0% found this document useful (0 votes)
82 views3 pages

1991 Hi2 2001 Fi3.3

This document contains 18 math word problems grouped by topic and year. The problems cover a range of concepts including exponential growth, logarithms, sequences, series, trigonometry, and other topics. Answers to the problems are provided at the end.

Uploaded by

AnhTam
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
82 views3 pages

1991 Hi2 2001 Fi3.3

This document contains 18 math word problems grouped by topic and year. The problems cover a range of concepts including exponential growth, logarithms, sequences, series, trigonometry, and other topics. Answers to the problems are provided at the end.

Uploaded by

AnhTam
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

G.S. (HKMO Classified Questions by topics) Created by Mr.

Francis Hung Last updated: 2017-05-02


1991 HI2 2001 FI3.3
某科學家發現某樣本中細菌的數量每小時增加一倍。於下午四時,他發現 若 sin 30 + sin2 30 +  + sin7 30 = 1 – cosR 45,求 R 的值。
細菌的數量為 3.2  108,若於同日正午該樣本中細菌的數量為 N  107,求 N。 If sin 30 + sin2 30 +  + sin7 30 = 1 – cosR 45, find the value of R.
A scientist found that the population of a bacteria culture doubled every hour. At
2002 FI2.2
4:00 pm, he found that the number of bacteria was 3.2108. If the number of
bacteria in that culture at noon on the same day was N107, find N. 99 99 99 2 99 3
已知 99Q = (1 + + + +),求 Q 的值。
1994 HI1 100 100 100 2 100 3
1 1 1 99 99 99 2 99 3
設 log3 p  1      至無窮項,求 p。 Given that 99Q = (1 + + + +), find the value of Q.
2 4 8 100 100 100 2 100 3
1 1 1 2005 FG2.4
Suppose log3 p  1      to an infinite number of terms. Find p.
2 4 8 1 2 3 4 10
設 d        10 ,求 d 的值。
1997 FG1.3 2 4 8 16 2
3 c
 1 3 c
 1 1 2 3 4 10
若 1 + 3 + 32 +  +38 = ,求 c。If 1 + 3 + 32 +  +38 = , find c. Let d        10 , find the value of d.
2 2 2 4 8 16 2
1998 HI2 2006 HG3
已知 8、a、b 形成一等差級數,且 a、b、36 形成一等比級數。若 a 和 b 皆為正數, 3
求 a、b 的和。 已知 0  θ  90 及 1  sin θ  sin 2
θ    。若 y  tan θ ,求 y 的值。
2
Given that 8, a, b form an A.P. and a, b, 36 form a G.P. If a and b are both positive 3
numbers, find the sum of a and b. Given that 0 <  < 90 and 1 + sin  + sin2  + ..... = . If y = tan , find the
1998 FG4.3 2
value of y.
圖形 S0,S1,S2,用以下方法構成:把綫段[0, 1]的中間三分之一取去,
2007 FG2.1
得到 S0,把 S0 的兩條組成綫段,每段的中間三分之一取去,得到 S1,把
若 R = 12 + 222 + 323 +  + 10210,求 R 的值。
S1 的四條組成綫段,每段的中間三分之一取去,得到 S2,S3、S4 等用類
If R = 12 + 222 + 323 +  + 10210, find the value of R.
似方法獲得。求在構成 S5 的過程中取去的綫段的總長度 c(答案以分數表示)。 2009 FI1.3
A sequence of figures S0, S1, S2,  are constructed as follows. S0 is obtained by
removing the middle third of [0,1] interval; S1 by removing the middle third of each of 設 F = 1 + 2 + 22 + 23 +  + 2120 及 T =
log1  F 
,求 T 的值。
the two intervals in S0; S2 by removing the middle third of each of the four intervals in log 2
S1; S3, S4,  are obtained similarly. Find the total length c of the intervals removed in log1  F 
the construction of S5 (Give your answer in fraction). Let F = 1 + 2 + 22 + 23 +  + 2120 and T = , find the value of T.
|———————( )———————| S0 log 2
1 2 2010 FG2.1
0 1 若 p = 2 – 22 – 23 – 24 –  – 29 – 210 + 211,求 p 的值。
3 3
|——( )——( )——( )——| S1 If p = 2 – 22 – 23 – 24 –  – 29 – 210 + 211, find the value of p.
1 2 1 2 7 8
0 1
9 9 3 3 9 9
|–( )–( )–( ) –( )–( )–( )–( )–| S2

http://www.hkedcity.net/ihouse/fh7878 Page 1
G.S. (HKMO Classified Questions by topics) Created by Mr. Francis Hung Last updated: 2017-05-02
2012 HI5
1 1 1
已知 log4 N = 1      ,求 N 的值。
3 9 27
1 1 1
Given that log4 N = 1      , find the value of N.
3 9 27
2015 FI1.4
若 n 為正整數及 f (n) = 2n + 2n–1 + 2n–2 +  + 22 + 21 + 1,求 = f ()的最值。
If n is a positive integer and f (n) = 2n + 2n–1 + 2n–2 +  + 22 + 21 + 1,
determine the value of  = f (10).
2017 FI3.4
若 f(x) = 20 + 21 + 22 +  + 2x–2 + 2x–1,求 d = f(10) 的值。
If f(x) = 20 + 21 + 22 +  + 2x–2 + 2x–1, determine the value of d = f(10).

http://www.hkedcity.net/ihouse/fh7878 Page 2
G.S. (HKMO Classified Questions by topics) Created by Mr. Francis Hung Last updated: 2017-05-02
Answers
1998 FG4.3
1991 HI2 1994 HI1 1997 FG1.4 1998 HI2 665
2 9 9 40
729
2005 FG2.4 2006 HG3
2001 FI3.3 2002 FI2.2 509 2007 FG2.1
2
14 1 18434
256 4
2009 FI1.3 2010 FG2.1 2012 HI5 2015 FI1.4 2017 FI3.4
11 6 8 2047 1023

http://www.hkedcity.net/ihouse/fh7878 Page 3

You might also like