0% found this document useful (0 votes)
207 views17 pages

Coord Angle and Bearing

The document provides information about converting between radians and degrees for angles. It states that π radians equals 180 degrees, 2π radians equals 360 degrees, and π/2 radians equals 90 degrees.

Uploaded by

yuritabasco
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
207 views17 pages

Coord Angle and Bearing

The document provides information about converting between radians and degrees for angles. It states that π radians equals 180 degrees, 2π radians equals 360 degrees, and π/2 radians equals 90 degrees.

Uploaded by

yuritabasco
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 17

PI() radians = 180 degree

2 PI() radians = 360 degree


PI()/2 radians = 90 degree

Example

X (degree) 90 It must be ≤ 90 or ≤ -90


X (radians) 1.5707963268
X (degree) 90
Pi ∏ 3.1415926536
Pi /2 1.5707963268

Sin 1 Sin of an Angle (Angle must be in radians)


Arc Sin (radians) 1.5707963268 Arc Sin of a number in radians in the range -Pi/2 to Pi/2
Angle (degree) 90

tan 1.6324552E+16
arc tan (radians) 1.5707963268
Angle( degree) 90
180 3.141593
3.1415926536
180
3.1415926536
1.5707963268

1 1
1.5707963268 #VALUE!
90 #VALUE!
Excel:

=ACOS( SIN(lat1)*SIN(lat2) + COS(lat1)*COS(lat2)*COS(lon2-lon1) ) * 6371000 (m)

(or with lat/lon in degrees):

=ACOS( SIN(lat1*PI()/180)*SIN(lat2*PI()/180) + COS(lat1*PI()/180)*COS(lat2*PI()/180)*COS(lon2*PI()/180

CI60XC351 CI13XC912 P1
degree 39.81359722 39.80336 39
-84.1336556 -84.1061 -84

radian 0.694878359 0.6947


-1.4684093 -1.46793

2.610 Km 2.610 Km

2616.3 mts from radian formula 6371000


2616.3 mts fron degree formula 1 deg Lat = 111194.9 mts

0.010233333 1137.894749292
-0.02758056 -2383.353127324
2641.055961163

Bearing β = atan2(Y,X)
X X = cos θb * sin ∆L
Y Y = cos θa * sin θb – sin θa * cos θb * cos ∆L

Kansas City: 39.099912, -94.581213 39.099912 -94.5812


St Louis: 38.627089, -90.200203 38.627089 -90.2002
4.38101

X 0.059676687
Y -0.0068126195
Bearing 1.6844630626
B in degree 96.51262423
m)

/180)*COS(lon2*PI()/180-lon1*PI()/180) ) * 6371000 (m)

P2 P1 P2
40 39 39
-84 -84 -85

2.610 Km

1633349
1 deg Lat = 86414.25 mts

0.682422 -1.65075358
0.67417 -1.57429053
0.076463049
Calculating Bearing or Heading angle between two points:
So if you are from GIS field or dealing with GIS application, you should know bearing and how to calculat
tool for bearing:
Let ‘R’ be the radius of Earth,
‘L’ be the longitude,
‘θ’ be latitude,
‘β‘ be Bearing.
Denote point A and B as two different points, where ‘La’ is point A longitude and ‘θa’ is point A latitude,
measured from North direction i.e 0° bearing means North, 90° bearing is East, 180° bearing is measured
Note: If bearing is denoted with +ve or –ve initials whose values lies between 0° to 180°, then –ve is deno
Formula to find Bearing, when two different points latitude, longitude is given:
Bearing from point A to B, can be calculated as,
β = atan2(X,Y),
where, X and Y are two quantities and can be calculated as:
X = cos θb * sin ∆L
Y = cos θa * sin θb – sin θa * cos θb * cos ∆L
Lets us take an example to calculate bearing between the two different points with the formula:
Kansas City: 39.099912, -94.581213
St Louis: 38.627089, -90.200203
So X and Y can be calculated as,
X = cos(38.627089) * sin(4.38101)
X = 0.05967668696
And
Y = cos(39.099912) * sin(38.627089) – sin(39.099912) * cos(38.627089) * cos(4.38101)
Y = 0.77604737571 * 0.62424902378 – 0.6306746155 * 0.78122541965 * 0.99707812506
Y = -0.00681261948
So as, β = atan2(X,Y) = atan2(0.05967668696, -0.00681261948)
β = 96.51°
This means, from Kansas City if we move in 96.51° bearing direction, we will reach St Louis.
w bearing and how to calculate bearing with formula. Let us look on formula and

e and ‘θa’ is point A latitude, similarly assume for point B. Bearing would be
ast, 180° bearing is measured to be South, and 270° to be West.
en 0° to 180°, then –ve is denoted for South and West sides.
iven:

nts with the formula:

os(4.38101)
.99707812506

l reach St Louis.
Point A Point B Lat A (deg) Long A (deg) Lat B (deg) Long B (deg) La A (rad)
CI60XC351 CI13XC912 39.81359722 -84.13365556 39.80336389 -84.106075 0.694878359
CI13XC912 CI60XC351 39.80336389 -84.106075 39.81359722 -84.13365556 0.694699753
CI13XC912 CI03XC352 39.80336389 -84.106075 39.77738056 -84.14188333 0.694699753
CI13XC912 CI14XC285 39.80336389 -84.106075 39.82595278 -84.06907222 0.694699753
Long B (rad) Lat B (rad) Long B (rad) ∆L (deg) ∆L (rad) X Y Bearing (rad)
-1.468409301 0.694699753 -1.46792793 0.027581 0.000481 0.00037 -0.00018 2.0205966992
-1.46792793 0.694878359 -1.4684093 -0.02758 -0.00048 -0.00037 0.000179 -1.120687769
-1.46792793 0.694246259 -1.4685529 -0.03581 -0.00062 -0.00048 -0.00045 -2.327375688
-1.46792793 0.695094004 -1.46728211 0.037003 0.000646 0.000496 0.000394 0.899056858
Bearing(deg) Bearing Abs (deg) OK
115.8 115.8
-64.2 295.8
-133.3 226.7
51.5 51.5
Point A Point B Lat A (deg) Long A (deg) Lat B (deg) Long B (deg) La A (rad)
CI60XC351 CI13XC912 39.81359722 -84.13365556 39.80336389 -84.106075 0.694878359
CI13XC912 CI60XC351 39.80336389 -84.106075 39.81359722 -84.13365556 0.694699753
CI13XC912 CI03XC352 39.80336389 -84.106075 39.77738056 -84.14188333 0.694699753
CI13XC912 CI14XC285 39.80336389 -84.106075 39.82595278 -84.06907222 0.694699753
Long B (rad) Lat B (rad) Long B (rad) ∆L (deg) ∆L (rad) X Y Bearing (rad)
-1.468409301 0.694699753 -1.46792793 0.027581 0.000481 0.00037 -0.00018 2.0205966992
-1.46792793 0.694878359 -1.4684093 -0.02758 -0.00048 -0.00037 0.000179 -1.120687769
-1.46792793 0.694246259 -1.4685529 -0.03581 -0.00062 -0.00048 -0.00045 -2.327375688
-1.46792793 0.695094004 -1.46728211 0.037003 0.000646 0.000496 0.000394 0.899056858
Bearing(deg) Bearing Abs (deg) OK Sec Point A Point A Azim Sec Point B Point B Azimut
115.8 115.8
-64.2 295.8
-133.3 226.7 270 35
51.5 51.5 3 270 1 35
M=(A - 90)N=(A + 90)P(B - 30) Q(B + 30) Front or Back? P-B relat to Az A P-B relat to Az A

180 360 5 65 Back 218.5 141.5


Az B relat to Az A Az B relat to Az A

235.0 125.0
Angle Condition 1

You might also like