Class Test 2018-19: Mechanical Engineering
Class Test 2018-19: Mechanical Engineering
Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna
                 Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612
Answer Key
Detailed Explanations
1. (b)
4 kN
P Q R S
                                                    1m                   1m                       1m
                                   RP                                                   RR
                                  ∑Fy            =      0
                              RP + R R           =      4 kN
                                 ∑MR             =      0
                       –4 × 2 + RR × 2           =      0
     ⇒                             RR            =      4 kN
                                    RP           =      0
                                   MP            =      0
                                   MQ            =      0
                                                                   1
                                           MR = −2 × 1 ×             = −1 kN-m
                                                                   2
                                           MS = –4 × 1 + 4 × 1 = 0
P Q R S
                                                                                   –1
                                                                         BMD
2. (d)
                       Q                S                                                          R       S       T
     A.    P                   R                         T                 4.     P           Q
           P
                   Q       R       S
     B.                                                                    2.     P           Q   R        S       T
                                            T
               P       Q       R       S            T                             P           Q   R        S       T
     C.                                                                    3.
           P       Q       R       S         T
                                                                                  P           Q   R
     D.                                                                    5.                              S       T
 www.madeeasy.in                                                                                                       © Copyright :
 8       Mechanical Engineering
3.    (b)
                                               7      2
                                       Gd 4 10 N/cm × 2 cm
                                             =
                                                          4     4
                                                                    (             )       (       )
                                                                              (       )
                 Stiffness of spring =
                                       8D 3n   8 × 203 cm3 × 25
                                    = 100 N/cm
4.    (b)
                                              I            0.6 × 13
                                 z1 =                =              = 0.1 m3
                                          y max            12 × 0.5
                                              I            1 × 0.63
     and                         z2 =                =              = 0.06 m3
                                          y max            12 × 0.3
                                                           (z = section modulus)
                                z2   0.06
     ∴                                    = 0.6 times
                                z1 = 0.1
5.    (c)
     As per maximum shear stress theory,
                                              σ − σ 2 σ1 σ 2 
                      Absolute τmax = Max of  1      , , 
                                              2       2 2 
                                          σ yt                                                        80 σ yt
                                    =
                                       2
                                                  ( σ yt   = yield point stress =             )        2
                                                                                                         =
                                                                                                           2
     ∴                          σyt = 80 MPa
6.    (b)
     T  τ                            J
       = , Here T and τ are same, so   should be same i.e. polar section modulus will be same.
     J R                             R
7.    (c)
                                          1
                                                  (σ x − σy )
                                                                    2
            Radius of Mohr’s circle =                                   + 4τ 2xy
                                          2
                                           (σ x − σ y )
                                                                2
           Diameter of Mohr’s circle =                              + 4τ 2xy = 67.082 MPa
8.     (a)
     It is a case of pure shear stress,
                                                                τ MPa
σ MPa
σ2 σ1
                                 σ1 = +400 MPa
                                 σ2 = –400 MPa
                                  τ = 0
 www.madeeasy.in                                                                                                © Copyright :
                                                                    CT-2018 | ME • Strength of Material                  9
9.     (c)
                                        α∆T l − ∆ 
          Stress induced in the bar =             × E
                                            l
                                         20 × 10−6 × 100 × 25 − 0.01
                                                                      × 10 × 0.5 = 80 MPa
                                                                            5
                                      = 
                                                      25
10.    (b)
                           Load (P ) = 5 kN = 5 × 103 N
                             stress = 100 MPa = 100 N/mm2
      We know that
                               σimpact = σstatic × Impact factor
      For suddenly applied load, Impact factor = 2
      Here for safety σimpact should not exceed 100 MPa.
                                                 σImpact        100
      ⇒                        σstatic =                    =
                                        Impact factor            2
                                      = 50 N/mm2
                                           P 5 × 103 6366.1977
      ⇒                           50 =      =       =
                                           A π × d2     d2
                                              4
      ⇒                            d = 11.28 mm
11.    (b)
      FBD of BC                              PBC                                                   20 kN
                                      =
                                                   (80 × 10 ) (1.5)
                                                           3 2
                                                                                 +
                                                                                       (20 × 10 )
                                                                                               3    2
                                                                                                        (0.5)
                                                           −3
                                           2 × 7.85 × 10        × 200 × 10   9
                                                                                     2 × 4.4156 × 101 × 109
                                     = 3.28 J
      The above result is valid only if σ < σy
                                            PAB     80 × 103
                                 σAB =           =              = 10.19 MPa <(σy)st = 250 MPa (O.K.)
                                            A AB   7.85 × 10 −3
                                            PBC      20 × 103
                                 σBC =          =                = 4.537 MPa <(σy)br = 410 MPa (O.K.)
                                            ABC   4.4156 × 10 −3
 www.madeeasy.in                                                                                         © Copyright :
 10       Mechanical Engineering
12.    (a)
                                  E = 2G(1 + ν)
                                105 = 2 × 39.7 (1 + ν)
                                  ν = 0.3224
                                             δd δl   0.025 l − 74.96
                                       ν =         =
                                             d l      20        l
                              74.96
                         1−          = 3.87 × 10–3
                                l
      ⇒                            l = 75.2517 mm
13. (c)
                                             P(N)                                     P(N)
                                                                   w(N/m)
                                             A           C                  D          B
                                                     x              l             x
                                   A            B                       C                    D
                           50 kN                    80 kN         20 kN                          10 kN
Part AB: The section of the bar in this part is subjected to a tension of 50 kN.
                                             P1 l1   50 × 1000 × 600
                   Extension of AB =               =                 mm = 0.2857 mm (extension)
                                             AE 1000 × 1.05 × 105
      Part BC: The section of the bar in this part is subjected to a compression of 80 – 50 = 30 kN.
                                             P2 l2           30 × 1000 × 1000
                 Contraction of BC =                     =                        mm = 0.2857 mm (contraction)
                                             AE              1000 × 1.05 × 10 5
      Part CD: The section of the bar in this part is subjected to a compression of 10 kN.
                                             P3 l3           10 × 1000 × 1200
                 Contraction of BC =                     =                        mm = 0.1143 mm (contraction)
                                             AE              1000 × 1.05 × 10 5
      ∴ Change in length of the bar
                                      = 0.2857 – 0.2857 – 0.1143 = –0.1143
      i.e., decrease in length of the bar is 0.1143 mm.
 www.madeeasy.in                                                                                         © Copyright :
                                                                      CT-2018 | ME • Strength of Material   11
15.   (b)
                                d = 30 mm, f = 12 Hz, P = 25 kW
                                        2 πf T
                                P =
                                        1000
                                    2 π × 12T
      ⇒                        25 =
                                      1000
      ∴                         T = 331.57 Nm
                                        16T           16 × 331.57 × 10 3
          Maximum shear stress, τs =              =                            N/mm 2
                                        πd 3                 π × 30 3
                                    = 62.5439 N/mm2 = 62.5439 MPa
16.    (c)
      According to the given conditions
                                                                      50 MPa
60 MPa 60 MPa
50 MPa
                                        1
                                             (σ x + σ y ) ± (σ x − σy ) + 4τ xy 
                                                                               2
                              σ1, 2 =
                                        2                                      
                                        1
                                            (σ x + σy ) + (σ x − σy )2 + 4τ xy 
                                                                              2
                                σ1 =      
                                        2                                      
                                        1
                              125 =        (60 − 50) + (60 + 50)2 + 4τ xy 2 
                                        2                                  
      ⇒                        τxy = 106.65 MPa
17.   (b)
                                 Critical Point   T = 500 Nm
                                                                                      τs
                                                                  P
                                                                                σa + σb    σa + σb
M = Pe
                                        P 50 × 10        3
                                σa =     =        = 25.46MPa
                                        A π × 502
                                           4
                                        My 50 × 103 × 10 × 25 × 64
                               σb =         =                      = 40.74 MPa
                                        INA       π × (50)4
 www.madeeasy.in                                                                            © Copyright :
 12       Mechanical Engineering
                                                                                              20.37 MPa
      According to MDET,
                                              Syt
                       σ x + 3 τ xy
                         2            2
                                          =
                                           N
                                      N = 2.67
18. (b)
                                                                                      w
                                                                                                  1
                                              A                                               C
                                                                B               l/2
                                                                        l
                                                                l
                                                          w
                                                       l/2
                                                                    l
                                      δ1 = δ2 – δ3
                                            wl 4 
                                      δ2 = 
                                            8EI
      We know that
                                                                                          B.M.D
                                                      l                     l
                                                      2                     2
                                                               
                                        l             l 
                                                  3           4
                                       w  2     l
                                                        w  
                                                          2
                                  δ3 =             × +         
                                        6E I        2   8E I 
                                                               
                                                              wl4    wl4    wl4
      ⇒                           δ 1 = (δ 2 − δ 3 ) =             −      −
                                                              8 E I 96 E I 128 E I
                                              48 w l 4 − 4 w l 4 − 3 w l 4   41w l 4
                                          =                                =
                                                       384 E I               384 E I
 www.madeeasy.in                                                                                             © Copyright :
                                                                    CT-2018 | ME • Strength of Material     13
19.    (b)
      Cross-section remains plane and undistorted for circular shaft only but not for non-circular shaft.
20.   (a)
                                    ε1 = 0.0013
                                    ε2 = –0.0013
                                    E = 2 × 105; µ = 0.3
                                             E
                                 σ1 =                ( ε1 + µε2 )
                                          (1− µ2 )
                                          2 × 105
                                      =            [0.0013 − 0.3 × 0.0013]
                                          1 − 0.09
                                 σ1 = 200 MPa
                                 σ2 = – 200 MPa
                                          σ1 − σ2
                               τmax =             = 200MPa
                                             2
21.    (c)
      Extension of a tapering circular bar is given by
                                       4PL
                                 ∆l = πd d E
                                        1 2
                                                   4 × 25 × 103 × 0.5
                                      =
                                          π × 1.25 × 2.5 × 10−4 × 210 × 109
                                      = 0.2425 mm
      For bar of uniform diameter
                                           4PL
                                 ∆l =
                                          πd2E
                                                   4 × 25 × 103 × 0.5
                                      =                                       = 0.2156 mm
                                          π × (1.875)2 × 10 −4 × 210 × 10−9
                                        0.2425 − 0.2156 
                            % error =                   × 100 = 11.10%
                                             0.2425
22. (a)
                                           π 3
                  For solid shaft, T =       D τ
                                          16
                                       π (D04 − Di4 )
                For hollow shaft, T =                 τ
                                      16     D0
                                                             1
                                           D  3 4
      ⇒                          D i = 0 1−   
                                      D
                                           D0  
                                                             1
                                                45  4
                                                    3
                                      = 50 1−    = 36.07 mm
                                             50 
 www.madeeasy.in                                                                            © Copyright :
 14       Mechanical Engineering
23.   (a)
                                 ∆l = 0.3 mm                                                      l = 200 mm
                                           ∆ l 0.3
      ⇒                           ∈ =         =                             P                                              P = 23.5
                                            l   200
                                           P
      ⇒                           σ =        = ∈E                                                      Dia. = 10 mm
                                           A
                        23.5 × 103   0.3
      ⇒                            =     ×E
                         π           200
                           × 102
                         4
                                       235 200
      ⇒                           E =       ×    = 200 × 103 N/mm2
                                      0.785 0.3
      ⇒                           E = 200 kN/mm2
24.   (a)
      Force diagram
                                        W                                                     W
R1 R2
                                                         +                            +
                                                                            _
                                               _
                                                                  SFD
                                                                  2nd degree curve
                                                             +
_ _
25.    (d)
                                               P                                          P
Pb Pb
C A E B D
RA = P RB = – P
                                 VE = RA – P = 0
                                              L         L 
                                 ME = −P  b +  +  P ×  + Pb = 0
                                               2           2
26.    (a)
                                                                  π
                   Weight of water = ρVg = 1000 ×                   × d 2 × l × 9.81
                                                                  4
                                                        π
                                                          × ( 0.5) × 10 × 9.81 = 19261.89 N
                                                                  2
                                     = 1000 ×
                                                        4
      And this is uniformly distributed,
                                           w l 2 19261.89 × 10 × 1000
      ⇒                    Mmaximum =           =                     N-mm
                                            8             8
 www.madeeasy.in                                                                                           © Copyright :
                                                                               CT-2018 | ME • Strength of Material   15
27.   (b)
      We know that,
                              ∆V   3σ
                                 =    [1 − 2µ ]
                              V    E
                         ∆V            3 × 15
      ∴                           =            [1 − (2 × 0.3)]
                   200 × 100 × 50   200 × 1000
                               ∆V = 90 mm3
28.    (a)
                                         x
wx w0 Loading diagram
l/2 l/2
      We know that
                             dV x            πx
                                  = −w 0 sin
                             dx               l
                                         w 0l     πx
      ⇒                         Vx =          cos    + C1
                                          π        l
                            dM x        w 0l     πx
                                 = Vx =      cos    + C1
                             dx          π        l
                                         w 0l 2              πx
                               Mx =                    sin      + C1x + C 2 ...(i)
                                       π         2            l
      Using boundary conditions,
      When,                      x = 0, Mx = 0
                                 x = l, Mx = 0
      We get,                 C1 = 0 and C2 = 0
                                         w 0l 2              πx
      ⇒                        Mx =                    sin
                                             π2               l
                                             l
      At,                        x =
                                             2
                                        w 0l 2 
                          (M ) x =
                                 l   =  2 
                                        π 
                                   2
29. (c)
                        σ x sin 2φ
                                   = σ x sin φ cos φ = τ                                                             ...(i)
                             2
 www.madeeasy.in                                                                                     © Copyright :
 16       Mechanical Engineering
                          σ x cos2 φ = σn                                                                             ...(ii)
      Dividing (i) by (ii), we get
                                             τ   100 
                                tanφ =         =     
                                            σ n  300 
      ⇒                           φ = 18.435°
      ⇒ Putting in equation (ii), we get
30.    (c)
                                   ΣMB           =    0
                               RA × 4.5          =    48 × 3 + 60 × 1.5 – 60 × 0.9
                                    RA           =    40 kN (upward)
                                    RB           =    48 – 40 = 8 kN (upward)
      Making shear force diagram
                                         40 kN
                                                  C        D       E     B
                                     A
                                                 – 8 kN                – 8 kN
                                                               –                Shear force diagram
                                                          – 68 kN
                    Maximum shear force = 68 kN
www.madeeasy.in © Copyright :