100% found this document useful (1 vote)
994 views4 pages

Aircraft Design Formula Sheet

This document provides formulas and data for preliminary aircraft design. It includes formulas for atmospheric properties, fuselage design parameters like number of seats and cargo volume calculations, wing planform geometry formulas involving span, chord, sweep, and dihedral. It also provides engine size formulas based on thrust for turboshaft and piston engines. Formulas are given for turbofan engine specifications involving mass flow, fan diameter, nacelle dimensions, and integration of the engine into the wing.

Uploaded by

Anon ymous
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (1 vote)
994 views4 pages

Aircraft Design Formula Sheet

This document provides formulas and data for preliminary aircraft design. It includes formulas for atmospheric properties, fuselage design parameters like number of seats and cargo volume calculations, wing planform geometry formulas involving span, chord, sweep, and dihedral. It also provides engine size formulas based on thrust for turboshaft and piston engines. Formulas are given for turbofan engine specifications involving mass flow, fan diameter, nacelle dimensions, and integration of the engine into the wing.

Uploaded by

Anon ymous
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Aircraft Design & System Engineering Elements ‐ AE1222‐II 

DATA AND FORMULAE FOR AIRPLANE PRELIMINARY DESIGN


All units in SI unless stated otherwise. All angles in degrees, unless stated otherwise. 

1. Atmosphere: 
g0
  h  R
p  p0 1     p0  101 kPa,   T0  288 K,  R  287 J/kg/K,   g0  9.81 m/s2,     0.0065 K/m 
 T0 

      a0  340 m/s,   0  1.225 kg/m3   

2. Fuselage design 
n  6  single aisle
Number of seats abreast:  nSA  0.45 npax     naisles   SA  
6  nSA  12  twin aisle

1.08 for single aisle                       
1.17 for twin aisle                         
npax 
Access doors, emergency exits: lcabin  kcabin   kcabin   
nSA  xx special value for specific     
 design given on data sheet 

Required cargo vol.:  VCC  Vcargo  (VLuggage  VOS )    Available cargo vol.:  VCC  lcabin  kCC  ACC  

Luggage vol.:  VLuggage  mLuggage Luggage   typical    Luggage  170 kg/m3 

Cargo vol.:   VCargo  mCargo  Cargo     typical    Cargo  160 kg/m3 

VOS  (nOS, lat  AOS, lat  nOS, ce  AOS, ce )lcabin  kOS   typical:   kOS  0.74 ,   nOS, lat  2 , 
0 for single‐aisle aircraft
  AOS, lat  0.20 m2 ,  AOS, ce  0.24 m2   nOS, ce     
1 for twin‐aisle aircraft

Fuselage outer diameter:
 d f , inner  0.040 for small commercial airplanes  

  d f , outer   d f , inner  0.050 for fighter and trainers                  
1.045  d
 f ,inner  0.084 for transports and business jets

3. Propulsion System and Wing design: 
3.1. Wing Planform 
2S
Span:  b  SA   root chord:  cr    tip chord:  ct   cr  
1    b


 
Aircraft Design & System Engineering Elements ‐ AE1222‐II 

1               for Mcruise  0.7

Sweep:  cos  c /4  M† ,  with  M†  0.935  and   Mdd  Mcruise  0.03  
0.75 M  for Mcruise  0.7
 dd

c 4 2 for low wing   
Dihedral:    3   ,  taper ratio:    0.2  2   c 4     
10 2 for high wing  180 


 cos   M  
3

 Mdd cos  c 2  0.115CˆL1.5 W
 t c   min  , 0.18    with  CˆL  TO  and   qˆ  0.7 pMcr2  
c2

 cos   
2
ˆ
qS
 c2 

3.2. Propeller + Engine: 
0.18 0.40
 PTO   PTO 
Turboshaft:  Dengine  0.20     lengine  0.10    
 1000  N  1000  N
 engine   engine 

    wee  1.1Dengine     hee  1.5Dengine      lee  lengine    

0.30 0.10 0.55


 P   P   P 
Opp. Piston:  wengine  0.17  TO    hengine  0.30  TO       lengine  0.06  TO   
 1000N   1000N   1000N 
wee  1.2wengine     hee  hengine  0.2wengine         lee  lengine  0.1w engine  

PTO
Propeller Design:  Dp  0.55 4  
1000N

3.3. Turbofan Engine: 
TTO 1 T 
m     n =0.97,   tf =0.75,  G   t 4  1.25   where  1350K  Tt 4  1650K   
N  a0 5nG 1  tf    600 

Ds  a 3 
 0.05 1  0.1 0 0    Category  Cl   l    
Di  m 1   
full fan cowling (B)  9.8  0.05  0.35 
m
 0.0050 partial fan cowling  7.8  0.10 
0.21 
0.12
 
 0a0 (C)    0.3
  Dh  Di  1.65    
1   Ds Di 
2

 m 1  0.2   1 
ln  C l   l         l f   ln   Dn  Di  0.06lf  0.03    Def  Dn  1   2     
  0a0 1     3 


 
Aircraft Design & System Engineering Elements ‐ AE1222‐II 

2
 m
 0.089   4.5 
 0a0
lg  1    ln     Dg  Def     Deg  0.55Dg  
 0.067 m   5.8 
  0a0 
 
Integration of Turbofan Engine with Wing: 
y
2‐engined aircraft:    0.35   4‐engined aircraft:    0.4  and    0.7  
b/2

   xF  xF
0.07  0.03cos 15   0.03   for   0.2   0.18
  c  c
vertical positioning:  H c    
 0.04
xF
for   0.18
 c

Integration of Turbofan Engine with Fuselage:   

Transport aircraft:  X h  X apb  0.5ln   X h  X exit  Dh  

Business jets:    X h  X apb  0.5Dh   X h  X TE ,( y  0)  0.5Dh  

4. Undercarriage and Empennage Design: 
4.1. Loading Diagram and Wing Position 
 x  MW  x   MW 
XLEMAC  XFCG  c     1      
 c WCG MF  c OEWCG  MF 

with wing group:  MW   M j , and fuselage group:  MF   Mi based on statistics 

XCG 
M X i i
 with  Mi  for payload, fuel and OEW from Class I weight estimation 
M i

4.2. Undercarriage Sizing and Disposition: 
  CS23  Business jets  regional turboprops  regional jets  Large transports 
Nmw    2  WTO 40,000   WTO 60,000   WTO 120,000   f  WTO 210,000  
Nnw    1  2  2  2  2 
Description of Surface  Max. allowable tire pressure, p [kPa] 
Soft, loose desert sand  170‐240 
Wet, boggy grass  210‐310 
Hard desert sand  280‐410 
Hard grass  310‐410 


 
Aircraft Design & System Engineering Elements ‐ AE1222‐II 

Paved surfaces:  p  430lnLCN  680 [kPa]  10  LCN  100  

Wheel sizing:    Pmw  0.92WTO Nmw     Pnw  0.08WTO Nnw  

Graphs for tire dimensioning in inches (Note:  1 kg  10 N  and  1 kg/cm2  100 kPa  and 


1 in  0.025 m ):

 
ln  lm
Lateral tip‐over criterion:    55 ,  MLG track width:  yMLG   
l tan2
2
n
1
z2

4.3. Empennage Sizing and Disposition: 

Vh 
 Xh  XaftCG  Sh     Vv 
X v  X aftcg  Sv
   
Sc S b


 

You might also like