Single Stage Amplifiers
•Basic Concepts
•Common Source Stage
•Source Follower
•Common Gate Stage
•Cascode Stage
Hassan Aboushady
University of Paris VI
References
• B. Razavi, “Design of Analog CMOS Integrated Circuits”,
McGraw-Hill, 2001.
H. Aboushady University of Paris VI
1
Single Stage Amplifiers
•Basic Concepts
•Common Source Stage
•Source Follower
•Common Gate Stage
•Cascode Stage
Hassan Aboushady
University of Paris VI
Basic Concepts I
• Amplification is an essential function in most analog circuits !
• Why do we amplify a signal ?
• The signal is too small to drive a load
• To overcome the noise of a subsequent stage
• Amplification plays a critical role in feedback systems
In this lecture:
• Low frequency behavior of single stage CMOS amplifiers:
• Common Source, Common Gate, Source Follower, ...
• Large and small signal analysis.
• We begin with a simple model and gradually add 2nd order effects
• Understand basic building blocks for more complex systems.
H. Aboushady University of Paris VI
2
Approximation of a nonlinear system
Input-Output Characteristic of a nonlinear system
y (t ) ≈ α 0 + α1 x (t ) + α 2 x 2 (t ) + ... + α n x n (t ) x1 ≤ x ≤ x2
In a sufficiently narrow range:
y (t ) ≈ α 0 + α1 x(t )
where α0 can be considered
the operating (bias) point and
α1 the small signal gain
H. Aboushady University of Paris VI
Analog Design Octagon
H. Aboushady University of Paris VI
3
Single Stage Amplifiers
•Basic Concepts
•Common Source Stage
•Source Follower
•Common Gate Stage
•Cascode Stage
Hassan Aboushady
University of Paris VI
Common Source Stage with Resistive Load
Vout = VDD − RD I D
µ nCox W
M1 in the saturation region: Vout = VDD − RD (Vin − VTH ) 2
2 L
µC W
M1 in limit of saturation: Vin1 − VTH = VDD − RD n ox (Vin1 − VTH ) 2
2 L
M1 in the W ⎡ 2
Vout ⎤
Vout = VDD − RD µ nCox (V − V )V
⎢ in TH out − ⎥
linear region: L 2 ⎦
⎣
H. Aboushady University of Paris VI
4
Common Source Stage with Resistive Load
M1 in deep Ron VDD
Vout = VDD =
linear region: Ron + RD 1 + µ C W
n ox RD (Vin − VTH )
L
H. Aboushady University of Paris VI
Common Source Stage with Resistive Load
M1 in the saturation region:
µ nCox W
Vout = VDD − RD (Vin − VTH ) 2
2 L
Small signal gain:
∂Vout W
Av = = − RD µ nCox (Vin − VTH )
∂Vin L
= − g m RD
Same relation can be derived Small signal model for
the saturation region
from the small signal equivalent
circuit
To minimize nonlinearity, the gain equation must be a weak
function of signal dependent parameters such as gm !
H. Aboushady University of Paris VI
5
Example 1
Sketch ID and gm of M1 as a function of the Vin:
• M1 in the saturation region: • M1 in the linear region:
µ nCox W W⎡ Vout2
⎤
ID = (Vin − VTH ) 2 I D = µ nCox ⎢(Vin1 − VTH )Vout − ⎥
2 L L⎣ 2 ⎦
∂I W ∂I W
g m = D = µ nCox (Vin − VTH ) g m = D = µ nCox Vout
∂VGS L ∂VGS L
VDD
Vout =
W
1 + µ nCox RD (Vin − VTH )
H. Aboushady L University of Paris VI
Voltage Gain of a Common Source Stage
Av = − g m RD
W V
Av = − 2 µ nCox I D RD
L ID
W VRD
Av = − 2 µ nCox
L ID
How to increase Av ?
Trade-offs:
• Increase W/L Greater device capacitances.
• Increase VRD Limits Vout swing.
• Reduce ID Greater Time Constant.
H. Aboushady University of Paris VI
6
Taking Channel Length Modulation into account
Calculating Av starting from the Large Signal Equations:
µ nCox W
Vout = VDD − RD (Vin − VTH ) 2 (1 + λVout )
2 L
∂Vout W
Av = = − RD µ nCox (Vin − VTH )(1 + λVout )
∂Vin L
µ nCox W ∂Vout
− RD (Vin − VTH ) 2 λ
2 L ∂Vin
Av = − RD g m − RD I D λ Av
RD g m λ I D = 1 / rO rO RD
Av = − Av = − g m
1 + RD λ I D rO + RD
H. Aboushady University of Paris VI
Taking Channel Length Modulation into account
Calculating Av starting from the Small Signal model:
g mV1 (rO // RD ) = −Vout Vout
Av = = − g m (rO // RD )
V1 = Vin Vin
H. Aboushady University of Paris VI
7
Example 2
Assuming M1 biased in saturation,
calculate the small signal voltage gain :
• I1 : Ideal current source Infinite Impedance
Av = − g m rO
• Intrinsic gain of a transistor:
This quantity represents the maximum voltage
gain that can be achieved using a single device.
µ nCox W
I D1 = (Vin − VTH ) 2 (1 + λVout ) = I1
2 L
• Constant Current:
As Vin increases, Vout must decrease such that the
product remains constant
H. Aboushady University of Paris VI
CS Stage with Current-Source Load
• Both transistors operate in the saturation region:
Av = − g m (rO1 // rO 2 )
• The output impedance and the minimum
required VDS of M2 are less strongly coupled than
the value and voltage drop of a resistor.
VDS 2,min = VGS 2 − VTH 2
• This value can be reduced to a few hundred millivolts by
simply increasing the width of M2.
•If rO2 is not sufficiently high, the length and width of M2 can be
increased to achieve a smaller λ while maintaining the same
overdrive voltage.
•The penalty is the large capacitance introduced by M2 at the
output node.
•Increasing L2 while keeping W2 constant increases rO2 and
hence the voltage gain, but at the cost of higher |VDS2|
required to maintain M2 in saturation
H. Aboushady University of Paris VI
8
CS with Source Degeneration
Large Signal model: Small Signal model:
∂I ∂I ∂VGS
Gm = D = D
∂Vin ∂VGS ∂Vin
VGS = Vin − I D RS
∂VGS ∂I
= 1 − D RS
∂Vin ∂Vin
⎛
∂I D ∂I ⎞
Gm = ⎜⎜1 − RS D ⎟⎟ ∂I D
∂VGS ∂Vin ⎠ ID g mV1
⎝ gm = Gm = =
∂VGS Vin V1 + g mV1RS
Gm = g m (1 − RS Gm )
gm gm
Gm = Av = −Gm RD Gm =
1 + g m RS 1 + g m RS
g m RD
Av = −
1 + g m RS
H. Aboushady University of Paris VI
CS with Source Degeneration
gm 1
Gm = = for RS >> 1 / g m Gm ≈ 1 / RS
1 + g m RS 1 / g m + RS
ID is linearized at the cost of lower gain.
Small Signal model including body effect
and channel length modulation:
VX
I out = g mV1 − g mbVX −
rO
I out RS
= g m (Vin − I out RS ) + g mb (− I out RS ) −
rO
I out g m rO
Gm = =
Vin RS + [1 + ( g m + g mb ) RS ]rO
H. Aboushady University of Paris VI
9
With and Without Source Degeneration
g m rO
Gm =
1 + [1 + ( g m + g mb ) RS ]rO
RS = 0 RS ≠ 0
H. Aboushady University of Paris VI
Estimating Gain by Inspection
g m RD RD
Av = − =−
1 + g m RS 1 / g m + RS
Resistance seen at the Drain
Gain = −
Total Resistance in the Source Path
Example:
RD
Av = −
1 / g m1 + 1 / g m 2
H. Aboushady University of Paris VI
10
Output Resistance of Degenerated CS
V1 = − I X RS
The current flowing in rO :
I X − ( g m + g mb )V1
= I X + ( g m + g mb ) RS I X
VX = rO [ I X + ( g m + g mb ) RS I X ] + I X RS
VX
Rout = = rO [1 + ( g m + g mb ) RS ] + RS
IX
Rout = [1 + ( g m + g mb )rO ]RS + rO
Rout ≈ ( g m + g mb )rO RS + rO Rout = [1 + ( g m + g mb ) RS ]rO
H. Aboushady University of Paris VI
Voltage Gain of Degenerated CS
The current through RS must equal that through RD:
Vout
I R D = I RS =
RD
VS
RS
VS = −Vout
RD
The current through rO :
Vout
I rO = −− ( g mV1 + g mbVBS )
RD
V R R V
I rO = − out − [ g m (Vin + Vout S ) + g mbVout S ] Vout = I rO rO − out RS
RD RD RD RD
V R R R
Vout = − out rO − [ g m (Vin + Vout S ) + g mbVout S ]rO − Vout S
RD RD RD RD
Vout g m rO RD
=−
H. Aboushady
Vin RD + RS + rO + ( g m + g mb ) RS rO University of Paris VI
11
Voltage Gain of Degenerated CS
Vout g m rO RD
=−
Vin RD + RS + rO + ( g m + g mb ) RS rO
Vout g m rO RD [ RS + rO + ( g m + g mb ) RS rO ]
=−
Vin RS + [1 + ( g m + g mb ) RS ]rO RD + RS + rO + ( g m + g mb ) RS rO
Vout
= Gm (Rout // RD )
Vin
The output resistance Rout = [1 + ( g m + g mb ) RS ]rO
of a degenerated CS stage:
The Transconductance I out g m rO
Gm = =
of a degenerated CS stage: Vin RS + [1 + ( g m + g mb ) RS ]rO
H. Aboushady University of Paris VI
General expression to calculate Av by inspection
Lemma:
Av = −Gm Rout
Gm : the transconductance of Rout : the output resistance
the circuit when the output is of the circuit when the input
shorted to grounded. voltage is set to zero.
• For high voltage gain the output resistance must be high!
A “buffer” is needed to drive a low-impedance load.
The source follower can operate as a voltage buffer.
H. Aboushady University of Paris VI
12
Single Stage Amplifiers
•Basic Concepts
•Common Source Stage
•Source Follower
•Common Gate Stage
•Cascode Stage
Hassan Aboushady
University of Paris VI
Source Follower (Common Drain)
Large Signal Behavior
M1 turns on in saturation:
Vout = I D RS
µ nCox W
Vout = (Vin − Vout − VTH ) 2 RS
2 L
To calculate gm :
∂Vout W ∂V ∂V
= µ nCox (Vin − Vout − VTH )(1 − out − TH ) RS
∂Vin L ∂Vin ∂Vin
Since, (
VTH = VTH 0 + γ 2ΦF + VSB − 2ΦF )
∂ VTH ∂ VTH ∂ VSB γ ∂ VSB
= =
∂ Vin ∂ VSB ∂ Vin 2 2ΦF + VSB ∂ Vin
∂ Vout
=η
H. Aboushady
∂ Vin University of Paris VI
13
Source Follower Voltage Gain
∂Vout W ∂V ∂V
= µ nCox (Vin − Vout − VTH )(1 − out − TH ) RS
∂Vin L ∂Vin ∂Vin
∂Vout W ∂V ∂V
= µ nCox (Vin − Vout − VTH )(1 − out − η out ) RS
∂Vin L ∂Vin ∂Vin
W
∂Vout
µ nCox (Vin − Vout − VTH ) RS
= L
∂Vin 1 + µ C W (V − V − V ) R (1 + η )
n ox in out TH S
L
W
We also have, g m = µ nCox (Vin − Vout − VTH )
L
g m RS
Av =
1 + ( g m + g mb ) RS
H. Aboushady University of Paris VI
Source Follower Voltage Gain
Small Signal Equivalent Circuit
Vout = [g mV1 + g mbVBS ]RS
= [g m (Vin − Vout ) − g mbVout ]RS
Vout g m RS
Av = =
Vin 1 + ( g m + g mb ) RS
Since: g mb = η g m
And for : g m RS >> 1
1
Av ≈
(1 + η )
H. Aboushady University of Paris VI
14
Source Follower Output Resistance
Rout : the output resistance when the input voltage is set to zero.
V1 = VBS = −VX
VX 1
I X − g mVX − g mbVX = 0 Rout = =
I X g m + g mb
Body Effect decreases the output resistance of source followers.
VX ↓ ⇒ VGS ↑ and VTH ↓
⇒ ID ↑
H. Aboushady University of Paris VI
Source Follower body effect
Rout : the output resistance when the input voltage is set to zero.
Small Signal Model Simplification
Note that the value of the current source gmbVbs is linearly
proportional to the voltage across it.
1 1 1
Rout = // =
g m g mb g m + g mb
H. Aboushady University of Paris VI
15
Source Follower Thévenin Equivalent
1
g mb gm
Av = =
1 1 g m + g mb
+
g m g mb
H. Aboushady University of Paris VI
Channel Length Modulation in M1 and M2
1
// rO1 // rO 2 // RL
g mb
Av =
1 1
// rO1 // rO 2 // RL +
g mb gm
H. Aboushady University of Paris VI
16
Source Follower Characteristics
+ High input impedance and Moderate output impedance
- Nonlinearity - Limited voltage swing
Example:
VTH α VSB
PMOS source follower with VSB=0
Without the source follower stage:
VX > VGS 1 − VTH 1
µ p < µ n ⇒ g mp < g mn With the source follower stage:
⇒ Routp > Routn VX > VGS 2 + (VGS 3 − VTH 3 )
H. Aboushady University of Paris VI
Low Load Impedance: CS vs SF
Source Follower Amplifier Common Source Amplifier
RL AvCS ≈ − g m RL
AvSF ≈
RL + 1 / g m
Assuming RL=1/gm
AvSF ≈ 1 / 2 AvCS ≈ −1
Source Followers are not necessarily efficient drivers.
H. Aboushady University of Paris VI
17
Single Stage Amplifiers
•Basic Concepts
•Common Source Stage
•Source Follower
•Common Gate Stage
•Cascode Stage
Hassan Aboushady
University of Paris VI
Common Gate Stage
Large Signal Behavior
Vout = VDD − I D RD
Assuming M1 in saturation:
µ nCox W
Vout = VDD − (Vb − Vin − VTH ) 2 RD
2 L
∂Vout W ⎛ ∂V ⎞
= − µ n Cox (Vb − Vin − VTH )⎜⎜ − 1 − TH ⎟⎟ RD
∂Vin L ⎝ ∂Vin ⎠
∂Vout W
= µ n Cox (Vb − Vin − VTH )(1 + η )RD
∂Vin L
Av = g m (1 + η ) RD
H. Aboushady University of Paris VI
18
Common Gate Stage Input Resistance
Same as Output Resistance of Source Follower:
1
Rin =
g m + g mb
Body Effect:
• increases Av
• decreases Rin
H. Aboushady University of Paris VI
Common Gate Gain
Small Signal Signal Equivalent Circuit
Vout
The current through RS is equal to -Vout / RD : V1 − RS + Vin = 0
RD
The current through rO is equal to -Vout / RD - gmV1 - gmbV1 :
⎛ −V ⎞ V
rO ⎜⎜ out − g mV1 − g mbV1 ⎟⎟ − out RS + Vin = Vout
⎝ RD ⎠ RD
⎡ −V ⎛ R ⎞⎤ V
rO ⎢ out − ( g m + g mb )⎜⎜Vout S − Vin ⎟⎟⎥ − out RS + Vin = Vout
⎣ RD ⎝ RD ⎠⎦ RD
H. Aboushady University of Paris VI
19
Common Gate Gain
Common Gate Amplifier:
( g m + g mb )rO + 1
AvCG = RD
RD + RS + rO + ( g m + g mb )rO RS
Degenerated Common Source Amplifier:
g m rO
AvCS = − RD
RD + RS + rO + ( g m + g mb )rO RS
H. Aboushady University of Paris VI
Common Gate Stage Input Resistance
Since V1 = -VX :
VX = RD I X + rO [I X − ( g m + g mb )VX ]
VX RD + rO
=
I X 1 + ( g m + g mb )rO
RD 1
Rin ≈ +
( g m + g mb )rO ( g m + g mb )
• Assume RD = 0 : • Replace RD by ideal current source:
1
Rin = Rin = ∞
1 / rO + ( g m + g mb )
Rin of a common gate stage is low only if RD is small.
H. Aboushady University of Paris VI
20
Common Gate Stage Output Impedance
Similar to Output Impedance of a
Degenerated Common Source Stage
Rout = ([1 + ( g m + g mb )rO ]RS + rO ) // RD
H. Aboushady University of Paris VI
Single Stage Amplifiers
•Basic Concepts
•Common Source Stage
•Source Follower
•Common Gate Stage
•Cascode Stage
Hassan Aboushady
University of Paris VI
21
Biasing of a Cascode Stage
The cascade of CS stage and a CG stage is called “cascode”.
M1 : the input device
M2 : the cascode device
Biasing conditions:
• M1 in saturation:
VX = Vb − VGS 2
Vb − VGS 2 ≥ Vin − VTH 1
Vb ≥ Vin + VGS 2 − VTH 1
• M2 in saturation:
Vout − VX ≥ Vb − VX − VTH 2
Vout ≥ Vin − VTH 1 + VGS 2 − VTH 2
H. Aboushady University of Paris VI
Cascode Stage Characteristics
Large signal behavior:
As Vin goes from zero to VDD
For Vin < VTH M1 and M2 are OFF
Vout =VDD
Output Resistance:
• Same common source stage with
a degeneration resistor equal to rO1
Rout = [1 + ( g m 2 + g mb 2 )rO 2 ]rO1 + rO 2
Rout ≈ ( g m 2 + g mb 2 )rO 2 rO1
• M2 boosts the output impedance of M1
by a factor of gmr02
• Triple cascode Rout ↑↑
difficult biasing at low supply voltage.
H. Aboushady University of Paris VI
22
Cascode Stage Voltage Gain
Av = −Gm Rout
Gm ≈ g m1
Ideal Current Source:
Rout ≈ ( g m 2 + g mb 2 )rO 2 rO1
Av ≈ ( g m 2 + g mb 2 )rO 2 g m1rO1
Cascode Current Source:
Rout ≈ g m 2 rO 2 rO1 // g m3rO 3rO 4
Av ≈ g m1 ( g m 2 rO 2 rO1 // g m 3rO 3 rO 4 )
H. Aboushady University of Paris VI
Shielding Property
Assume VX is higher than VY by ∆V.
Calculate the resulting difference between ID1 and ID2 (with λ ≠ 0 ).
µ nCox W
I D1 − I D 2 = (Vb − VTH ) 2 (λVDS 1 − λVDS 2 )
2 L
µC W
I D1 − I D 2 = n ox (Vb − VTH ) 2 (λ ∆VDS )
2 L
rO1 ∆V
∆VPQ = ∆V ≈
[1 + ( g m 3 + g mb3 )rO 3 ]rO1 + rO 3 ( g m3 + g mb 3 )rO 3
µ nCox W λ ∆V
I D1 − I D 2 = (Vb − VTH ) 2
2 L ( g m3 + g mb 3 )rO 3
H. Aboushady University of Paris VI
23
Folded Cascode
Simple Folded Folded Cascode Folded Cascode
Cascode with biasing with NMOS input
Large Signal Characteristics:
H. Aboushady University of Paris VI
Output Resistance of Folded Cascode
Degenerated Common Source Stage:
Rout = [1 + ( g m1 + g mb1 )rO1 ]RS + rO1
Folded Cascode Stage:
M1 M2
RS rO1 // rO3
Rout = [1 + ( g m 2 + g mb 2 )rO 2 ](rO1 // rO 3 ) + rO 2
H. Aboushady University of Paris VI
24