BL Integration by Parts
BL Integration by Parts
              ∫x                                          ∫ x e dx                                           ∫x                                          ∫x
                    2                                          3 x                                                 2                                          2
6.      (i)             cos x dx                   (ii)                                              (iii)             sin x cos x dx             (iv)            sin 2 x dx
                                                                                                                                                                 x
7.      (i)       ∫ x sin 3xdx                     (ii)   ∫ x cos 2 xdx                              (iii) ∫ x sec2 x dx                          (iv) ∫
                                                                                                                                                            1 − cos 2 x
                                                                                                                                                                        dx
                             x                x                                                                   x − sin x
                                                                    ∫ x cos                                   ∫ 1 − cos x dx
                                                                                     3
        (v)       ∫ x sin 2 cos 2 cos x dx                (vi)                           x dx        (vii)
8.      (i)   ∫ cos
                        x
                         2
                             x
                                 dx                (ii)   ∫ x sin
                                                                       3
                                                                           xdx                                (              )
                                                                                                     (iii) ∫ 1 − x 2 sin 2 x dx
                   x +1                                                                                        x + sin x
15.     ∫ e  ( 2 + x )2 
                                                   16.    ∫ x sin 2 x cos 3x dx                      17.     ∫ 1 + cos x dx                       18.    ∫ (1 + x ) log x dx
              x
                            dx
                          
                         
                                                               log x
19.     ∫x
              2
                  log (1 + x ) dx                  20.    ∫ (1 + x ) dx    3
                                                                                                     21. ∫ (5 x + 3) 2 x − 1dx
              ∫x                                          ∫x                                                 ∫x
                    2
22.     (i)             cos −1 x dx                (ii)        2
                                                                   cot −1 x dx                       (iii)         2
                                                                                                                       cosec −1 x dx
                    x                                                                                             x sin −1 x
23.     (i)   ∫ 1 + sin x dx                       (ii) ∫ sin −1 (3 x − 4 x3 )dx (iii)                       ∫      1 − x2
                                                                                                                                      dx
                                 th
      Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
2     (BOARD LEVEL, XII)                                   BY R. K. MALIK’S NEWTON CLASSES
24.   (i) Taking x as x (1/ x ) integrate it by parts. Use this to find
                            2            3
                                                                                                            ∫x
                                                                                                                 2
                                                                                                                     log x dx .
      (ii) Taking sin x as (sin x)(1), integrate it by parts. Use this to find                                       ∫ x cos x dx .
25.   (i) ∫ e ax sin bx dx                    (ii) ∫ e ax cos bx dx             (iii) ∫ sin(log x)dx                       (iv) ∫ e     −x
                                                                                                                                             cos 2 x cos 4 x dx
                                                                                             sin −1 x                                   x tan −1 x
            ∫x                                       ∫ x tan x sec                      ∫                                      (iv) ∫
                 5          3                                        2
27.   (i)            cos x dx                 (ii)                       x dx   (iii)                 3
                                                                                                            dx                                   3
                                                                                                                                                     dx
                                                                                            (1 − x )2 2
                                                                                                                                        (1 + x )
                                                                                                                                               2 2
                                    cos x + sin x
                                                                                        ∫ x tan
                                                                                                  −1
28.   (i) ∫ cos 2 x.log                           dx                            (ii)                   (2 x + 3)dx
                                    cos x − sin x
                                                                                           sin −1 x − cos −1 x
            ∫ (sin x )
                                2
29.   (i)             −1
                                    dx        (ii) ∫ cos −1 xdx                 (iii)    ∫ sin −1 x + cos−1 x dx
                                                                        1 1                                                     xe x
30.   (i) ∫ e x ( cot x + log sin x ) dx                     (ii) ∫ e x  − 2  dx                                   (iii) ∫              dx
                                                                        x x                                                  ( x + 1) 2
                  1 − sin x                                                                                                   1         1 
      (iv) ∫ e x                                            (v)     ∫ e ( tan x + log sec x ) dx                    (vi) ∫ 
                                                                          x
                              dx                                                                                                     −            dx
                  1 − cos x                                                                                                   log x ( log x )2 
                                                                                                                                                 
                                                                                               1      
      (vii) ∫ sin ( log x ) + cos ( log x ) dx (viii) ∫ log ( log x ) +                            dx
                                                                                                        2
                                                                                          ( log x ) 
                                                                                      x
31.   ∫e
            −x
                           ( )
                 tan −1 e x dx .              32.    ∫ log (1 + cos x ) − x tan 2  dx                   33. ∫ log x.sin −1 x dx
                       th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
                                                              JEE (MAIN & ADV.), MEDICAL + BOARD, NDA, X & IX
                                                                     Enjoys unparalleled reputation for best results
                                                                            in terms of percentage selection
                                                                                 www.newtonclasses.net
     (ii) I = ∫ x sin 3 x dx
     Integrating by parts, taking x as first function, we get
           − cos 3 x          − cos 3 x          x cos 3 x 1
     I = x            − ∫ 1⋅             dx = −           + ∫ cos 3 x dx
               3                 3                  3      3
         x cos 3 x 1 sin 3 x                x cos 3 x sin 3 x
     =−           + ⋅            +C = −              +        +C
            3        3     3                   3         9
     (iii) I = ∫ x 2 sin x dx
         1 2 3x 2 3x 2 3x     1          2       2  e3 x                     
     =     x e − xe + ∫ e dx = x 2 e3 x − xe3 x +                            +C
         3      9    9        3          9       9 3                         
         1 2 3x 2 3x 2 3x     1     2    2 
     =     x e − xe + e + C =  x 2 − x +  e3 x + C
         3      9    27       3     9   27 
     (v) I = ∫ ( x − 1) e − x dx
     I = − ( x − 1) e− x + ∫ 1 ⋅ e − x dx = − ( x − 1) e − x − e− x + C   = − xe− x + e − x − e− x + C = − xe − x + C
                              2
     (vi) I = ∫ ( x + 1) e x dx
                                                   2
     Integrating by pats, taking ( x + 1) as Ist function, we get
                2
     = ( x + 1) e x − ∫ 2 ( x + 1)e x dx
                    th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
2    (BOARD LEVEL, XII)                 BY R. K. MALIK’S NEWTON CLASSES
                    2                                2
      I = ( x + 1) e − 2∫ ( x + 1)e dx = e x ( x + 1) − 2 ( x + 1) e x − ∫ 1 ⋅ e x dx 
                            x           x
                                                                                      
                    2                                          2
      = e x ( x + 1) − 2e x ( x + 1) + 2e x + C = e x ( x + 1) − 2 ( x + 1) + 2 + C
                                                                               
           (                                )          (
      = ex x2 + 2 x + 1 − 2 x − 2 + 2 + C = ex x2 + 1 + C       )
     (vii) I = ∫ x 2 x dx
     Integrating by parts, taking x as the first function, we get
            2x            2x             2x     1
      I = x        ∫ 
                     − 1 ⋅          dx = x      −      ∫ 2 x dx
            log 2         log 2         log 2 log 2
         x2x    1  2x            x 2x     2x
      =      −             +C =       −
        log 2 log 2  log 2      log 2 ( log 2 )2
     (viii) I = ∫ 2 x 3e x dx = ∫ ( 2 x ) x 2 e x dx
                                    2           2
                                                                            Put x 2 = z ⇒ 2 xdx = dz .   ∴ I = ∫ z e z dz
                                3                                                                                1
2.   Let, I = ∫ x 2 e x cos x 3dx                                           Put x3 = z ⇒ 3 x 2 dx = dz ⇒ x 2 dx = dz
                                                                                                                 3
                        1                         1 z
     ∴ I = ∫ e z cos z.  dz 
                                                    3∫
                                            ⇒ I=       e cos z dz
                        3 
                                          1                                              
     Integrating by parts, we get, I =  e z .∫ cos z dz − ∫  ( e z ) .∫ cos z dz  dz 
                                                                d
                                          3                   dz                    
           1                              1           1
         = e z sin z − ∫ e z sin z dz  = e z sin z − ∫ e z sin z dz
           3                            3           3
           1           1                     d                     
          = e z sin z −  e z .∫ sin z dz − ∫  ( e z ) .∫ sin z dz dz                             [Again integrating by parts]
           3           3                      dz                   
          1           1                                           1           1           1
        = e z sin z −  e z ( − cos z ) − ∫ e z ( − cos z ) dz  = e z sin z + e z cos z − ∫ e z cos z dz
          3           3                                        3            3           3
            1           1             1                         ∵ I = e z cos z dz 
      ⇒ I = e z sin z + e z cos z − I
            3           3             3                               ∫            
         1        1                             4     1                               1
      ⇒ 1 +  I = e z [sin z + cos z ] ⇒ I = e z [sin z + cos z ] ⇒ I = e z ( sin z + cos z )
         3        3                             3     3                               4
               1
      ⇒ I = e x ( sin x3 + cos x 3 ) + C
                        3
                                                                            ∵ z = x 3 
               4
3.   Let, I = ∫ sec3 x dx = ∫ sec x.sec 2 x dx = sec x tan x − ∫ ( sec x tan x ) tan x dx
                                    (       )                           (
      = sec x tan x − ∫ sec x tan 2 x dx = sec x tan x − ∫ sec2 x − 1 sec x dx          )
      = sec x tan x − ∫ (sec3 x dx + ∫ sec x dx = sec x tan x − I + ∫ sec x dx                           ∵ I = sec3 x dx 
                                                                                                              ∫          
                                                                        sec x tan x 1
     or 2 I = sec x tan x + log | sec x + tan x |              ∴ I=                + log | sec x + tan x | +C
                                                                             2      2
                   th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                                    BY R. K. MALIK’S NEWTON CLASSES                                                                       3
                          log ( x + 2 )                                       1                             −2
4.     (i) Let, I = ∫                   2
                                                dx = ∫ log ( x + 2 ) .               2
                                                                                         dx = ∫ ( x + 2 ) .log ( x + 2 ) dx
                           ( x + 2)                                       ( x + 2)
                                                                   −2      d                          −2  
       Integrating by parts, we get, I = log ( x + 2 ) .∫ ( x + 2 ) dx − ∫  log ( x + 2 ) .∫ ( x + 2 ) dx  dx
                                                                            dx                            
                                            −2 +1                          −2 +1
                             ( x + 2)                     1 ( x + 2)        log ( x + 2 )        1
           = log ( x + 2 ) .                         −∫      .       dx = −               +∫            dx
                               ( −2 + 1)                x + 2 −2 + 1          ( x + 2)       ( x + 2)
                                                                                                      2
                                                                                                 −2 +1
                log ( x + 2 )                         −2          log ( x + 2 )      ( x + 2)
           =−                     + ∫ ( x + 2 ) dx = −                             +                     +C
                     x+2                                             x+2               ( −2 + 1)
                          log ( x + 2 )                 1
       Hence, I = −                             −            +C
                             x+2                    ( x + 2)
       (ii) Let, I = ∫ e x cos x dx                                                        …(1)
                                                            d                    
       Integrating by parts, we get, I = cos x.∫ e x dx − ∫  ( cos x ) .∫ e x dx  dx
                                                             dx                  
           = cos xe x − ∫ ( − sin x ) e x dx = e x cos x + ∫ e x sin x dx
       Again integrating by parts, we get,
                                          d                    
           e x cos x + sin x.∫ e x dx − ∫  ( sin x ) .∫ e x dx  dx = e x cos x + sin xe x − ∫ cos x e x dx
                                           dx                  
                                                                                                         ex
       ⇒ I = e cos x + e sin x − I
                 x                x
                                                           ⇒ 2 I = e ( cos x + sin x )
                                                                      x
                                                                                                    ⇒ I = ( sin x + cos x ) + C
                                                                                                         2
       (iii) Let, I = ∫ cos −1 x dx = ∫ 1.cos −1 x dx
                                                             d                     
       Integrating by parts, we get, I = cos −1 x.∫ 1.dx − ∫  ( cos −1 x ) .∫ 1.dx  dx
                                                              dx                   
                                       −1                                            x
           = cos −1 x. x − ∫                        . x dx = x cos −1 x + ∫                 dx
                                      1 − x2                                       1 − x2
                                                                     1
       Put 1 − x 2 = z ⇒ −2 x dx = dz                      ⇒ x dx = − dz
                                                                     2
                                                                                   − 1 +1 
                                       1  1                1 −1/2             1 z 2 
       ∴ I = x cos −1 x + ∫               − dz  = x cos x − ∫ z dz = x cos x −  1  + C
                                                         −1                 −1
                                        z 2                2                  2  − + 1
                                                                                   2 
           = x cos −1 x − z1/ 2 + C = x cos −1 x − z + C
       Hence, I = x cos −1 x − 1 − x 2 + c                                          ∵1 − x 2 = z 
                                                                  d               
5.     (i) Let, I = ∫ log x dx = ∫ log x.1dx = (log x).∫ 1.dx − ∫  (log x) ∫ 1.dx  dx
                                                                   dx             
                           1 
           = (log x) x − ∫  .x  dx = x log x − ∫ dx . Hence, I = x log x − x + C
                           x 
                              (             )              { (
       (ii) Let, I = ∫ log 1 + x 2 dx = ∫ log 1 + x 2 .1 dx = log 1 + x 2 ) }                (           ) ∫ 1.dx − ∫  dxd {log (1 + x )}.∫ 1.dx  dx
                                                                                                                                        2
                     th
     Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
4    (BOARD LEVEL, XII)                      BY R. K. MALIK’S NEWTON CLASSES
                                    2x                               x2
          = log (1 + x 2 ) x − ∫           x dx = x log ( ) ∫ 1 + x2 dx
                                                         1 + x 2
                                                                 − 2
                                 (1 + x2 )
                                    1 
                      (       )
          = x log 1 + x 2 − 2 ∫ 1 −  2 
                                 1+ x 
                                                                     (
                                          dx = x log 1 + x 2 − 2 ∫ dx + 2 ∫  )dx
                                                                            1 + x2
                              (        )
     Hence, I = x log 1 + x 2 − 2 x + 2 tan −1 x + C
∴ I = ∫ tan −1 x dx = ∫ t.sec 2 t dt
                                   1                                                 1         1            1 
          = x tan −1 x + log                +C                ∵ tan t = x ⇒ cos t =       =             =        
                                  1 + x2                                            sec t   1 + tan 2 t   1 + x2 
                            1
     Hence, I = x tan −1 x − log |1 + x 2 | +C
                            2
     (v) Let, I = ∫ sec−1 x dx . Put sec−1 x = t ⇒ x = sec t ⇒ dx = sec t tan t dt
                          {
          = x 3e x − 3 x 2 e x − ∫ 2 xe x dx   }                                                      [Again integrating by parts]
                 th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                    BY R. K. MALIK’S NEWTON CLASSES                                                            5
            1                 1   − cos 2 x    − cos 2 x   
           = ∫ x 2 sin 2 xdx =  x 2          − ∫ 2 x       dx  [Integrating by parts]
            2                 2       2               2   
               1  − x 2 cos 2 x                  
           =                    + ∫ x cos 2 x dx 
               2        2                        
               1  − x 2 cos 2 x  sin 2 x    sin 2 x  
           =                   +  x.     −∫        dx                                       [Again integrating by parts]
               2        2            2         2      
            1  − x 2 cos 2 x x sin 2 x cos 2 x                − x 2 cos 2 x x sin 2 x cos 2 x
           =                +         +        +C . Hence, I=              +         +        +C
            2        2           2       4                          4           4       8
                                                 (1 − cos 2 x)     1                           1
       (iv) Let, I = ∫ x 2 sin 2 xdx = ∫ x 2                   dx =  ∫ x 2 (1 − cos 2 x)dx  =  ∫ x 2 dx − ∫ x 2 cos 2 x dx 
                                                       2           2                         2                             
               1  x3  2 sin 2 x          sin 2 x 
           =      − x .         − ∫ 2 x.        dx                                          [Integrating by parts]
               2 3         2                2      
               1  x3 x 2 sin 2 x                  
           =      −              + ∫ x sin 2 x dx 
               2 3        2                       
               1  x 3 x 2 sin 2 x   − cos 2 x   − cos 2 x  
           =      −              + x          − ∫          dx                           [Again integrating by parts]
               2 3         2           2           2       
                       x3 x 2 sin 2 x x cos 2 x sin 2 x
       Hence, I =        −           −         +        +C
                       6       4         4         8
                                                         d ( x) 
7.     (i) Let, I = ∫ x sin 3 x dx = x ∫ sin 3 x dx − ∫ 
                                                         dx 
                                                                       ( ∫ sin 3x dx ) dx   [Integrating by parts]
                      th
     Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
6    (BOARD LEVEL, XII)                    BY R. K. MALIK’S NEWTON CLASSES
             1                       1
         =
             4 ∫ x.(2sin x cos x)dx = ∫ x sin 2 x dx
                                     4
             1   − cos 2 x    cos 2 x   
         =      x.          + ∫ 1.      dx                                        [Integrating by parts]
             4      2         2  
             1  − x cos 2 x 1                        1  − x cos 2 x 1               − x cos 2 x sin 2 x
         =                 + ∫ cos 2 x dx  Hence, I =              + sin 2 x  + C =            +        +C
             4       2      2                        4       2      4                    8        16
                        (      )
     (iii) Let, I = ∫ 1 − x 2 sin 2 x dx
                 th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                         BY R. K. MALIK’S NEWTON CLASSES                                                        7
                          − cos 2 x                − cos 2 x 
        ⇒ I = (1 − x 2 )             − ∫ ( −2 x )             dx [Integration by parts]
                             2                        2      
                x2 − 1                            x2 − 1            sin 2 x        sin 2 x 
            =          cos 2 x − ∫ x cos 2 x dx =        cos 2 x −  x       − ∫ 1.        dx 
                  2                                 2                  2              2      
                x2 −1          x         1  cos 2 x  x 2 − 1          x         1
            =         cos 2 x − sin 2 x +  −        =        cos 2 x − sin 2 x − cos 2 x
                  2            2         2    2         2             2         4
                       2x2 − 3          x
        Hence, I =             cos 2 x − sin 2 x + C
                         4              2
                                           1 + cos 2 x     1 2      1 2
9.      Let, I = ∫ x 2 cos 2 x dx = ∫ x 2              dx = ∫ x dx + ∫ x cos 2 x dx
                                                2          2        2
             1 x 3 1   sin 2 x          sin 2 x  
            = . +  x2           − ∫ 2x           dx                                           [Integrating by parts]
             2 3 2  2                   2  
                x 3 x 2 sin 2 x 1
            =      +           − ∫ x sin 2 x dx
                6        4      2
                x3 x 2 sin 2 x 1   cos 2 x          − cos 2 x  
            =     +           − x −         − ∫ 1.             dx                             [Again integrating by parts]
                6       4      2     2                 2       
             x 3 x 2 sin 2 x x cos 2 x 1                         x 3 x 2 sin 2 x x cos 2 x 1
            = +             +         − ∫ cos 2 x dx . Hence, I = +             +         − sin 2 x + C
             6        4         4      4                         6        4         4      8
10.     (i) Let, I = ∫ x cos −1 x dx     ∴ I = ∫ cos −1 x.xdx
                           x2     −1 x 2
        ⇒ I = cos −1 x.       −∫       . dx                         [Integrating by parts]
                           2     1 − x2 2
                  x2           1  x2                                x2
        ⇒ I=         cos −1 x + ∫       dx        Let, I1 = ∫                dx . Put x = cos θ     ∴ dx = − sin θ dθ
                  2            2 1 − x2                         1 − x2
                       cos 2 θ                                           1 + cos 2θ       1   1 sin 2θ
        ∴ I1 = ∫                 .(− sin θ )dθ = − ∫ cos 2 θ dθ = − ∫               dθ = − θ − .
                             2
                     1 − cos θ                                                2           2   2    2
               x2      1 1         x 1 − x2      x2           1          1
                   −1          −1
            I = cos x +  − cos x −          +C =    cos −1 x − cos −1 x − x 1 − x 2 + C
               2       2  2          2     
                                                   2            4          4
               1  − cos 2θ        − cos 2θ    
        ⇒ I = − θ .        − ∫ 1.          dθ          [Integrating by parts]
               2      2               2       
            θ cos 2θ 1                 θ cos 2θ 1 sin 2θ
          =          − ∫ cos 2θ dθ =             − .     +C
               4      4                    4       4  2
                θ ( 2 cos 2 θ − 1) 1                       θ cos 2 θ         θ       cos θ 1 − cos 2 θ
            =                    − .2 sin θ cos θ + C =                  −       −                     +C
                       4          8                             2            4              4
                      th
      Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
8     (BOARD LEVEL, XII)                                     BY R. K. MALIK’S NEWTON CLASSES
      Hence, I =
                             ( cos x ) x
                                     −1         2
                                                    −
                                                        cos −1 x x 1 − x 2
                                                                −          +C
                                     2                    4         4
      (ii) Let, I = ∫ x cot −1 xdx                        ⇒ I = ∫ cot −1 x.xdx
                                                                                 x2                −1 x 2
      Integrating by parts, we get, I = ∫ x cot −1 x dx =                           cot −1 x − ∫       . dx
                                                                                 2               1 + x2 2
               x 2 cot −1 x 1  x2         x 2 cot −1 x 1        1        x 2 cot −1 x 1
           =
                    2
                           + ∫
                            2 1+ x 2
                                     dx =
                                               2
                                                      +  ∫  1 −
                                                        2  1+ x 2 
                                                                      dx =
                                                                                2
                                                                                       +  x − tan −1 x  + C
                                                                                        2
           =
             x 2 cot −1 x 1   1π     −1 
                         + x −  − cot x  + C =
                                                 x 2 + 1 cot −1 x 1  π
                                                                 + x− +C
                                                                            (       )
                  2       2   2 2                     2         2  4
           =
               (x   2
                             )
                        + 1 cot −1 x
                                            +
                                                1
                                                  x + C1 , where C1 = C −
                                                                          π
                             2                  2                         4
      (iii) Let, I = ∫ x cosec −1 x dx                       ⇒ I = ∫ cosec −1 x.xdx
                                                x2     −1    x2
      Integrating by parts, we get, I = cosec x. − ∫        . dx     −1
                                                2    x x2 −1 2
                 x 2 cosec −1 x 1   x
       ⇒ I=                    + ∫      dx                                              …(i)
                       2        2   2
                                   x −1
                                 x                                                                   1 dz 1 z1/ 2
      Let, I1 = ∫                         dx . Put z = x 2 − 1 ∴ dz = 2 x dx              ∴ I1 = ∫     . = .      = z = x2 − 1
                             x2 − 1                                                                   z 2 2 1/ 2
                                                                            x 2 cosec−1 x 1 2
      ∴ Putting the value of I1 in (i), we get, I =                                      +   x −1 + C
                                                                                  2        2
11.   (i) Let, I = ∫ e x ( f ( x ) + f ′ ( x ) ) dx = ∫ f ( x ) .e x dx + ∫ e x f ′ ( x ) dx
           =  f ( x ) e x − ∫ f ′ ( x ) e x dx  + ∫ e x f ′ ( x ) dx = f ( x ) e x + C
                                               
      (ii) Let, I = ∫ e x sec x (1 + tan x) ) dx
      Evaluating first integral of I by parts, we get, I =  tan xe x − ∫ sec 2 x.e x dx  + ∫ sec2 x.e x dx = tan x.e x + C
                                                                                        
                          x2 + 1 
      (iv)Let, I = ∫ e x             dx
                          ( x + 1)2 
                                    
                  x2 − 1 + 2                                x2 −1        2               
                                                                                            x x −1     2 
      ∴ I = ∫ ex              dx = ∫ e x                              +         dx = ∫  x + 1 ( x + 1)2  dx
                                                                                          e       +
                  ( x + 1)2                                          2        2
                                                             ( x + 1) ( x + 1) 
                                                                                                           
                        th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                 BY R. K. MALIK’S NEWTON CLASSES                                                           9
                     d  x − 1  ( x + 1) .1 − ( x − 1) .1       2
        We know that            =              2
                                                           =          2
                     dx  x + 1        ( x + 1)             ( x + 1)
                                      x −1 x                  2
        ∴ We can write I = ∫               e dx + ∫ e x .          2
                                                                     dx
                                      x +1                ( x + 1)
                                                     x −1              2                            2           x −1 x
Evaluating first integral of I by parts, we get I =         ex − ∫          2
                                                                               .e x
                                                                                    dx  + ∫ ex .          2
                                                                                                             dx =      e +C
                                                     x + 1        ( x + 1)                    ( x + 1)        x +1
                             2x −1 
        (v) Let, I = ∫ e2 x     2 
                                      dx. Put z = 2 x ∴ dz = 2dx
                             4x 
                       z − 1  dz 1 z  1 1                                  1 1 z     1        1
        ∴ I = ∫ e z    2 
                                 = ∫ e  − 2  dz                   ⇒ I=       ∫  e dz − ∫ e z . 2 dz
                       z  2 2        z z                                  2 z       2       z
        Evaluating first integral of I by parts, we get,
                 1 1 z      1 z  1 z 1            11 z       e2 x
            I=      e − ∫ − 2 e dz  − ∫ e . 2 dz =  e  + C =      +C
                 2z        z        2      z      2 z        4x
                           2 + sin x x /2
        (vi) Let, I = ∫              e dx
                           1 + cos x
                        x    x                           x
               2 + 2sin cos                            sin 
                                                         2 e x / 2 dx =  sec 2 + tan  e x /2 dx.
                                                 1                               x     x
        ∴ I=
             ∫          2
                           x
                             2 e x / 2 dx =
                                            ∫ 2x
                                                    +
                                                          x 
                                                                                2   ∫ 2
                   2 cos 2                    cos     cos 
                           2                      2      2
                           1
        Let, z =
                   x
                   2
                                                         (
                     ∴ dz = dx . ∴ I = 2 ∫ sec 2 z + tan z e z dz
                           2
                                                                          )
        ∴ We can write I = 2 ∫ tan z e z dz + 2 ∫ sec 2 ze z dz
        Evaluating first integral of I by parts, we get,
                                                                                                  x
            I = 2  tan z.e z . − ∫ sec 2 z.e z dz  + 2 ∫ sec 2 ze z dz = 2 tan z.e z + C = 2 tan .e x / 2 + C
                                                                                                2
12.     (i) Let, I = ∫ x log ( x + 1) dx = ∫ log ( x + 1) .x dx
                               x2    1 x2 
                                                                           [Integrating by parts]
            = log ( x + 1) .      −∫     .  dx
                               2     x +1 2 
                x2              1 x2       x2            1 x2 −1 + 1
            =      log( x + 1) − ∫     dx = log( x + 1) − ∫          dx
                2               2 x +1     2             2   x +1
                x2              1  x2 −1   1      x2             1                 1  
            =      log( x + 1) − ∫       +    dx = log ( x + 1) −  ∫  ( x − 1) +        dx
                2               2  x +1 x +1      2              2               x + 1  
                x2               1  x2             
            =      log ( x + 1) −  − x + log x + 1  + C
                2                2 2               
                  x2             x2 x 1
        Hence, I = log ( x + 1) − + − log x + 1 + C =
                                                      ( x 2 − 1)               x2 x
                                                                 log ( x + 1) − + + C
                  2              4 2 2                     2                   4 2
                                       (1+ x )
        (ii) Let, I = ∫ log (1 + x )             dx = ∫ (1 + x ) log (1 + x ) dx          ∵ log m n = n log m 
                                              1           x 2  
            = log (1 + x ) ∫ (1 + x ) dx − ∫            x +   dx         [Integrating by parts]
                                               1 + x      2  
                      th
      Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
10   (BOARD LEVEL, XII)               BY R. K. MALIK’S NEWTON CLASSES
                            x   1 x ( x + 2) 
                                      2
                                                                     x2      1 x2 + 2x
         = log (1 + x )  x +  − ∫    .        dx = log (1 + x )     + x − ∫        dx
                            2  1 + x   2                         2       2  x +1
                         x2 + 2 x  1 x2 + 2 x + 1 −1                      x2 + 2x  1            1 
         = log (1 + x )            − ∫               dx = log (1 + x ) .           − ∫  x +1−      dx
                         2  2             x +1                            2  2                x +1
         =
           (x    2
                     + 2x     ) log (1 + x ) − x x log (1 + x )
                                                − +
                                                   2
                                                                + C Hence, I =
                                                                                            2
                                                                               ( x + 1) log(1 + x) − x 2 − x + C
                     2                         4 2      2                          2                 4 2
                                                        x2    1        x 2 
     (iii) Let, I = ∫ x sin −1 x dx = (sin −1 x)           −∫          .  dx
                                                        2      1 − x 2 2 
             x2            1  − x2      x2          1 1 − x2 − 1
         =      .sin −1 x + ∫       dx = .sin −1 x + ∫          dx
             2             2 1 − x2     2           2    1 − x2
             x2            1  1 − x 2          1        x 2         1                   1       
         =      .sin −1 x +  ∫         dx − ∫        dx  = .sin −1 x +  ∫ 1 − x 2 dx − ∫        dx 
             2             2  1 − x 2        1 − x 2  2             2                 1 − x 2 
             x2            1  1          1                     
         =      .sin −1 x +   x 1 − x 2 + sin −1 x  − sin −1 x  + C
             2             2  2          2                     
                          1 2 −1     1           1
     Hence, I =             x sin x + x 1 − x 2 − sin −1 x + C
                          2          4           4
     Alternatively : Let, I = ∫ x sin −1 x dx . Put sin −1 x = t             ⇒ x = sin t   ⇒ dx = cos t dt
                                          1
     ∴ I = ∫ sin t.t.cos t dt =              t ( 2sin t cos t ) dt
                                          2∫
             1                1   − cos 2t          − cos 2t   1  −t cos 2t 1  sin 2t  
         =
             2 ∫ t sin 2t dt = t 
                              2  2 
                                              − ∫ 1. 
                                                       2   2
                                                                  dt  = 
                                                                             2
                                                                                  + 
                                                                                   2  2  
                                                                                               +C
                     th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                                BY R. K. MALIK’S NEWTON CLASSES                                                     11
                                                                − sin −1 x      1  1 − x2
            = − z cosec z + log | cosec z − cot z | +C =                   + log −        +C
                                                                    x           x    x
                                sin −1 x       1 − 1 − x2
        Hence, I = −                     + log            +C
                                   x               x
                                                                   d                           
        Integrating by parts, we get, I = log x.∫ (1 − x 2 )dx − ∫  ( log x ) .∫ (1 − x 2 ) dx  dx
                                                                    dx                         
                        x3   1    x3      3x − x3             x2 
            = log x  x −  − ∫  x −  dx =           log x − ∫ 1 −  dx
                        3    x    3       3                     3
              3x − x3                   1 2        3x − x3              1 x3       3x − x3             x3
            =
              3 
                        log x − ∫ 1.dx +
                                          3∫
                                             x dx = 
                                                     3 
                                                               log x − x +  .
                                                                            3 3
                                                                                 + C =
                                                                                       3 
                                                                                                 log x − x + + C
                                                                                                             9
                                                                 d                       
        Integrating by parts, we get, I = log ( x + 3) ∫ xdx − ∫  ( log ( x + 3) ) ∫ xdx  dx
                                                                  dx                     
                                    x2      1  x2          x2                 1 x2
            = log ( x + 3) .           −∫                           (       )
                                                                                2 ∫ x+3
                                                        dx =    log   x + 3   −         dx.
                                    2     x + 3  2       2
                x2               1        3x        x2               1        3  x
            =      log ( x + 3) − ∫  x −       dx =    log ( x + 3) − ∫ x dx + ∫    dx
                2                2       x + 3      2                2        2 x+3
                x2               1 x 2 3 ( x + 3 − 3)     x2             1     3             3    
            =      log ( x + 3) − . + ∫               dx = log ( x + 3) − x 2 +  ∫ 1.dx − ∫    dx 
                2                2 2 2       x+3          2              4     2            x+3 
                x2               1     3   9  1      x2             1     3   9
            =      log ( x + 3) − x 2 + x − ∫    dx = log ( x + 3) − x 2 + x − log ( x + 3) + C
                2                4     2   2 x+3     2              4     2   2
            =
              (x   2
                       − 9)
                                 log ( x + 3) −
                                                  x 2 3x
                                                     + +C
                       2                          4    2
        (iii) Let, I = ∫ x3 log 2 xdx.
                                                              d                     
        Integrating by parts, we get, I = log 2 x.∫ x 3dx − ∫  ( log 2 x ) .∫ x 3dx  dx
                                                               dx                   
                  x4      1     x4       1         1          1             1 x4    1              1
        = log 2 x.   − ∫ ( 2 ) . dx = x 4 log 2 x − ∫ x 3 dx = x 4 log 2 x − . + C = x 4 log 2 x − x 4 + C
                   4     2x     4        4         4          4             4 4     4             16
                       log x
        (iv) Let, I = ∫ n dx = ∫ x − n log x dx
                         x
                                                               d                      
        Integrating by parts, we get, I = log x ∫ x − n dx − ∫  ( log x ) .∫ x − n dx  dx
                                                                dx                    
                     x − n +1     1 x − n +1            1                        1
        = log x.
                   ( − n +  1 )
                                −∫ .
                                  x  ( − n + 1)
                                                dx =
                                                     ( )
                                                      1 − n
                                                            log x. x − n +1 −
                                                                              ( )
                                                                               1 − n ∫ x − n dx
           log x 1             1       x − n +1         log x              1       1               1                      1 
        =         .       −                     +C =                 −           . n −1 + C =                  log x −          +C
          (1 − n ) x n −1
                            (1 − n ) ( −n + 1)       (1 − n ) x n −1           2
                                                                       (1 − n ) x             (1 − n ) x n −1          (1 − n ) 
                           th
      Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
12    (BOARD LEVEL, XII)                           BY R. K. MALIK’S NEWTON CLASSES
                                      2                      2
14.   (i) Let, I = ∫ ( log x ) dx = ∫ 1. ( log x ) dx
      Integrating by parts, taking unity as the second function, we get,
                        2            d         2                      2                1
           I = ( log x ) .∫ 1.dx − ∫  ( log x ) .∫ 1.dx dx = ( log x ) . x − ∫ 2 log x. . x dx
                                      dx                                               x
                         2                                       2
           = x ( log x ) − 2 ∫ log x dx = x ( log x ) − 2∫ 1.log x dx
                        2                     d                  
           = x ( log x ) − 2 log x.∫ 1.dx − ∫  ( log x ) .∫ 1dx  dx                                        [Again integrating by parts]
                                               dx                
                                         1                     2                                    2
           = x ( log x ) − 2 log x. x − ∫ . x dx  = x ( log x ) − 2 x log x + 2 ∫ 1.dx = x ( log x ) − 2 x log x + 2 x + C
                        2
                                         x       
      (ii) Let, I = ∫ x 2 a 3 x dx
                                                           d                    
      Integrating by parts, we get, I = x 2 ∫ a 3 x dx − ∫  ( x 2 ) .∫ a 3 x dx  dx
                                                            dx                  
                    a 3x            a3x        x2a3x    2
                          − ∫ 2 x.
                                               3log a 3log a ∫
           = x2.                          dx =       −         x.a3 x dx
                   3log a          3log a
             x 2a 3 x   2                    d                   
           =          −     x.∫ a 3 x dx − ∫  ( x ) .∫ a 3 x dx  dx                                        [Again integrating by parts]
             3log a 3log a                    dx                 
             x2a3x    2        a3x         a3 x     x 2 a 3 x 2 x a3 x     2
           =       −        x.     − ∫ 1.       dx  =        −         2
                                                                           +       2 ∫
                                                                                       a 3 x dx
             3log a 3log a  3log a        3log a  3log a 9 ( log a ) 9 ( log a )
               x2a3x        2         3x         2        a3 x       x2a3x     2 xa 3 x     2a 3 x
           =         −             xa    +              .      + C =       −            +              +C
               3log a 9 ( log a )2                    2
                                           9 ( log a ) 3log a        3log a 9 ( log a )2 27 ( log a )3
                             log x                               1
      (iii) Let, I = ∫                2
                                          dx = ∫ log x.                   dx
                         (1 + x )                         (1 + x )
                                                                      2
                                                                          1                 d               1        
      Integrating by parts, we get, I = log x.∫                                 2
                                                                                    dx − ∫  ( log x ) .∫         2
                                                                                                                    dx  dx
                                                                     (1 + x )                dx         (1 + x ) 
                              −2 +1                  −2 +1
           = log x
                   (1 + x )      1 (1 + x )
                               −∫ .
                                                                   −1  1        −1
                                             dx = − log x. (1 + x ) + ∫ (1 + x ) dx
                        −2 + 1   x ( −2 + 1)                           x
                           1         1              log x    1   1                                   1   1    1+ x − x      1 
           = − log x.           +∫          dx = −         +∫ −         dx                           ∵ −     =          =           
                        (1 + x ) x (1 + x )        (1 + x )  x 1 + x                                x 1 + x x (1 + x ) x (1 + x ) 
                 log x     1        1           log x
           =−           + ∫ dx − ∫      dx = −          + log x − log 1 + x + C
                (1 + x ) x         1+ x        (1 + x )
                 log x          x                                                                         m
           =−            + log      +C                                              ∵log m − log n = log n 
                (1 + x )       1+ x
                      x +1                  x + 2 −1
15.   Let, I = ∫ e x         2 
                                  dx = ∫ e x              dx
                      (2 + x)               ( 2 + x )2 
                                                       
                   x+2             1                      1                     1
           = ∫ ex             −            dx = ∫ e .
                                                     x
                                                                 dx − ∫ e x .            dx
                   ( x + 2 ) 2 ( x + 2 )2 
                                                      ( x + 2)              ( x + 2)
                                                                                       2
                   th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                     BY R. K. MALIK’S NEWTON CLASSES                                                        13
        Integrating the first integral by parts, we get,
                 1  x            d  1  x                             1
             I =     .∫ e dx − ∫             .∫ e dx  dx − ∫ e .
                                                                    x
                                                                                2
                                                                                  dx
                 x+2              dx  x + 2                      ( x + 2)
              1  x              1        x                1
            =     e − ∫  −           2 
                                           
                                             e dx − ∫ e x           2
                                                                      dx
              x+2           ( x + 2 )                 ( x + 2 )
                  1             1                 1            ex
            = ex      ∫
                        +                   − ∫ ( x + 2 )2    =     +C
                            x                    x
                          e            2
                                         dx    e           dx
                  x+2       ( x + 2)                          x+2
                                          1
        Let, I = ∫ x sin 2 x cos 3 x dx =
                                          2∫
16.                                           x.cos 3 x sin 2 x dx
             1                              1                  1
            = .∫ x ( sin 5 x − sin x ) dx = ∫ x sin 5 xdx − x sin x dx                        …(1)
             2                              2                  2
                                    cos 5 x          cos 5 x         x cos 5 x 1
        Now,    ∫ x sin 5 x dx = x  −5 
                                              − ∫ 1.  −
                                                         5 
                                                                 dx = −
                                                                            5
                                                                                  + ∫ cos 5 x dx
                                                                                   5
                 x cos 5 x 1 sin 5 x    x cos 5 x sin 5 x
            =−            + .        =−          +                                            …(2)
                    5      5 5             5        25
        Again,  ∫ x sin x dx = x ( − cos x ) − ∫ 1. ( − cos x ) dx
            = − x cos x + ∫ cos x dx = − x cos x + sin x                                      …(3)
                                    1  x cos 5 x sin 5 x  1
        From (1), (2) & (3), I =  −               +         − ( − x cos x + sin x ) + C
                                    2       5          25  2
                       x cos 5 x sin 5 x x cos x sin x
        Hence, I = −             +        +          −      +C
                          10         50         2        2
                                                                                        x      x
                                                                                  2 sin cos
             x + sin x             x              sin x              x                  2      2 dx
17.     I =∫           dx = ∫            dx + ∫           dx = ∫           dx + ∫
             1 + cos x         1 + cos x        1 + cos x        2 cos 2 x
                                                                                     2 cos 2 x
                                                                         2                   2
                                                x          x 
                                            tan        tan
             1         x          x    1         2 − 1.     2 dx  + tan x dx
            = ∫ x.sec 2 dx + ∫ tan dx =  x.
             2         2          2    2      1    ∫ 1  ∫ 2
                                                                 
                                              2          2      
                      x        x          x          x
            = x tan     − ∫ tan dx + ∫ tan dx = x tan + C
                      2        2          2          2
18.     Let, I = ∫ (1 + x ) log x dx
                                                                                         2                          2
                      th
      Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
14    (BOARD LEVEL, XII)                           BY R. K. MALIK’S NEWTON CLASSES
                    3                          3
                   x               1 x
       ⇒ I =         log (1 + x ) − ∫     dx                                    …(1)
                   3               3 1+ x
                              x3         x3 + 1 − 1        x3 + 1        dx
      Now, let I1 =       ∫ 1+ x ∫ x +1
                                 dx =               dx = ∫ x + 1 dx − ∫ x + 1
                                               x3 x2
          =∫   (                    )
                   x 2 − x + 1 dx − ∫
                                       dx
                                            = − + x − log ( x + 1)
                                      x +1 3 2
                                                    x3             1  x3 x 2              
      On putting the value of I1 in (1), we get, I = log (1 + x ) −  − + x − log (1 + x )  + C
                                                    3              3 3 2                  
             x3 + 1                 x3 x2 x
       ⇒ I =         log (1 + x ) −   + − +C
             3                      9 6 3
                        log x
20.   Let I = ∫                 3
                                    dx . On integrating by parts taking as u , we get,
                    (1 + x )
                                 1                    1                 1 log x        1   dx
         I = ( log x ) .  −               − ∫  −             dx = − .               + ∫                    …(1)
                          2 (1 + x )   2 (1 + x ) x 
                                        2                  2
                                                                            2 (1 + x ) 2 (1 + x )2 x
                                                                                      2
                 1           1+ x − x             1         1        1+ x − x       1        1   1       1
      Now,                 =               =           −           =           −           = −      −
            x (1 + x )
                       2
                             x (1 + x )
                                        2
                                             x (1 + x ) (1 + x ) 2
                                                                     x (1 + x ) (1 + x ) 2
                                                                                             x 1 + x (1 + x )2
                   dx   1      1        1                                  1           x       1
      ∴ ∫ x (1 + x )2 ∫  x 1 + x (1 + x )2  dx = log x − log (1 + x ) + 1 + x = log 1 + x + 1 + x
                     =     −        −
                                            
                          1 log        1      x        1
      ∴ From (1), I = −               + log      +           +C
                                    2
                          2 (1 + x ) 2      1 + x 2 (1 + x )
3  3 
                          x3                        x2
      Let I1 = ∫                    dx ∴ I1 = ∫               .x dx .           Put z = 1 − x 2 ∴ dz = −2 xdx
                                2                         2
                         1− x                      1− x
                    1 − z dz    1
      ∴ I1 = ∫           .   = − ∫ z −1/2 − z1/2 )dz
                       z −2     2
             1          2 z 3/2   z          1 − x2                  x2 + 2 
          = −  2 z1/2 −          =
                                    − 1  z =        − 1  1 − x 2
                                                                      = −          1− x
                                                                                          2
             2            3  3                  3                      3    
      Putting the value of I1 in I , we get,
                    th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                             BY R. K. MALIK’S NEWTON CLASSES                                            15
                x3 cos −1 x 1   x 2 + 2              x 3 cos −1 x 1 2
             I=            + −                2
                                           1− x  + C =             − ( x + 2) 1 − x 2 + C
                    3       3  3                          3       9
                                                              x3      −1 x 3      x 3 cot −1 x 1      x3
                                                                 −∫
                                                                                                3 ∫ 1 + x2
        Integrating by parts, we get, I = cot −1 x.                       .  dx =             +            dx
                                                              3     1 + x2 3           3
                 x 3 cot −1 x 1      x        x 3 cot −1 x 1  x 2 1          
             =               + ∫ x −  2 
                                           dx =             +  − log |1 + x 2 | + C
                      3       3  1+ x              3       3 2 2             
                 x 3 cot −1 x 1 2 1
             =
                      3       6   6
                                                (
                             + x − log 1 + x 2 + C        )
        (iii) I = ∫ x 2 cosec−1 x dx           ⇒ I = ∫ cosec −1 x.x 2 dx
                                          x3 cosec −1 x 1   x2
        Integrating by parts, we get, I =              + ∫       dx
                                               3        3  x2 −1
                       x2
        Let I1 = ∫             dx Put x = cosec θ ⇒ dx = − cosec θ cot θ dθ
                      x2 − 1
                           cosec 2 θ
        ∴ I1 = − ∫                         .cosec θ cot θ dθ = − ∫ cosec3 θ dθ = − ∫ cosec θ .cosec 2 θ dθ
                                2
                           cosec θ − 1
             = −  − cosec θ cot θ − ∫ ( − cosec θ cot θ )( − cot θ ) dθ  = cosec θ cot θ + ∫ cosec θ cot 2 θ dθ
                                                                        
                                       (              )
             = cosec θ cot θ + ∫ cosec 2 θ − 1 cosec θ dθ
                                      π x
                              log sec  − 
                      π x            4 2               π x             π x 
            = − x tan  −  +                + C = − x tan  −  − 2 log sec  −  + C
                       4 2        −
                                       1                    4 2             4 2
                                       2
        (ii) Let, I = ∫ sin −1 ( 3 x − 4 x 3 ) dx. Put x = sin θ       ∴ dx = cos θ dθ
                      th
      Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
16    (BOARD LEVEL, XII)              BY R. K. MALIK’S NEWTON CLASSES
      ∴ I = ∫ sin ( 3sin θ − 4sin θ ) .cos θ dθ = ∫ sin −1 ( sin 3θ ) cos θ dθ = ∫ 3θ cos θ dθ = 3∫ θ .cos θ dθ
                        −1                       3
                            1                                            1
      (i) We have x 2 = x 3                           ∫ x dx = ∫ x
                                                          2            3
24.                                              ∴                           dx
                            x                                            x
           x3                                                     x3
       ⇒      = x 3 .log | x | − ∫ 3 x 2 log | x | dx         ⇒      = x 3 log x − 3∫ x 2 log x dx
           3                                                      3
                                                     x3                    x3 log x x 3
       ⇒ 3∫ x 2 log x dx = x3 log x −                   ⇒ ∫ x 2 log x dx =         − +C
                                                     3                         3    9
      (ii) We have sin x = ( sin x )(1) ∴       ∫ sin x dx = ∫ ( sin x ) . (1) dx
      ⇒ − cos x = ( sin x ) x − ∫ ( cos x ) x dx ⇒ − cos x = x sin x − ∫ x cos x dx ⇒ ∫ x cos x dx = x sin x + cos x + C
                        e ax                e ax 
           = sin bx.         − ∫ (b cos bx )  dx                                       [Integrating by parts]
                         a                   a 
             e ax sin bx b
           =            − ∫ cos bx e ax dx
                   a     a
               e ax sin bx b        e ax              e ax  
           =              −  cos bx      + ∫ b sin bx       dx                       [Again integrating by parts]
                     a     a         a                 a  
                 e ax sin bx b cos bx e ax b 2
      ∴ I=                  −             − 2 ∫ sin bx eax dx
                       a         a2        a
                                           2
                  a sin bx − b cos bx  b                        b2               a sin bx − b cos bx 
       ⇒ I = eax                        −
                                        a2 I                  ⇒  1 + 2  I = e ax                      
                          a2                                    a                        a2          
                          e ax
      Hence, I =                [ a sin bx − b cos bx ] + C
                        a2 + b2
                                                          e ax                  eax 
      (ii) Let, I = ∫ e ax cos bx dx = cos bx.                 − ∫ b( − sin bx).  dx                [Integrating by parts]
                                                           a                     a 
               e ax cos bx b
           =              + ∫ sin bx e ax dx
                     a     a
               e ax cos bx b       e ax             e ax  
           =              + sin bx      − ∫ b cos bx  dx                                            [Again integrating by parts]
                     a     a        a                a  
               e ax cos bx b                b2
           =              + 2 sin bx. e ax − 2 ∫ e ax cos bx dx
                     a     a                a
               e ax cos bx b                b2                    b2        ae ax cos bx + be ax sin bx
      ∴I =                + 2 sin bx. e ax − 2 .I              ⇒ 1 + 2  I =
                     a     a                a                     a                     a2
                   th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
(BOARD LEVEL, XII)                    BY R. K. MALIK’S NEWTON CLASSES                                                 17
                 e ax
  Hence. I =           [a cos bx + b sin bx] + C
               a2 + b2
  (iii) Let, I = sin ( log x ) dx = ∫ sin ( log x )1.dx
                                            1
      = sin ( log x ) .x − ∫ cos ( log x ) . .xdx                      [Integrating by parts]
                                            x
      = x sin ( log x ) − ∫ cos ( log x ) .1dx
⇒ I = x sin ( log x ) − x cos ( log x ) − ∫ sin ( log x ) dx ⇒ I = x sin ( log x ) − x cos ( log x ) − I
                                         (sin 6 x)             sin 6 x  
  Now, I1 = ∫ e− x cos 6 x dx = e− x
                                             6
                                                           (
                                                   − ∫  −e− x    )
                                                                6 
                                                                           dx
                                                       
         e− x sin 6 x 1 − x
  ⇒ I1 =             + ∫ e sin 6 x dx
               6      6
           e− x sin 6 x 1  − x  − cos 6 x   − x  − cos 6 x   
  ⇒ I1 =
                 6
                       + e 
                        6          6       
                                                       (
                                             − ∫  −e 
                                                        6
                                                               )  dx 
                                                                 
           e− x sin 6 x e − x cos 6 x 1                                            e− x sin 6 x e − x cos 6 x 1
  ⇒ I1 =               −             − ∫ e− x cos 6 x dx               ⇒ I1 =                  −             − I1
                 6            36      36                                                 6            36      36
              1      e− x                                  37      e− x
  ⇒ I1 +        I1 =      [ 6sin 6 x − cos 6 x ]     ⇒        I1 =      [ 6sin 6 x − cos 6 x ]
             36      36                                    36      36
            e− x
  ∴ I1 =         [6 sin 6 x − cos 6 x ] + C1                           …(2)
            37
                                                     (sin 2 x)             sin 2 x  
  And      I 2 = ∫ e − x cos 2 x dx   ⇒ I 2 = e− x
                                                         2
                                                                        (
                                                               − ∫  −e− x    )
                                                                            2 
                                                                                       dx
                                                                   
             1 −x         1
  ⇒ I2 =       e sin 2 x + ∫ e − x sin 2 x dx
             2            2
         1               1         − cos 2 x   − x  − cos 2 x  
  ⇒ I 2 = e − x sin 2 x + e − x             − ∫ ( − e )      dx 
         2               2           2                    2   
         1              1  −e− x cos 2 x 1 − x           
  ⇒ I 2 = e− x sin 2 x +                − ∫ e cos 2 x dx 
         2              2        2       2               
         1               1               1
  ⇒ I 2 = e − x sin 2 x − e − x cos 2 x − ∫ e − x cos 2 x dx
         2               4               4
                th
Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
18    (BOARD LEVEL, XII)                 BY R. K. MALIK’S NEWTON CLASSES
              1               1               1           1     1
       ⇒ I 2 = e − x sin 2 x − e − x cos 2 x − I 2 ⇒ I 2 + I 2 = e− x [ 2sin 2 x − cos 2 x ]
              2               4               4           4     4
         5       1 −x                               e− x
      ⇒     I 2 = e [ 2 sin 2 x − cos 2 x ] ⇒ I 2 =      [ 2sin 2 x − cos 2 x ] + C2                   …(3)
         4       4                                   5
      Now, from (1), (2) and (3) , we get
                 1  e− x                          e− x                    
            I=           ( 6 sin 6 x − cos 6 x ) + ( 2sin 2 x − cos 2 x )  + C , where C = C1 + C2
                 2  37                             5                      
                         e− x   1                           1                       
      Hence, I =                 37 (6sin 6 x − cos 6 x) + 5 (2sin 2 x − cos 2 x)  + C
                          2
26.   (i) Let, I = ∫ sin 3 xdx
                                      1                 1
      Put        x=z ⇒                     dx = dz ⇒       dx = dz ⇒ dx = 2 z dz
                                 2 x                    2z
                                                             3       1
      ∴ I = ∫ ( sin 3 z )2 z dz = 2 ∫ z sin 3 z dz = 2 ∫ z  sin z − sin 3z  dz
                                                            4       4       
                                               3        3                          3    3         1         
                     ∵ sin 3 A = 3sin A − 4sin A ⇒ 4sin A = 3sin A − sin 3 A ⇒ sin A = 4 sin A − 4 sin 3 A
            3               1
          = ∫ z sin z dz − ∫ z sin 3 z dz
            2               2
      Integrating by parts, we get,
                  3                  d                    1                       d                    
            I=      z.∫ sin z dz − ∫  ( z ) .∫ sin z dz  dz  −  z.∫ sin 3z dz − ∫  ( z ) .∫ sin 3z dz  dz 
                  2                   dz                  2                        dz                  
                3                                         1   − cos 3z        − cos 3z  
                   z. ( − cos z ) − ∫ 1. ( − cos z ) dz  −  z. 
                                                                    3  ∫ 
            =                                                              − 1.            dz
                2                                       2                         3  
               3         3            1            1
            = − z cos z + ∫ cos z dz + z cos 3 z − ∫ cos 3 z dz
               2         2            6            6
               3         3        1          1  sin 3 z         3         3       1            1
            = − z cos z + sin z + z cos 3 z −            + C = − z cos z + sin z + z cos 3 z − sin 3 z + C
               2         2        6          6 3                2         2       6           18
                  3          3        1             1
            =−      x cos x + sin x +   x cos 3 x − sin 3 x + C
                  2          2        6            18
      (ii) Let, I = ∫ sec −1 x dx
                                  1                    1
      Put       x=z ⇒                     dx = dz ⇒       dx = dz ⇒ dx = 2 z dz
                                2 x                    2z
      ∴ I = ∫ ( sec −1 z ) 2 z dz = 2 ∫ z sec −1 z dz
                                                              d                     
      Integrating by parts, we get, I = 2 sec −1 z.∫ z dz − ∫  ( sec −1 z ) .∫ zdz  dz 
                                                               dz                   
                         z2     1      z2                       z
            = 2 sec −1 z. − ∫         . dz  = z 2 sec −1 z − ∫        dz
                         2    z z2 − 1 2                       z2 − 1
                                                                                                                  z
            ⇒ I = z 2 sec −1 z − I1                                          …(1)                  where I1 = ∫          dz
                                                                                                                  2
                                                                                                                  z −1
                    th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                  BY R. K. MALIK’S NEWTON CLASSES                                                                              19
                                            1
        Put z 2 − 1 = y ⇒ 2z dz = dy ⇒ zdz = dy
                                            2
                                                 − 1 +1 
                        1     1  1 −1/2     1  y 2  1 y1/ 2
        ∴ I1 = ∫              dy  = ∫ y dy =  1  = ×           =                                   y
                         y   2  2           2  − + 1 2 (1/ 2 )
                                                 2 
            = z2 −1                                    ∵ y = z 2 − 1
                                                                   d                          
        Integrating by parts, we get, I = log sin x.∫ cos x dx − ∫  ( log sin x ) .∫ cos x dx  dx
                                                                    dx                        
                                          1           
            = ( log sin x )( sin x ) − ∫        cos x  .sin x dx
                                          sin x       
            = sin x ( log sin x ) − ∫ cos x dx = sin x ( log sin x ) − sin x + C
                                                                                                  1
27.     (i) Let, I = ∫ x5 cos x 3dx = ∫ x 3 cos x3 .x 2 dx . Put x3 = t ⇒ 3 x 2 dx = dt ⇒ x 2 dx = dt
                                                                                                  3
                1                1
        ∴ I = ∫ t cos t dt = t sin t − ∫ {1.sin t } dt             [Integrating by parts]
                3                3                          
              1                                         1
            = [t sin t + cos t ] + C . Hence, I =  x 3 sin x3 + cos x3  + C
              3                                         3
        (ii) Let, I = ∫ x tan x sec2 x dx . Put tan x = z ⇒ x = tan −1 z                        ⇒ sec2 xd x = dz
                                                          z2      1 z2
                    (              )
        ∴ I = ∫ tan −1 z z dz = tan −1 z.
                                                          2
                                                             −∫      . dz
                                                                1+ z2 2
                                                                                                                    [Integrating by parts]
                z2           1  z2        z2            1 z2 +1 −1
                   tan −1 z − ∫
                                                        2 ∫ 1+ z2
                                                 −1
            =                        dz =    tan    z −            dz
                2            2 1+ z2      2
                z2           1      1        z2           1
            =      tan −1 z − ∫ 1 −  2 
                                          dz =    tan −1 z −  z − tan −1 z  + C
                2            2  1+ z         2            2
                   x tan 2 x 1       x
        Hence, I =          − tan x + + C
                       2     2       2
                                  sin −1 x
        (iii) Let, I = ∫                     3
                                                 dx . Put sin −1 x = t ⇒ x = sin t ⇒ dx = cos t dt
                                 (1 − x )  2 2
                        t cos t                      t cos t
        ∴ I =∫                         3
                                            dt = ∫       3
                                                             dt = ∫ t sec 2 t dt = t. ( tan t ) − ∫ {1. tan t}dt       [Integrating by parts]
                                  2                  cos t
                    (1 − sin t )       2
                        th
      Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
20    (BOARD LEVEL, XII)                                BY R. K. MALIK’S NEWTON CLASSES
                                    −1
                            x tan x
      (iv) Let, I = ∫                     3
                                              dx . Put tan −1 x = t ⇒ x = tan t ⇒ dx = sec2 t dt
                           (1 + x )     2 2
      ∴ I =∫
                      ( tan t ) t       .sec2 t dt
                                    3
(1 + tan t ) 2 2
               ( tan t ) t dt =
          =∫
               sec t         ∫ t sin t dt = t ( − cos t ) − ∫ 1. ( − cos t ) dt                            [Integrating by parts]
          = −t cos t + sin t + C
                        − tan −1 x               x                                       x                  1 
      Hence, I =                         +              +C                   ∵ sin t =        and cos t =        
                           1 + x2              1 + x2                                  1 + x2             1 + x2 
                                  cos x + sin x                    cos x + sin x
28.   (i) Let I = ∫ cos 2 x.log                 dx ∴ I = ∫ log                   .cos 2 xdx
                                  cos x − sin x                    cos x − sin x
      Integrating by parts, we get,
                  cos x + sin x sin 2 x     − sin x + cos x − sin x − cos x  sin 2 x
          I = log               .       −∫                 −                 .        dx
                  cos x − sin x    2        cos x + sin x    cos x − sin x  2
                                                                       2                      2
           x2                          x2             x2                                x2
          = tan ( 2 x + 3 ) − ∫
               −1
                                               2
                                                 dx =    tan −1
                                                                ( 2 x + 3 ) − ∫ 4 x 2 + 12 x + 10 dx
           2                    1 + ( 2 x + 3)        2
              x2                    1      x2                                      x2                    1
          =      tan −1 ( 2 x + 3) − ∫ 2             dx                    ∴ I=       tan −1 ( 2 x + 3) − I 1 (say)           …(i)
              2                     4 x + 3x + 5 / 2                               2                     4
                            x2                     3x + 5 / 2               x +5/6
      Now, I1 = ∫       2
                                      dx = ∫ 1 − 2            dx = x − 3∫ 2             dx
                       x + 3x + 5 / 2         x + 3x + 5 / 2             x + 3x + 5 / 2
              3     2x + 5 / 3           3 ( 2 x + 3) + ( 5 / 3 − 3)
          = x−  ∫              dx = x − ∫                            dx
                  2
              2 x + 3x + 5 / 2           2      x 2 + 3x + 5 / 2
              3      2x + 3                  dx                 3           5
          = x− ∫ 2              dx + 2 ∫ 2              = x − log x 2 + 3x + + 2 ∫
                                                                                      dx
              2 x + 3x + 5 / 2          x + 3x + 5 / 2          2           2      
                                                                                         2
                                                                                      3 1
                                                                                   x+  +
                                                                                     2 4
               3               5         dz                                             3
          = x − log x 2 + 3 x + + 2 ∫ 2          2
                                                   ,                   where z = x +      ∴ dz = dx
               2               2     z + (1/ 2 )                                        2
               3               5  2           z        3               5                 3 
          = x − log x 2 + 3 x + +     tan −1      = x − log x 2 + 3 x + + 4 tan −1 2  x +  
               2               2 1/ 2        1/ 2      2               2                 2 
                3               5
      ∴ I1 = x − log x 2 + 3 x + + 4 tan −1 ( 2 x + 3)
                2               2
                 th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                                         BY R. K. MALIK’S NEWTON CLASSES                                                            21
                                          x2                    1    3               5                      
        ∴ From (i), I =                      tan −1 ( 2 x + 3) −  x − log x 2 + 3 x + + 4 tan −1 ( 2 x + 3)  + C
                                          2                     4    2               2                      
                    x2                     x 3              5
        Hence, I =  − 1 tan −1 ( 2 x + 3) − + log x 2 + 3x + + C
                    2                      4 8              2
                             (                 )
                                                   2
29.     (i) Let, I = ∫ sin −1 x dx . Put sin −1 x = t ⇒ x = sin t ⇒ dx = cos t dt
                             (                 )
                                                   2
        Hence, I = x sin −1 x + 2 sin −1 x 1 − x 2 − 2 x + C
            =
              ( cos    −1
                                 x ( 2 x − 1)          )−   x − x2
                                                                   +C              Hence, I =
                                                                                                       ( 2 x − 1) cos −1    x
                                                                                                                                −
                                                                                                                                    x − x2
                                                                                                                                           +C
                                 2                            2                                                   2                   2
                                                                                     π           
                                          −1                −1            sin −1 x −  − sin −1 x 
                                  sin    x − cos                 x                    2          dx                                            π
        (iii) Let, I = ∫                                           dx = ∫                                                ∵ sin
                                                                                                                                 −1
                                                                                                                                    x + cos −1 x = 
                                  sin −1
                                         x + cos −1              x                     π                                                          2
                                                                                       2
            2                π      4
             ∫            x −  dx = ∫ sin −1 x dx − ∫ 1.dx
                      −1
            =   2sin
            π                2      π
             4       −1
        ∴ I = ∫ sin      x dx − x + C                     …(1)
                 π
                   4
                       ∫ sin
                                     −1
        Let I1 =                           x dx . Put sin −1 x = θ ⇒ x = sin θ
                   π
        ⇒ x = sin 2 θ ⇒ dx = 2sin θ cos θ dθ ⇒ dx = sin 2θ dθ
                   4                                    4  −θ cos 2θ 1             4  −θ cos 2θ 1       
                   π∫
        ∴ I1 =        θ sin 2θ dθ =                                 + ∫ cos 2θ dθ  =           + sin 2θ 
                                   π                           2     2             π      2     4       
                4  −θ                  1                  
            =     
                π 2
                                 (      2
                                                        )
                       × 1 − 2 sin 2 θ + sin θ 1 − sin 2 θ 
                                                           
                            −2                                    2
        Hence, I1 =                  sin −1 x (1 − 2 x ) +            x 1− x
                             π                                   π
                                                                               2                              2
        On putting the value of I1 in (1), we get, I =                             ( 2 x − 1) sin −1     x+           x − x2 − x + C
                                                                               π                              π
30.     (i) Let, I = ∫ e ( cot x + log x sin x ) dx . Here, f ( x ) = log sin x
                                 x
                                                                                                           ⇒ f ′ ( x ) = cot x
                        th
      Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
22   (BOARD LEVEL, XII)                            BY R. K. MALIK’S NEWTON CLASSES
     ∴ I = e log sin x + C
               x
                         1 1               1      ex
     (ii) Let, I = ∫ e x  − 2  dx = ∫ e x . dx − ∫ 2 dx
                         x x               x      x
            1              1                   ex
          =  ∫ e x dx − ∫  − 2  e x dx  dx  − ∫ 2 dx                [Integrating by parts]
            x              x                   x
              ex    ex       ex                ex
          =      + ∫ 2 dx − ∫ 2 dx . Hence, I = + C .
              x     x        x                 x
     (iii) Let, I = ∫
                          xe x
                                       dx = ∫
                                                ( x + 1 − 1) e x dx =  ( x + 1) − 1  e x dx
                        ( x + 1)
                                   2
                                                   ( x + 1)
                                                            2        ∫  ( x + 1)2 ( x + 1)2 
                                                                                           
                  1          1                 1      ex
          = ∫ ex         −        2  dx = ∫ x + 1 ∫ ( x + 1)2 dx
                                             e x
                                                 .   dx −
                   x + 1 ( x + 1) 
            1                  −1                       ex
          =                                                
            x +1 ∫          ∫  ( x + 1)2  ∫   ∫ ( x + 1)2 dx
                    e x
                        dx −                 e x
                                                   dx    dx   −                                   [Integrating by parts]
                                                   
               ex         ex                ex                     ex
          =        +∫          2
                                 dx − ∫ ( x + 1)2 dx . Hence, I =      +C
              x +1    ( x + 1)                                    x +1
                          1 − sin x              1          sin x 
     (iv) Let, I = ∫ e x             dx = ∫ e x          −             dx
                         1 − cos x              1 − cos x 1 − cos x 
                                    x      x
                              2sin cos 
                      1              2     2 dx = e x  1 cosec2 x − cot x  dx = e cosec 2 x dx − e x cot x dx
                                                                                    x
          = ∫ ex            −                        ∫  2                      ∫2              ∫
                  2sin 2 x              x                        2        2            2              2
                                  2sin 2
                         2              2 
               ex        x        x              1       x          
          =∫      cosec 2 dx − cot ∫ e x dx − ∫ − cosec 2 ∫ e x dx  dx                        [Integrating by parts]
               2         2        2              2       2          
           1 x            x             x 1                x                   x
          =
           2 ∫ e cosec2 dx − e x cot − ∫ e x cosec2 dx . Hence, I = −e x cot + C .
                          2             2 2                2                   2
     (v) Let, I = ∫ e ( tan x + log sec x ) dx = ∫ e log sec xdx + ∫ e tan xdx
                     x                              x                 x
                                        {             }
          = log sec x ∫ e x dx − ∫ tan x.∫ e x dx dx  + ∫ e x tan xdx                           [Integrating by parts]
                   th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
 (BOARD LEVEL, XII)                            BY R. K. MALIK’S NEWTON CLASSES                                                         23
                   x          1                    1                         x
             =         +∫           2
                                        dx − ∫           2
                                                           dx . Hence, I =       +C .
                 log x    ( log x )            ( log x )                   log x
        (vi) Let, I = ∫ {sin ( log x ) + cos ( log x )}dx = ∫ sin ( log x ) dx + ∫ cos ( log x ) dx
                                                       1        
             = sin ( log x ) ∫ 1.dx − ∫ cos ( log x ) . ∫ 1.dx  dx  + ∫ cos ( log x ) dx
                                                       x        
             = x sin ( log x ) − ∫ cos ( log x ) dx + ∫ cos ( log x ) dx . Hence, I = x sin ( log x ) + C .
                                            1                                        1
        (vii) Let, I = ∫ log ( log x ) +           2 
                                                         dx = ∫ log ( log x ) dx + ∫           2
                                                                                                 dx
                                        ( log x )                                ( log x )
                                          1 1                        1
             = log ( log x ) .∫ 1.dx − ∫       . ∫ 1.dx  dx  + ∫           2
                                                                                 dx                   [Integrating by parts]
                                          log x x                ( log x )
                                      1              1
             = log ( log x ) .x − ∫       dx + ∫           2
                                                             dx
                                    log x        ( log x )
                                   1                    −1            1                      1
             = x log ( log x ) −         .∫ 1.dx − ∫               2
                                                                       .   ∫ 1. dx   dx  + ∫           2
                                                                                                           dx
                                  log x                 ( log x ) x                    ( log x )
                                                                                                            [Again Integrating by parts]
                                     x            1                      1
             = x log ( log x ) −         −∫             2
                                                           dx + ∫             2
                                                                                dx
                                  log x       ( log x )             ( log x )
                                            x
        Hence, I = x log ( log x ) −            +C
                                          log x
        I = ∫ e− x tan −1 ( e x ) dx
                                                                                  dt         dt
31.                                        Put e x = t ⇒ e x dx = dt ⇒ dx           x
                                                                                      ⇒ dx =
                                                                                  e          t
                 1           dt
        ∴ I = ∫ ⋅ tan −1 t ⋅
                  t          t
             1
          ∫ t 2 tan tdt
                    −1
                        1      1 1
        = ( tan −1 t )  −  + ∫  2
                                     dt
                        t  1+ t t
           tan −1 t        t                                                                                   1
        =−          +∫ 2 2       dt                                  Put t 2 = y ⇒ 2tdt = dy ⇒ tdt =             dy
              t       t ( t + 1)                                                                               2
             tan −1 t 1     dy        tan −1 t 1  1  1 
        =−           + ∫           =−         + ∫ −      dy
                t     2 y ( y + 1)       t     2  y y +1 
             tan −1 t 1                              tan −1 t 1
        =−           + log y − log ( y + 1)  = −         + log t 2 − log ( t 2 + 1) 
                t     2                                 t     2
           tan −1 t             1                 tan −1 e x            1
        =−           + log t − log ( t 2 + 1) = −            + log e x − log ( e 2 x + 1)
               t                2                    e x
                                                                        2
                                 1
        = −e− x tan −1 e x + x − log ( e 2 x + 1)
                                 2
        ALTERNATIVE
        Integrating by parts taking tan −1 ( e x ) as u , we get,
                       th
      Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968
24    (BOARD LEVEL, XII)                           BY R. K. MALIK’S NEWTON CLASSES
                                                     ex
                               ( ) (
          I = −e− x tan −1 e x − ∫ −e − x         )        dx = −e − x tan −1 ( e x ) + ∫
                                                                                              dx
                                                                                                      …(1)
                                                                                          1 + (ex )
                                                        2x                                          2
                                                   1+ e
                      dx                 1       sec 2 θ
      Now,    ∫ 1+             =∫              .         dθ                  [Putting e x = tan θ so that e x dx = sec 2 θ dθ ]
                      (e )
                        x 2         1 + tan 2 θ tan θ
                                          ex                 1                   1
          = ∫ cot θ dθ = log sin θ = log 
                                               2x
                                                                             ( )           (
                                                    = log e x − log 1 + e 2 x = x − log 1 + e 2 x
                                                               2                   2
                                                                                                     )            (      )
                                          1+ e 
                                                     1
                                                              ( )
      ∴ From (1), we get, I = −e − x tan −1 e x + x − log 1 + e2 x + C
                                                     2
                                                                                (       )
                              x        x                         x       x
32.   Let, I = ∫ log  2 cos 2  − x tan  dx = ∫  log 2 + 2 log cos − x tan  dx
                              2        2                         2       2
                               x                x
          = x log 2 − ∫ x tan dx + 2 ∫ 1.log cos dx
                               2                2
                                                                    x 
                                                           x  − sin  
                                                                      2 1
          = x log 2 − ∫ x tan dx + 2  x log cos − ∫ 
                                x                      x
                                                                        .  dx
                                2                     2        cos
                                                                    x    2
                                                                  2      
                                x                    x            x                           x
          = x log 2 − ∫ x tan dx + 2 x log cos + ∫ x tan dx . Hence, I = x log 2 + 2 x log cos + C .
                                2                    2            2                           2
                                             x log x            x
33.   Let, I = ( x log x − x ) sin −1 x − ∫          dx + ∫          dx        …(1)
                                                   2
                                              1− x           1 − x2
                                                                       [Integrating by parts taking sin −1 x as u ]
                                               x log x
      Now in order to evaluate             ∫    1 − x2
                                                             dx . Put x = sin θ     ⇒ dx = cos θ dθ
              x log x
      ∴   ∫    1 − x2
                           dx = ∫ sin θ log sinθ dθ = − cos θ log sin θ − ∫ − cos θ .cot θ dθ
                                  cos 2 θ                            1 − sin 2 θ
          = − cos θ log sin θ + ∫         dθ = − cos log sin θ + ∫               dθ
                                    sin θ                               sin θ
          = − cos θ log sin θ + ∫ ( cosec θ − sin θ ) dθ = − cos θ log sin θ + ∫ cosec θ dθ − ∫ sin θ dθ
          = − cos θ log sin θ + log cosec θ − cot θ + cos θ
                                  1 − 1 − x2                   
         = − 1 − x 2 log x + log                                + 1 − x2                               …(2)
                                      x                        
                                                               
                 x
      Again, ∫         dx = − 1 − x 2                                                                    …(3)
                     2
               1− x
      [On putting 1 − x 2 = t ⇒ − 2x dx = dt ]
      ∴ From (1), (2) and (3), we get,
                                                            1 − 1 − x2 
         I = ( x log x − x ) sin x + 1 − x log x − log 
                                      −1                 2
                                                                         −                     1 − x2 − 1 − x2 + C
                                                                  x     
                                                                        
                                                                 1 − 1 − x2                
      Hence, I = ( x log x − x ) sin −1 x + 1 − x 2 log x − log                             − 2 1 − x2 + C
                                                                     x                     
                                                                                           
                 th
 Office.: 606 , 6 Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2562523, 9835508812, 8507613968