Homework #9 Solutions
Math 128, Fall 2013
                                     Instructor: Dr. Doreen De Leon
1        HW #9(a)
Investigate the convergence of
         ∞
         X n(i − 1)n
    1.
               (z − 2i)n
         n=2
         Solution:
                                                  n(i − 1)n
                                            zn =
                                                  (z − 2i)n
                                                   n(i − 1)n 
                                                             
                                      =⇒ |zn | =            
                                                    (z − 2i)n 
                                                                 √ n
                                                  n|i − 1|n     n 2
                                                =           =           .
                                                  |z − 2i|n   |z − 2i|n
         Apply the ratio test.
                                               
                                                 = lim |zn+1 |
                                          zn+1 
                                    lim 
                                   n→∞      zn  n→∞ |zn |
                                                                √ n+1 
                                                         (n+1) n+1
                                                                  2    
                                                           |z−2i|
                                                  = lim         √ n
                                                   n→∞      n 2       
                                                             |z−2i|n
                                                              √ n+1
                                                      (n + 1) 2         |z − 2i|n
                                                = lim                 ·    √ n
                                                 n→∞ |z − 2i|n+1          n 2
                                                                 √
                                                      n+1          2
                                                = lim       ·
                                                 n→∞    n     |z − 2i|
                                                     √
                                                       2         n+1
                                                =            lim
                                                  |z − 2i| n→∞ n
                                                     √
                                                       2
                                                =          .
                                                  |z − 2i|
         For absolute convergence, we require
                                            √
                                             2                     √
                                                  < 1 =⇒ |z − 2i| > 2.
                                         |z − 2i|
                                                       1
                              √
         What if |z − 2i| =   2? Then, |zn | = n, and limn→∞ |zn | = ∞, so the series diverges.
                                                            √
         Thus, the series converges absolutely if |z − 2i| > 2.
       ∞
       X
    2.   (−1)j j2j+1 z 2j
         j=1
         Solution: zj = (−1)j j2j+1 z 2j , so |zj | = j2j+1 |z|2j . Apply the ratio test:
                                                    
                                                      = lim |zj+1 |
                                               zj+1 
                                         lim 
                                        j→∞  zj        j→∞ |zj |
                                                              (j + 1)2j+2 |z|2(j+1)
                                                      = lim
                                                        j→∞        j2j+1 |z|2j
                                                              j+1
                                                      = lim         · 2 · |z|2
                                                        j→∞     j
                                                                            
                                                            2        j+1
                                                      = 2|z| lim
                                                              j→∞       j
                                                      = 2|z|2 .
         For absolute convergence, we need
                                                 2|z|2 < 1
                                                         1
                                                  |z|2 <
                                                         2
                                                           1
                                                   |z| < √ .
                                                            2
                        1
         What if |z| = √ ? Then,
                         2                                               2j
                                                                     1
                                                |zj | = j2j+1       √           = 2j.
                                                                      2
         Since limj→∞ |zj | = ∞, the series diverges.
                                                              1
         Therefore, the series converges absolutely if |z| < √ .
                                                               2
2        HW #9(b)
Find the Taylor series expansion about z0 and determine the set on which it converges for each of the
following functions.
         1
    1.     , z0 = i
         z
         Solution:
                                                    1              1
                                           f (z) =     =⇒ f (i) = = −i
                                                    z              i
                                          f 0 (z) = −z −2 =⇒ f 0 (i) = 1
                                         f 00 (z) = 2z −3 =⇒ f 00 (i) = 2i−3 = −2i
                                                           2
              f 000 (z) = −3!z −4 =⇒ f 000 (i) = −3!
             f (4) (z) = 4!z −5 =⇒ f (4) (i) = −4!i
                      ..
                       .
   Then,
                                                     1 00
                  f (z) = f (i) + f 0 (i)(z − i) +      f (i)(z − i)2 + · · · .
                                                     2!
   So, we obtain
                                         1                1                    1
                  f (z) = −i + (z − i) +   (2i)(z − i)2 + (−3!)(z − i)3 + (−4!i)(z − i)4 + · · ·
                                        2!                3!                   4!
                       = −i + (z − i) + i(z − i)2 − (z − i)3 − i(z − i)4 + · · ·
                       = i−1 + i0 (z − i) + i1 (z − i)2 + i2 (z − i)3 + i3 (z − i)4 + · · ·
                          ∞
                     1 X n−1
                       =     i    (z − i)n .
                     z
                          n=0
   Convergence:
                                          |i(n+1)−1 (z − i)n+1 |
                                      lim                        = lim |i(z − i)|
                                      n→∞     |in−1 (z − i)n |     n→∞
                                                                 = |z − i|.
   For convergence, we require
                                                        |z − i| < 1.
   We can show that if |z − i| = 1, the series diverges, so the series only converges on |z − i| < 1.
2. z i , z0 = 1
   Solution:
                        f (z) = z i =⇒ f (1) = 1i = 1
                       f 0 (z) = iz i−1 =⇒ f 0 (1) = i
                      f 00 (z) = i(i − 1)z i−2 =⇒ f 00 (1) = i(i − 1)
                      f 000 (z) = i(i − 1)(i − 2)z i−3 =⇒ f 000 (1) = i(i − 1)(i − 2)
                               ..
                                .
   Then,
                                                            1 00
                        f (z) = f (1) + f 0 (1)(z − 1) +       f (1)(z − 1)2 + · · · .
                                                            2!
   So, we obtain
                                             i(i − 1)            i(i − 1)(i − 2)
                      f (z) = 1 + i(z − 1) +          (z − 1)2 +                 (z − 1)3 + · · ·
                                                 2!                     3!
                               ∞  
                          i
                              X     i
                     =⇒ z =            (z − 1)n
                                    n
                                n=0
                                                            3
                                                                                    
                     α    α(α − 1) · (α − n + 1)       i    i(i − 1) · · · (i − n + 1)
    where we define     =                        , so     =                            .
                     n              n!                 n                 n!
   Convergence:
                                  
                     i          n+1
                                     
                  n + 1 (z − 1)
                                    
                                              |i(i − 1) · · · (i − n + 1)(i − n)|      n!
             lim                   = lim                                       ·          |z − 1|
            n→∞      i          
                                n
                                         n→∞        |i(i − 1) · · · (i − n + 1)|     (n + 1)!
                    
                     n  (z − 1) 
                                               |z − 1||i − n|
                                       = lim
                                         n→∞        n+1
                                                        √
                                               |z − 1| n2 + 1
                                       = lim
                                         n→∞          n+1
                                       = |z − 1|.
   For convergence, then, we require |z − 1| < 1. If |z − 1| = 1, then it can be shown that the series
   does not converge absolutely.
3. iz , z0 = 0
   Solution:
                                   f (z) = iz =⇒ f (0) = 1
                                   f 0 (z) = (log i)iz =?
   Note that
                                              π
                                   log i = i     (choose the principal branch),
                                              2 
                                                π z                  π
                                  f 0 (z) = i       i =⇒ f 0 (0) = i
                                                2                    2
                                              π 2                   π 2
                                   00                 z       00
                                  f (z) = i          i =⇒ f (z) = i
                                                2                       2
                                         ..
                                          ..
   Then,
                                                                1 00
                                   f (z) = f (0) + f 0 (0)z +      f (0)z 2 + · · · .
                                                                2!
   So, we obtain
                                               π     1  π 2 2
                                  f (z) = 1 + i z +     i    z + ···
                                                2    2! 2
                                           ∞
                                          X    1  π n n
                                 =⇒ iz =          i    z .
                                              n! 2
                                            n=0
   Convergence:
                                                       
                                    1        π n+1 n+1 
                                                
                                    (n+1)! i 2     z            1  π 
                               lim       1 π n         =  lim      i  |z|
                              n→∞       
                                          n! i 2  zn       n→∞ n + 1   2
                                                                   π
                                                          = lim          |z|
                                                            n→∞ 2(n + 1)
                                                          = 0.
   Therefore, the series converges for all z (i.e., on |z| < ∞).
                                                     4
3     HW #9(c)
    1. Find the Laurent series expansion of the following functions around z0 = 0 in the regions indicated.
                 
                 1
        (a) sin     , 0 < |z| < ∞
                 z
            Solution: The Taylor series for sin z is
                                         ∞                           ∞
                                         X             z n+1     X           z 2n−1
                               sin z =       (−1)n             =   (−1)n+1           , |z| < ∞.
                                                     (2n + 1)!             (2n − 1)!
                                         n=0                         n=1
             Therefore,
                               X∞                   2n−1         
                              1         n+1     1     1             1
                         sin    =   (−1)                     , 0 <   < ∞ =⇒ 0 < |z| < ∞.
                              z             (2n − 1)! z              z
                                   n=1
             Or,
                                                  ∞
                                                    (−1)n+1 1
                                               X
                                              1
                                         sin    =                    , 0 < |z| < ∞ .
                                              z     (2n − 1)! z 2n−1
                                                       n=1
                 1
       (b)            , 0 < |z| < 1
             z(z + 1)
             Solution:
                   Step 1: Partial fractions
                                                             1     1  1
                                                                  = −    .
                                                         z(z + 1)  z z+1
                                                 1
                   Step 2: Taylor series for
                                                z+1
                                                          1        1
                                                             =
                                                         z+1   1 − (−z)
                                                               ∞
                                                               X
                                                             =    (−z)n
                                                                     n=0
                                                                     X∞
                                                                 =         (−1)n z n ,
                                                                     n=0
                   convergent for | − z| < 1 =⇒ |z| < 1. So,
                                                                             ∞
                                                          1     1 X
                                                               = −  (−1)n z n ,
                                                      z(z + 1)  z
                                                                            n=0
                   Or,
                                                             ∞
                                                   1      X              1
                                                        =   (−1)n+1 z n + , 0 < |z| < 1 .
                                               z(z + 1)                  z
                                                          n=0
                                                             5
      Alternate solution:
                                     1      1     1
                                          =       ·
                                 z(z + 1)   z   1+z
                                            1       1
                                          =   ·
                                            z   1 − (−z)
                                                ∞
                                            1X
                                          =       (−z)n
                                            z
                                                  n=0
      convergent for | − z| < 1 =⇒ |z| < 1. So,
                                                      ∞
                                     1      1X
                                          =    (−1)n z n
                                 z(z + 1)   z
                                                  n=0
                                            1
                                              1 − z + z2 − z3 + · · ·                                                                      
                                          =
                                            z
                                            1
                                          = − 1 + z − z2 + · · ·
                                            z
                                                ∞
                                            1 X
                                          = +      (−1)n+1 z n
                                            z
                                                       n=0
                                              ∞
                                              X                    1
                                          =           (−1)n+1 z n + .
                                                                   z
                                              n=0
        z
(c)        , |z| < 1
      z+1
      Solution:
                                                                   
                                         z                     1
                                            =z                          .
                                        z+1                   z+1
      Then,
                                         1        1
                                            =
                                        z+1   1 − (−z)
                                              ∞
                                              X
                                            =    (−z)n
                                                      n=0
                                                      X∞
                                               =              (−1)n z n ,
                                                      n=0
      convergent for | − z| < 1 =⇒ |z| < 1. So,
                                                          ∞
                                         z     X
                                            =z   (−1)n z n
                                        z+1
                                                      n=0
                                                      ∞
                                                      X
                                               =              (−1)n z n+1 .
                                                      n=0
      So,
                                                ∞
                                      z      X
                                           =   (−1)n z n+1 , |z| < 1 .
                                   (z + 1)
                                              n=0
                                              6
         ez
   (d)      , 0 < |z| < ∞
         z2
         Solution:
                                                  ∞
                                            z
                                                  X zn
                                            e =              , |z| < ∞ (Taylor series)
                                                        n!
                                                  n=0
                                                z2 z3 z4
                                        =1+z+       +     +      + ···
                                                2!     3!    4!
                                                      z2 z3 z4
                                                                           
                                    1 z   1
                                 =⇒ 2 e = 2 1 + z +       +     +     + ···
                                    z    z            2!    3!    4!
                                          1   1    1     z     z2
                                        = 2+ + + +                + ···
                                         z    z 2! 3!          4!
                                                   ∞
                                          1   1 X zn
                                        = 2+ +                  .
                                         z    z        (n + 2)!
                                                                n=0
         So,
                                            ∞
                                    ez    X zn      1  1
                                      2
                                        =          + + 2 , 0 < |z| < ∞ .
                                    z      (n + 2)! z z
                                            n=0
                                                1
2. Find the Laurent series expansion of              around z0 = 0 valid in the region 1 < |z| < ∞.
                                            z(z + 1)
  Solution: We know that
                                    1     1  1
                                         = −    (from problem 1(a)).
                                z(z + 1)  z z+1
                                 1        1                                         1    1   1
  Since the Taylor series for       =          is convergent for |z| < 1, we write     as ·       .
                                1+z   1 − (−z)                                     z+1   z 1 + z1
  Then,
                                1   1         1       1
                                  ·     1   =   ·
                                              z 1 − − z1
                                                          
                                z 1+    z
                                                  ∞ 
                                                        1 n
                                                          
                                              1X
                                            =        −      ,
                                              z         z
                                                  n=0
  convergent for − z1  < 1, or |z| > 1. So,
                                                                    ∞ 
                                                          1 n
                                                            
                                    1      1 1X
                                         = −           −        ,
                                z(z + 1)   z z            z
                                                 n=0
                                                                    
                                           1 1          1     1   1
                                         = −       1 − + 2 − 3 + ···
                                           z z          z z       z
                                           1    1      1
                                         = 2 − 3 + 4 + ···
                                           z    z     z
                                            ∞
                                           X         1
                                         =    (−1)n n .
                                                    z
                                                n=2
  So,
                                                  ∞
                                     1      X          1
                                          =   (−1)n+1 n+1 , 1 < |z| < ∞ .
                                 z(z + 1)            z
                                                n=1