
Bactmey G80 gor x Aesivn shess'sledle
aa ical fez Fe. V0 onssag OB
Kile poeortac pie :
‘ Jed Vourlan delbayDe Wow
Ble aides going clown wn
fey Hho “Mb oer a4 Sow}nat
PARENT PIPE O1A.= [__-_] PIPE RADIUS 'R’=[___]
PARENT PIPE WALL THK. CORR. ALL. st!
TRUNNION DIA ———-—— TRUNNION RADIUS ‘Pr?
RE-PAD THK. ='t TOT. WALL THK, 'To'=
| LINE LIST OES. PRESS. 'P'= [wnat] DESIGN TEMP,
LONG. BENDING MOMENT="HL' ="X1"x ‘WI = ebeae eee
CIRC. BENDING MOMENT='NC' ='X1'x "W2' =
DIRECT AXIAL FORCE = 'A' =
"ML
FO Tg ot
MC’ :
0a ot
ah i
FA ater eee
PIx'RE LONG. PRESS.
sup = 9 a simess =
Pa CIRC, PRESS.
scp a
SLs 1,47 x ‘FL’ X 1.17 X xX Vv PE
7g 5 ( ys
SC= 2 x 1.17 x 'FC'X 'R' = 2,34 X xv : =
"Te 3 ( ) hs
SA= 4.5 X.4.17 x ‘FAX XV Set
"To" 83 fi ys
ALOVABLE STRESS (SH) AT TEHPERATURE (N/E?)
arc, —2eHe °C| ei
carson stec._| 13@ | 13¢ | 138
STAINLESS tt | 115
CU-NT 88
DUPLEX 242 | 231.) 284 =
SL+SAtSLP=[__— “S15 X SHE BOTH CASES HUST
SC+SA¥SCP= ~S 1.5 X SHe BE. SATISFIED
TOAOS IN NEVTONS (ND @ TRUNNION LOADING
DIMENSIONS. IN. CHD
HOMENTS. TN CVAD ~ awa ae CALCULATION SHEET
PRESS...IN (N/M! (BAR Gf; envi)
fadone) reve | “rT oeban,DURAY LEG & TRURMION ARM LOADING CALCULATION SHEET
PIPE SUPPORT Ke,.
LINE No,
STRESS SKETCH No,
GiAs HOw.
APPLIED LOADS:
HM,» Longitudinal bending moment . tim
Hg, Circumferential bending manent . ter
P, Direct axial force = x
2, 7 eI
few, 1 Ho
® 2. a 1
fe Me / Hh
: 7 : aT
ee fate u Now
: 7 : -1
tye PL etteg Hom
: : a
feb (tpt ty) : Hew
Te *Tnom = (eornosion alloxance + MIT tolerance ) = rm
tet thom 7 MIT tolerance + . fg
butted te : 7
sb + Li (kx f . om"?
gee
Notes: Allowable stress must not exceed 1.0 S, for straight pipe & 1.25 S,
for bends.
EES Brown & Root(UK)td-
CONOCO (UK) LIMITED
~~ $BG.D: = OFFSHORE! - “Tessie, 54609-59950
FOSTER WHEELER. GUIDE TO PIPE PAGE :
io SUPPORT SELECTION
ENERGY LIMITED REVISION
t oate
PIPE SHOES
' PIPE MATERIAL REQUIREMENT INSULATION
1
: CARBON STEEL NO. SHOE ————— PP PG NI.
(NO STRESS RA seven
or ATE
os RELIEF) SHOE ea eneeias
WELOED SHOE ALL INSULATED LINES
; WITH RE-PAD 20" D1a.—
hed OR SADDLE
im tab SAD. E__ NON INSULATED LINES
ete NO SHOE 28" DIA.
ity
q
mt CARBON STEEL NO SHOE———PP, PG NI.
al SHOE. ALL INSULATED
ft ALLOY STEEL oe LINES. 2" -18"
i (NO HIGH THRUSTS)
<424 C-C5 CLANPS
oy 424°C-ALLOY CLAMPS
it
eae VeLOED SHE AL, INSULATED LINES
“PAD 28°DIA
tet ot Since pS THRUST inusts AT ANCHORS ETC.
AvoTd fePABS ON ALLOY
soi LINES > 427°C
E -PAD/SADDLE. NON INSULATED LINES
ty BUT NO SHOE ———~20" D1A.—>
it STAINLESS STEEL =-——NO_ SHOE —————— PP PG, NI (CHECK FOR RE-PAD)
LAMPED SHOE ——— ALL INSULATED LINES.
2*-18" (NO HIGH THRUSTS).
VELOED SHOE. ALL INSULATED LINES
EEE WITH RE-PAD. 20° OIA. —>
ineseat OR SADDLE HIGH THRUSTS AT ANCHORS.ETC.
2°01A.—>
NOTES#
ieee 1) RE-PADS (AT-78) AND SADDLES ARE TO BE .IN PARENT PIPE MATERIAL.
2) FOR LINES 2@* AND GREATER REFER TO EXXON
BP 3-7-1 PARA 4.3 FOR MINIMUM REINFORCEMENT.
3) REFER TO PIPE SUPPORT STANDARD 5462/9 59850,
WHICH IS THE FINAL ARBITER IN THE ABOVE MATTERS.
WORKSHOP. OGN‘ghe following outline can be used for modeling buried pipe:
ue, Go -90 M-
{y- Include 200-300 feet of the buried pipe. G7 10h, = JoIbmm,
da 20) |
j- Nodes should not be spaced more than 2008 ayant for | pipe fe :
greater than 12 inch in diameter. Nodes should not be spaced iy
=F more than a for pipe 12 inches and under.
At each node calculate the equivalent area:
Area eq, = (1/2) (LI*D1 + L2*D2 +... + Ln*Dn) i
where: nis the number of pipes framing into the node, |
Li is the length of the pipe "i", and
Di is the outside diameter of pipe "i". 7
e258
a 2
as
» The equivalent area for node 20 in the model below is:
Wd geadh edelos of elasticrty verde
4
102 + 302) =O oe een ene etss ind
Select the subgrade modulus of elasticity for the type of soil.
» (Note that the values below are in kips per cu.ft.)
200-500
250-700 _ silty and dense sand
75-150 clay qu < 4 ksf ths 21970 fe
150-300 clay qu < 800 ksf 8? (90983? m>
>300 clay qu > 1600
Ju vvilo
where; qu is the unconfined compressive strength of the
soil,
dao ct,
qib = 449 Re.
30-100 loose sand ihe 2 23048 4
60-500 smedium dense sand This (1062 N
400-800 ...dense sand we
clay and dense sand».taken from Joseph E. Bowles, "Foundation Analysis and
Design", 3rd Edition, 1982.
“5 - Multiply the effective area for each node by the subgrade
modulus to get an effective anchor stiffness for that node.
V6 = Insert an anchor into the piping model with the computed
stiffness at each node that is buried.
0 burted pipe
along its length. (Weight lodds dn burded”
deflections i/and= 50-06 hob calise sthessesor
aise:
Hrvitawee todbAANG Derruegeen deflection , stuss
wists onda Vedra oot enr mdeses go Qe Revol
7 ~ Set the density of the pipe to zero. The weight,
i form
Often axial stops in the form of large flanges or concrete anchors
must be designed to resist the thermal expansion of buried pipe. In
this case it is recommended that the axial stiffness as calculated
on the previous pages be reduced by approximately 25%. This clearly
will yield more conservative anchor loads, but also requires the
entry of 6 individual restraints instead of the single anchor. The
CAESAR “Include” feature with the READNOW variable set to “Y" can
facilitate this modelling.
Example:
Subgrade modulus dense sand = 500 kips/cu.ft.
Equivalent area for node = 20 sq.ft. a
Anchor stiffness = (500 kips/cu.ft.) (20 sq.ft.) = 10,000 kips/ft
Standard Program’ Units:
(10,000 kips/ft.) (1000 Ib/kip) (1 fvi2 in.) = 833,333 Ib/in.
CAESAR restraint input: NODE 20
DIRS A [ANCHOR]
STIF 833333
akips = eer Ib
-243-BURIED PIPE MODELING
Nomi Dia: | Non Ta
(Inches) | (mm) | oD | Node Space
2 60 | cose | 18006
3 eo | 639 | 2087
4 100 | 1143 | 3429
6 150 | 1683 | 5049
8 200 | 2101 | 6573
40 250 | 273 8190
12 a
14 360 | ss56 | ria
16 4oo | 4063 | 9126
18 450 | 4572 | 144
20 500 | 508 | 10160
22 50 | s5a8 | 11176
2 600 | sone | 12192
26 50 | 6604 | 13208
2B yoo | 7112 | 14224
30 750 | 762 | 45240
2 oo | size | 16256
34 aso | 636 | 47272
36 900 | 9144 | 18288
28 950 | 965.2 | 19904
2 1050 | 10668 | 21396
The following oultine can be used for modeling buried pipo:
4 = Include 60 - 90 m of the butted pipe.
2- Nodes should not be spaced more than 20*OD apart for pipe greater than 12*in dlameter.
Nodes should not be spaced more than 30*OD for pipe 12 Inches and under.
3-Ateach node calculate the equivalent arca :
Aeaeg, = (W2)(LI*D1 #12402 +... Lm)
Whore : isthe numberof pipes framing into the node,
Li fsthe length of the pipe *1*, andl
Di_ is the outside diameter of pipe *1*STRESS CHECK LIST
1D DIP You MOPELED EXACTLY ?
2) PIPE STRESS WITHIN ALLOWABLE
TEMP OTe OT eOrerEcr
PRESORE
whe
a) pyre peRLEcTION & 10 mut 9
A) wozzLe LeAD WITHIN ALLOWASLE 9
SPS op sorrorT BY ews
5) Po You HAVE
YBS PPO YOU SEND WFO To cy.
oh suPfoRT DESiaN
No.
4) DO You FAVE TRURHIOG, T-PoeT , CAMTIMIVER BEaMy “YES, cHEcK 512B
D qluvaryolede wes no
8) \uroXnsvy do $¢ MowT
DecvMESTAM od WERKE f
N) Prooy sheer
2> TILE
»
4)
D
»
tare
NowLe LOAD
STRESS SkETCH.
VESSEL CLIP
MoU PLE CALC ol Deve é©
Sd sf
cWeew ne Tet
) TEMf 4 PRESSURE
2) MAT SBE
3) Bpavcy conpecTyd > SIF very lefoptee?|
4)
purer = MARL ote
HORM ~ BE MIRE Ke
op WaT. rire preg 9 Ou?
1) SVE Meo Thase ac o%
Px
AML AREA WITH
VESSEL CLIP
2) I6s¥E FOR constpUcTION > ton
506s seerion
3) Sure ee ala $8epop
TPAEE Co meury)
veap
DETAIL
5) APADE surtorr
. pee cme) 14 [343] 380] 44s] 4oi[ 518] S69] 642
16 | 391] 433] so7| S60] s91| 649] 732
A. Tey Coven) 1s |4ai| 498) s7i| 630] 60s|_ 731] 924
5 OL Lorton) 20_| 490] “saa 3s| 701] 739| 813] 916}
24 [sas 651] 762] #41] 988] 976] 1100
‘30_| 734] 813] 952] tosi|1109[1219| 1375} y
36_| ssi 976] i142] 1260] 1330] 1462] 1649 5
G :
ie Gear ty alvelecrh
Cacsa ion Rrsore » Ais Nees by oCVeleeryD
[Wind Pressure Tables 7 Basic Non-Linear Cases
EIGHT PRESSURE
(ay («Pay 1 WETHR (OPE) + operating analysis
2 WaP GUS) + sustained case
os Lim7 3. WETHP+ WIND (OPE) + operating ease with wind
10 1377 4 DI-D2 EXP) + expansion stresses
1s 1.525 5 D3-D1 (0c wind's net deflections
30 1785 6 82485 (0CC) + eode stresses for wind
45 197 nse
a a CHECKS orp
mad oa -RESTRAIMT soMlMeY
350 2577
= DISTLACE MB ITS
Note:
1. The only input required on the Cacsar spreadsheots is the shape factor of 0.7. This ean be
discontinued at any time by setting the shape factor to zero,
2, Tho correct elevation ean be set by pressing ALT-G and input
the elevation for the first node.
Whe wom Wed oh olelas on war on Nene vee SetsTHIS PRAM CH 14 MOT PART OF TIS ANALY oI>
‘Sheett
We ivtalled 4 opting pete ninth the leod on the nezece .
in or
STRESS COMMENT,
ADJUSTABLE REST SUPPT (TYP.) No StQHIFLEArT Loans
[ASSUMED AS ANCHOR FOR ANALYSIS ONLY
ASSUMED AS FREE END FOR ANALYSIS ONLY
ASSUMED FIXED.
AXIAL LOAD AT 3 KN
CHANGE THE BRANCH CONN, AS SHOWN
COLUMN NOZZLE LOAD WITHIN APPENDIX 5 OF 6810-8230-PRO001 ALLLOWABLES
DIM . TO BE CONFIRMED BY PIP TAM wo2teE LOAD NITAIY APIESO
EL 117400 (APPROX) AcLOwA RLEES
EXCHANGER NOZZLE LOAD WITHIN VENDOR ALLOWABLE
441 FOR NEW LOCATION SEE BAYTA
42 HOLD APPROVAL FOR VENDOR ALLOWABLE LOADS
43 HOLD APPROVAL FOR VENDOR DATA
44 HOLD APPROVAL PENDING VENDOR DATA
48 HOLD CALCULATION
46 HOLD FOR CONTINUATION
47 HOLD FOR FINAL LAYOUT
Zoeroanens
48 HOLD FOR FINAL VENDOR DATA nore
49 HOLD FOR INFO ON EQUIP & SP ITEMS - tow
20 HOLD FOR MATL, PROP. OF TITANIUM Aue yin, 2” ava peLow T? PE
21 HOLD FOR ROUTE & STRESS ATE cHrewen thon ro FRBRCATION, AMD
22 HOLD FOR VENDOR APPROVAL
23. LIMIT OF ANALYSIS FIPLD soryoeT BD
24 LOAD ARE WITHIN AP! 610 LIMITS AT OP. TEMP.
25 LOADS ARE MARGINALLY HIGH ACCEPTTABLE
26 LOADS-ARE-MARGINALLY